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Large language models (LLMs) hold great promise in solving many challenges arising from software complexity, 
including the possibility of automating code generation and repair. Although we cannot deny the groundbreaking 
nature of LLM-based code repair, we must be realistic in positioning current results. 

T his “Building Security In”  
column explores the chal-

lenges in using LLMs for automated 
code generation and program repair.

Introduction
Joanna C. S. Santos and Mathias 
Payer: With the latest advances 
in LLMs, artificial intelligence 
(AI)-based code development 
assistants are increasingly part of 
day-to-day software development. 
A recent study (https://tinyurl.
com/3kub3awn) of 500 U.S.-based 
developers showed that 92% use 
AI coding assistants for work and 
personal use. The increased pro-
ductivity perceived by developers 

partly explains this fast, widespread 
adoption; AI helps them automate 
repetitive tasks so that they can 
focus on higher-level challenging 
tasks.1

Péter Hegedűs, and Lin Tan: 
Automated program repair (APR) 
aims to generate source code to fix 
software defects and vulnerabilities 
automatically. Research on APR has 
advanced significantly with genera-
tive AI models. Long short-term 
memory models achieved notable 
success in generating complex, syn-
tactically correct code after training 
on extensive source code datasets. 
LLMs further improved APR. Since 
they are pretrained on an enormous 
amount of natural language text 
and source code, they also offer an 
out-of-the-box solution for code 

repair. Recent studies2,3,10,11 show 
that LLMs can fix issues in the code, 
such as defects, vulnerabilities, and 
code smells. In some cases, code 
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repair is treated as a code genera-
tion task with a prompt explicitly 
instructing the model to fix a prob-
lem in a given location.2,3

Hegedűs: While LLMs, such 
as GPT-4, excel at fixing func-
tional bugs in laboratory environ-
ments (i.e., on synthetic or isolated 
issues), their real-world application, 
especially when the task is fixing 
complex, security-related issues, 
remains limited.4

LLMs Generate Vulnerable 
and Incorrect Code
Awais Rashid: Software pro-
fessionals are concerned about 
AI-generated code quality, correct-
ness, and security and the need to 
scrutinize and validate such code.5 
This is particularly critical for pro-
gram repair. The CrowdStrike case 
has highlighted how errors in a sin-
gle patch can have a global impact, 
halting critical services.

Marcelo d’Amorim: There is 
evidence that LLMs can produce 
code containing security weak-
nesses even when the user of the 
LLM is not malicious.6 Prevention 
and detection are two directions 
to mitigate this problem. For pre-
vention, responsibly disclosing the 
weaknesses of an LLM to the pub-
lic encourages the LLM maintainers 
to curate training datasets actively. 
Users must know the threats and 
limitations associated with the ver-
sions of the LLMs they are using. 
LLM maintainers are expected to 
care about public announcements 
about weaknesses in their LLM 
and will address them in subse-
quent releases. The LVE Reposi-
tory (https://lve-project.org/) is 
a commendable global initiative in 
that direction. For detection, LLMs 
can be used to explain the weak-
nesses identified by third-party 
tools. Ideally, those explanations 
should describe the consequences 
of not taking some action to miti-
gate the weakness, i.e., counterfac-
tual explanations are likely more 

helpful to users. Such explanations 
should help the distracted trained 
developer and help to train inexpe-
rienced developers.

Hamed Okhravi: Source code 
often must comply with many 
other requirements besides func-
tionality. These may include soft 
and hard real-time constraints, 
power usage requirements (e.g., for 
embedded code), and side-channel 
resilience (e.g., for crypto code), as 
well as more generic nonfunctional 
requirements such as readability, 
maintainability, performance, por-
tability, testability, and modular-
ity. LLM-generated code rarely 
accounts for these requirements.

LLMs must also understand the 
underlying platforms to generate 
the correct code to fix specific bugs.9 
Platform-specific parameters may 
include Windows versus Linux file 
handling, 32-bit versus 64-bit code, 
Windows versus POSIX threading 
application programming interface 
(API), network socket differences, 
or memory alignment. To success-
fully repair code, the LLM should 
be trained on all those platforms, 
and detailed platform information 
must be provided when prompting 
it to repair source code.

