
Topics in Language-based Software Security
Introduction

Mathias Payer

EPFL EDIC, CS-725, Fall 2018

Mathias Payer Topics in Language-based Software Security



About me

Instructor: Mathias Payer
Research area: system/software security

Memory/type safety
Mitigating control-flow hijacking
Compiler-based defenses
Binary analysis and reverse engineering

CTF player, founding member of gnoobz, founder of b01lers.
Homepage: http://nebelwelt.net

Mathias Payer Topics in Language-based Software Security

http://nebelwelt.net


Why should you care?

Security impacts everybody’s day-to-day life
Security impacts your day-to-day life
User: make safe decisions
Developer: design and build secure systems
Researcher: identify flaws, propose mitigations

Mathias Payer Topics in Language-based Software Security



Software Engineering versus Security

Software engineering aims for

Dependability: producing fault-free software
Productivity: deliver on time, within budget
Usability: satisfy a client’s needs
Maintainability: extensible when needs change

Software engineering combines aspects of PL, networking, project
management, economics, etc.
Security is secondary and often limited to testing.

Mathias Payer Topics in Language-based Software Security



Definition: Security

Security is the application and enforcement of policies
through mechanisms over data and resources.

Policies specify what we want to enforce
Mechanisms specify how we enforce the policy (i.e., an
implementation/instance of a policy).

Mathias Payer Topics in Language-based Software Security



Definition: Software Security

Software Security is the area of Computer Science that
focuses on (i) testing, (ii) evaluating, (iii) improving, (iv)
enforcing, and (v) proving the security of software.

Mathias Payer Topics in Language-based Software Security



Why is software security difficult?

Human factor
Concept of weakest link
Performance
Usability

Mathias Payer Topics in Language-based Software Security



Definition: Software Bug

A software bug is an error, flaw, failure, or fault in a
computer program or system that causes it to produce an
incorrect or unexpected result, or to behave in unintended
ways. Bugs arise from mistakes made by people in either a
program’s source code or its design, in frameworks and
operating systems, and by compilers.

Source: Wikipedia

Mathias Payer Topics in Language-based Software Security



Definition: Software Vulnerability

A vulnerability is a software weakness that allows an
attacker to exploit a software bug. A vulnerability requires
three key components (i) system is susceptible to flaw, (ii)
adversary has access to the flaw (e.g., through information
flow), and (iii) adversary has capability to exploit the flaw.

Mathias Payer Topics in Language-based Software Security



Course goals

Software running on current systems is exploited by attackers
despite many deployed defence mechanisms and best practices for
developing new software.
Goal: understand state-of-the-art software attacks/defenses across
all layers of abstraction: from programming languages, compilers,
runtime systems to the CPU, ISA, and operating system.
To achieve these goals, we will read and discuss foundational and
current papers in systems and security top tier conferences.

Mathias Payer Topics in Language-based Software Security



Course outline

Understanding software flaws
Language safety and formal verification
Software testing (fuzzing and sanitization)
Mitigation

Mathias Payer Topics in Language-based Software Security



Course material

Software security is rapidly evolving
Software Security: Principles, Policies, and Protection
Research papers
Labs and exercises

Mathias Payer Topics in Language-based Software Security

https://nebelwelt.net/SS3P/


Grading

Paper presentations: 60%
Course participation: 10%
Course projects (3x): 30%
The grade will be curved.

Mathias Payer Topics in Language-based Software Security



Summary

Software Security is the area of Computer Science that focuses
on (i) testing, (ii) evaluating, (iii) improving, (iv) enforcing,
and (v) proving the security of software.
Learn to identify common security threats, risks, and attack
vectors for software systems.
Assess current security best practices and defense mechanisms
for current software systems.
Design and evaluate secure software.
Have fun!

Mathias Payer Topics in Language-based Software Security


