
1

SoK: Eternal War in Memory
Laszlo Szekeres, Mathias Payer,
Tao Wei, and Dawn Song
In: Oakland ‘14

Presenter: Mathias Payer, EPFL
http://hexhive.github.io

2

Memory attacks: an ongoing war

 Vulnerability classes according to CVE

3

FFmpeg and a thousand fixes

http://j00ru.vexillium.org/?p=2211 Jan-10, 2014

2 person-years &
fuzzing on large
cluster

>1,000 bugs found
and fixed

4

Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety
and memory safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system

5

A Model for
Memory Corruption

6

Memory (un-)safety: invalid deref.

Dangling pointer:
(temporal)

Out-of-bounds pointer:
(spatial)

Violation iff: pointer is read, written, or freed

char foo[40];
foo[42] = 23;

free(foo);
*foo = 23;

7

Type Confusion

class B {
int b;

};
class D: B {

int c;
virtual void d() {}

};
…
B *Bptr = new B;
D *Dptr = static_cast<D*>B;
Dptr->c = 0x43; // Type confusion!
Dptr->d(); // Type confusion!

b

vtable*

c

B D

bBptr

Dptrvtable*?

c?

8

Attack scenario: code reuse

● Find addresses of gadgets
● Force memory corruption to set up attack
● Leverage gadgets for code-reuse attack
● (Fall back to code injection)

Code Heap Stack

9

Benign control-flow
void vuln(char *u1) {

// strlen(u1) < MAX ?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address

Saved base pointer

tmp[MAX]

1st argument: *u1

Next stack frame

10

Control-flow hijack attack

Memory safety

Integrity

Location

Usage

Attack

*C

&C

*&C

Violation

Control-flow
hijack

void vuln(char *u1) {
// strlen(u1) < MAX ?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address

Saved base pointer

tmp[MAX]

1st argument: *u1

Next stack frame

Don't care

Don't care

Points to &system()

Base pointer after system()

1st argument to system()

11

Model for memory attacks

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

12

Data execution prevention

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

C

Code
corruption

Data-only
Control-flow
hijack

Code
corruption

13

Stack canaries and SEH

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

*C

Control-flow
hijack

*&C

14

Address space layout random.

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

&C &D

Data-only
Control-flow
hijack

Code
corruption

15

ASLR: Performance overhead

● ASLR uses one register for PIC / ASLR code
– Performance degradation on x86

16

Widely deployed defenses

Memory safety

Integrity

Location

Usage

Attack

C *C D *D

&C

*&C

&D

*&D

Memory corruption

C

Code
corruption

Data-only
Control-flow
hijack

*C

&C &D

Code
corruption

Data-only
Control-flow
hijack

Deployed defenses
incomplete and not effective

*&C

17

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Stop memory corruption
– Safe dialects of C/C++:

CCured, Cyclone

– Retrofit on C/C++:
SoftBounds+CETS

– Rewrite in safe language:
Java/C#

18

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Enforce integrity of
reads/writes
– Write Integrity Testing

– (DEP and W^X for code)

19

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Probabilistic defenses
– Randomize locations,

code, data, or pointer
values

20

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Protect control transfers
– Data-flow integrity

– Control-flow integrity

21

Model for memory attacks

● Model allows reasoning and classification
– Classify security policies and defense mechanisms

– Reason about power of attacks

● Identify properties that enable wide adoption
– Low overhead is key (<10%)

– Compatibility with legacy code and source code

– Protection against class(es) of attacks

SoK: Eternal War in Memory, IEEE Symposium on Security and Privacy'13 (Oakland)
Eternal War in Memory, IEEE Security and Privacy'14 Magazine

22

Conclusion

23

Conclusion

● Low level languages are here to stay
– We need protection against memory vulnerabilities

– Enforce performance, protection, compatibility

● Mitigate control-flow hijack attacks
– Secure execution platform for legacy code

– Code-pointer integrity for source code

● Future directions: strong policies for data
– Protect from other attack vectors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