Santos and Antonino Sabetta: 
LLMs have a prompt input and 
output size threshold (e.g., GPT-4 
can take up to 128,000 tokens and 
generate up to 16,384 tokens). 
Considering real software systems’ 
sheer complexity and size, these 
thresholds are insufficient. As such, 
LLMs may miss the broader context 
of a project and can generate a lim-
ited repair size. Understanding the 
complete environment in which the 
code operates (e.g., configuration 
files, external dependencies, data-
base structures, etc.) is crucial for 
code generation and repair.

Despite improvements in token 
counts (e.g., Gemini 1.5 allows 
up to 1 million tokens), captur-
ing sufficient relevant context may 
require more than just a large token 

capacity. Effective code repair 
depends on some form of reason-
ing about the code context, which 
involves understanding the struc-
ture and purpose of the application 
to generate repairs that align with 
the codebase’s security needs and a 
variety of technical constraints.

Payer: AI-based assistants must 
be sufficiently scoped to create cor-
rect code, especially in highly opti-
mized environments. Although 
research has explored integrating 
LLMs into automated testing, the 
results only marginally improve on 
existing methods when incorporat-
ing the cost of LLM queries. A more 
promising application of LLMs is in 
generating test drivers to target spe-
cific functionalities as they can gen-
erate and refine drivers to improve 
code path coverage. While manually 
written drivers often fall short, LLMs 
could fill these gaps and enhance API 
coverage. However, LLM-generated 
drivers may be flawed or incomplete, 
potentially leading to false positives 
and wasted resources.

Hegedűs: The reproducibility of 
the fixing process is a major chal-
lenge as LLM results are nondeter-
ministic. Since prompts can have a 
major impact on the results, instead 
of model training, one would need to 
invest effort into prompt engineering.

Katja Tuma: From experience 
assessing the effectiveness of LLMs 
in fixing security misconfigura-
tions in Kubernetes-based appli-
cations,7 existing tools (Checkov, 
Datree, and KICS, to name a few) 
adopt different rules and security 
policies to identify security mis-
configurations. These tools may 
produce both false positives and 
negatives. Some configurations 
(such as allowing network access 
to a container) might be flagged as 
insecure, while they are required for 
the running application to perform 
its key functionalities (e.g., network 
monitoring). This can substantially 
affect the performance of LLMs in 
fixing security misconfigurations 
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for K8-based applications. Keeping 
the human in the loop is essential: 
For infrastructure-as-code repair 
with LLMs, first, we need to dis-
tinguish among misconfiguration 
fixes that can (and should) be veri-
fied by humans and those that could 
potentially be automated with lim-
ited security risks. Second, we need 
to establish a common taxonomy of 
misconfigurations and robustness 
measures for more effective tool 
benchmarking and experimental 
validation. This could help associ-
ate a certain level of confidence in 
the LLM-generated fixes for cer-
tain types of misconfigurations and 
instead leave the (orders of mag-
nitude smaller) remaining set of 
issues for humans to handle.

Insufficient Training Data 
and How to Add Software 
Domain Knowledge
Okhravi: Supervised approaches 
may be necessary for APR to suc-
ceed. To achieve this aim, LLMs 
must capture a solid notion of vul-
nerable and secure code to repair 
code successfully. However, realistic 
data for vulnerable and secure code 
samples are insufficient to apply 
supervised learning. The entire 
National Vulnerability Database 
(NVD) contains around 260,000 
vulnerabilities at the time of writ-
ing. Consider further that not every 
reported vulnerability has an asso-
ciated code sample available, and 
some vulnerabilities in the NVD 
are too old to be relevant to mod-
ern code. As a result, there are often 
fewer than tens of thousands of vul-
nerable code samples on which to 
train an LLM. This is insufficient to 
ensure the LLM is properly trained 
to generate only secure code. Recent 
work in this domain suggests that 
enriching existing data with addi-
tional properties (context, syn-
tax, and semantics) allows one to 
achieve better accuracy, precision, 
and recall in distinguishing between 
vulnerable and secure code.8

Santos: Prior work11 examined 
whether LLMs could repair their 
generated insecure code. Stark dif-
ferences exist among the issues 
LLMs could repair for each pro-
gramming language. For example, 
for Python, LLMs can solve issues 
related to XML validation vulner-
abilities but are less capable of 
solving issues related to the use of 
a broken or risky cryptographic 
algorithm (CWE-327), path tra-
versal (CWE-22), and incorrect 
permission assignment for a criti-
cal resource (CWE-732). We also 
observed that overall, LLMs are 
more capable of repairing Python 
code than Java code. These results 
indicate open challenges in effec-
tively using LLMs to repair insecure 
code. LLMs are trained with popu-
lar languages, especially Python. 
Consequently, LLMs will struggle 
to repair insecure code for lan-
guages with fewer samples in their 
training data. Even in cases where 
the language is well covered, a 
model generates repairs to inse-
cure code based on historical data. 
Still, vulnerabilities and secure cod-
ing practices continually change as 
technology evolves. Thus, the preci-
sion observed today likely will not 
be the same tomorrow.

Tan: Another important ques-
tion is whether adding more data 
to train deep learning (DL) mod-
els, including LLMs, is a promising 
direction to improve APR tech-
niques. Using increasingly large 
amounts of data has succeeded in 
tasks such as speaking a natural lan-
guage, which may fundamentally 
differ from coding tasks. Babies 
learn to speak their mother tongue 
by mimicking and learning implicitly 
from what they hear. However, soft-
ware developers do not simply learn 
programming and program repair by 
reading code and patches; they also 
use logic and reasoning by taking 
programming, algorithms, and data 
structure courses. Thus, while add-
ing more data may improve LLMs 

for text and other modalities, it may 
not be the most effective approach 
for APR tasks. Adding explicit 
domain knowledge (including but 
not limited to type rules) to models 
may be a more effective approach.9 
On the other hand, models may not 
need to learn the same way humans 
do, and the most effective learning 
approaches for humans may not be 
the most effective ones for models, 
suggesting that more data could be 
more effective.

Recent DL-based program repair 
techniques provide conflicting results 
in this respect. For example, KNOD 
employs a domain-rule distilla-
tion technique to explicitly inject 
domain knowledge including types 
into the neural network decod-
ing procedure.9 Specifically, the 
domain-rule distillation technique 
1) represents syntax and seman-
tics as rules in first-order logic and 
2) uses these logic rules to refine 
the teacher–student probability 
distributions to guide the model 
to learn to follow these syntactic 
and semantic rules. This approach 
shows that adding domain knowl-
edge explicitly improves the effec-
tiveness of neural networks for 
program repair. Yet, other stud-
ies (e.g., Jiang et al.10) suggest the 
opposite. They show that LLMs 
for code, without or with fine-tuning, 
outperform existing DL-based 
program repair techniques spe-
cially designed for APR to fix soft-
ware defects. These generic LLMs 
for code are pretrained with a 
vast amount of data but are not 
designed for APR. Since these 
LLMs are typically trained with 
more data than existing DL-based 
APR approaches, the finding sug-
gests that more data could be more 
effective for improving LLM-based 
program repair. The next relevant 
open questions are 1) whether we 
have more data for DL models to 
improve APR and code generation 
and (2) how to add domain knowl-
edge to LLMs effectively.
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Limited LLM 
Accountability and 
Overreliance
Hegedűs: Another major challenge 
with LLM-based code repair is the 
validation of the fixes they produce. 
It is not always easy to determine if 
an LLM-generated patch is genu-
inely good, meaning humans still 
play an essential role in verifying the 
correctness of the generated patches.

d’Amorim: A challenge is avoid-
ing hallucinations, which can be 
especially detrimental to inexperi-
enced developers, who may not real-
ize incoherences in the discourse.

The complementary problem 
of vulnerability repair can be even 
more challenging in practice if we 
consider the possibility of devel-
opers accepting plausible patches 
recommended by an LLM. The 
possibility of introducing bugs or 
other vulnerabilities when repairing 
code is well known in software engi-
neering, but security weaknesses 
can be more consequential. Devel-
opers need to validate the security 
patches that automated tools gener-
ate. However, for small single-hunk 
patches, which are prevalent, the 
human cost of reviewing may well 
dominate the cost of writing the 
patch. So, the benefit of automated 
repair in that context is question-
able. It is therefore important 1) to 
focus automated repair on multiple 
hunk patches, 2) to develop tools 
capable of explaining the repairs, 
and 3) to ensure developers validate 
these patches.

Jonathan M. Spring: Developers 
need a robust development environ-
ment to place more trust in the out-
puts of an LLM. That means good 
specification and documentation 
of the API of the project or mod-
ule, adequate unit tests, adequate 
integration tests, repeatable build 
processes, appropriate program 
verification techniques to detect 
specific common classes of vulnera-
bilities, appropriate testing to check 
parsing and error handling, and so 

on. An organization should have 
these tools established and working 
well before moving to automated 
code repair.

However, there are some critical 
tasks an LLM cannot do. An LLM 
cannot take ownership of maintain-
ing a software product that is out of 
support or is at the end of its life. An 
LLM cannot automatically write in 
interoperable, open standards for 
communication and data formats. 
Free and open standards will help 
others (using an LLM tool or not) 
repair your code after you move on 
to another project.

With or without LLM assistance, 
a software vendor should meet 
the goals of the Cybersecurity and 
Infrastructure Security Agency’s 
Secure by Design initiative. When a 
software vendor offers a product on 
which the engineers use LLM-based 
code repair, the vendor should pro-
vide software transparency and vul-
nerability management. A system 
owner or acquisitions team should 
still ask for a software bill of mate-
rials and ask the vendor about their 
vulnerability disclosure and report-
ing practices. Vendors should still 
pledge the organizational work to 
make software secure by design.

If we demand that software is 
secure by design, tools such as 
LLMs for code repair can help soft-
ware developers meet that demand.

Rashid: Several open questions 
surround the quality of LLM out-
puts. Would we see situations where 
the computer (LLM) says “no repair 
is needed” when one is required or 
where it hallucinates one? Similar 
questions arise about the repair itself. 
Who will scrutinize and validate the 
repair, and how, so it does not intro-
duce undesirable side effects, such as 
impacting other software function-
alities or introducing security weak-
nesses or vulnerabilities?

There is an expectation that the 
developer’s role will change, from 
the driver who writes the code to 
a navigator who will check and 

validate the driver’s work, that is, 
the LLM’s. However, we also know 
that automation and reliance on 
tools erode skills. I am reminded of 
a problem with my car: The hazard 
lights kept coming on when parked, 
draining the battery. Neither the 
small handheld diagnostic com-
puter (with the repair person) nor 
the extensive diagnostic rig at the 
garage could replicate the issue or 
isolate the fault. The problem kept 
recurring until a different repair per-
son came out to recharge the battery, 
used the same handheld diagnostic 
computer to no effect, gave it some 
thought, and then noted that it was 
likely a faulty burglar alarm. He iso-
lated it, and the problem was solved. 
Even if we use LLMs for code repair, 
we need skilled software engineers 
to understand, scrutinize, and vali-
date the outcomes.

Liliana Pasquale: LLMs can 
generate code that no longer satis-
fies system requirements or intro-
duces vulnerabilities. Despite this, 
their growing power has led soft-
ware engineers to increasingly 
depend on them, sometimes overly. 
This overconfidence becomes con-
cerning as developers rely on LLMs 
for coding and program repair, 
where accuracy is critical. Existing 
AI coding assistants should identify 
the criticality of software develop-
ment tasks and configure the reli-
ance that developers can place on 
them accordingly. For example, 
LLMs can still be useful for sev-
eral applications where errors can 
be tolerated. Thus, developers can 
entirely rely on LLMs to automate 
simple and repetitive programming 
tasks in noncritical applications. 
More complex programming tasks 
of noncritical applications could 
require the supervision of a senior 
software engineer to review the 
code generated automatically. New 
and large programming tasks, espe-
cially for critical applications, may 
require using LLMs only to oversee 
software development activities, 
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such as generating test cases or per-
forming code reviews.

Mehdi Tarrit Mirakhorli: Code 
repair generated by LLMs, while 
often functional, provides no guar-
antees that the repaired code is free 
of vulnerabilities, meets specific 
safety criteria, or truly addresses the 
underlying requirements. This lack of 
assurance can be problematic, espe-
cially in critical systems where cor-
rectness, security, and performance 
are nonnegotiable. One idea is to 
use LLMs to generate test cases and 
validate the repaired or synthesized 
code. However, a stronger idea is to 
provide proof of correctness. Since 
proofs equate with programs, one 
can deliver an LLM-based approach 
to generate proofs of correctness 
automatically using similar programs. 
We discussed the foundation of shift-
ing toward certified code repair, 
where LLMs are integrated with 
formal verification techniques.12 
Based on the theory that proofs can 
equate with programs, we can think 
of generating proofs as a task similar 
to generating code. This theoretical 
foundation suggests that with appro-
priate training and fine-tuning, LLMs 
can be guided to produce not only 
code repairs but also formal proofs 
that guarantee the correctness of the 
generated solutions. In such a trans-
formative approach, along with the 
code fix, the LLM generates a formal 
proof that certifies the repaired code 
satisfies a set of predefined safety or 
correctness properties, security poli-
cies, or design rules. A lightweight 
verification tool can independently 
check the proof, ensuring the code 
fix meets the necessary safety criteria 
before deployment.

Certified code repair (or syn-
thesis) is foundational for enabling 
AI autonomously and developing 
secure and trustworthy systems. 
Pre-LLMs and through my NSF 
CAREER award, I focused on the 
challenges of realizing such a foun-
dational approach where software 
engineers could focus on the key 

engineering tasks of 1) creativity 
and 2) design, then collaborate with 
a design synthesis tool to generate 
low-level code that correctly imple-
ments their design choices. While 
we are closer to such an idea today, 
there are challenges to achieving it 
for modern large-scale systems. For 
instance, generating formal proofs 
for code repairs can be computa-
tionally expensive, especially for 
large and complex systems. Proof 
generation requires rigorous for-
malization of the code’s properties 
and behavior, and ensuring that 
these properties hold under all con-
ditions can be time-consuming. 
Also, modern software has many 
third-party dependencies, adding to 
the complexity of generating proof 
of correctness. Fine-tuning LLMs 
on datasets that include examples 
of formal methods, symbolic rea-
soning, and proof generation tasks 
can help bridge this gap. Integrating 
language models with formal proof 
engines could also enhance their 
capabilities in proof generation.

Opportunities for Software 
Testing
Santos: LLMs cannot simply be 
used off the shelf as a foolproof tool 
to solve the insecure code repair 
problem. LLMs should enhance 
classic APR techniques rather than 
fully replacing them. Such a hybrid 
approach has been shown by prior 
work to help in generating tests.13 In 
that context, LLMs generated more 
diversified inputs to increase test cov-
erage for an underlying search-based 
software testing approach.

Payer: Two key areas are cer-
tainly human-in-the-loop code com-
pletion and the generation of unit 
tests and fuzzers. Automated testing, 
particularly fuzzing, has experienced 
a meteoric rise in popularity, mirror-
ing the growth of LLMs in computer 
science. Despite its conceptual sim-
plicity, fuzzing effectively uncov-
ers bugs by randomly probing 
various inputs to expose program 

vulnerabilities. A promising appli-
cation of LLMs is generating test 
drivers to target specific functional-
ities14 as they can create and refine 
drivers to improve code path cover-
age. While manually written driv-
ers often fall short, LLMs could fill 
these gaps and enhance API cover-
age. However, LLM-generated driv-
ers may be flawed or incomplete, 
potentially leading to false positives 
and wasted resources.

A promising use case of LLMs 
is in the bug-fixing process.3 After 
a fuzzer detects a bug and gener-
ates test inputs to reproduce it, an 
LLM could assist the developer by 
iteratively suggesting patches to 
address the underlying vulnerabil-
ity. The fuzzer could then explore 
the patched code to uncover any 
lingering weaknesses of the patch. 
This iterative approach, alternat-
ing between fuzzers and LLMs, 
may lower developer involvement 
and reduce the costs of produc-
ing a complete patch. A hybrid 
approach combining fuzzers, LLMs, 
and developers could be a promis-
ing future direction for integrating 
LLMs into the bug discovery and 
remediation cycle. As it neither 
increases costs nor produces false 
positives, this approach is likely the 
most interesting angle for LLMs, 
but it will require careful customiza-
tion and optimization.

However, while LLMs offer signif-
icant potential for enhancing fuzzing, 
the baseline approach without LLMs 
is already highly optimized, and the 
cost of querying LLMs must be care-
fully balanced against the potential 
benefits. LLMs trained on source 
code and specifications may improve 
mutation operators and driver gen-
eration, but some challenges, such as 
false positives, remain.

Rashid: “Many people expect 
advances in artificial intelli-

gence to provide the revolution-
ary breakthrough that will give 
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order-of-magnitude gains in software 
productivity and quality. I do not,” 
wrote Fred Brooks Jr. in “No Silver 
Bullet,” his seminal 1986 essay tack-
ling essential and accidental com-
plexity in software engineering.15

Will LLMs for code repair tasks 
alleviate essential complexity or 
exacerbate accidental complexity? 
Unless we systematically address 
issues such as correctness, verifiabil-
ity, and explainability, LLMs will 
likely add accidental complexity, 
potentially an order of magnitude, 
to the task of program repair, thus 
eroding any gains they may provide.

There are several open questions 
about the quality of LLM outputs. 
Time will tell. Let us know what 
your experience and opinions are. 
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