
NASS: Fuzzing All Native Android System Services with Interface Awareness and

Coverage

Philipp Mao Marcel Busch Mathias Payer
EPFL, Lausanne, Switzerland

Abstract

Compromised or malicious apps remain a primary security

concern for Android. As Android tightens its app sandbox

and further reduces the kernel’s attack surface, native Android

system services emerge as a promising target for privilege

escalation. Bugs in these native system services, triggerable

from the app sandbox via RPC (Remote Procedure Calls),

may facilitate privilege escalation.

We identify the attack surface exposed by proprietary na-

tive system services and propose NASS, an approach to ef-

fectively fuzz proprietary real-world RPC servers to detect

bugs triggerable via RPC. NASS addresses the challenge

of extracting coverage from complex intertwined real-world

RPC servers. Furthermore, NASS leverages our novel tech-

nique deserialization-guided interface extraction to recover

the RPC interface definition from proprietary RPC servers.

NASS’ techniques all build on common RPC design princi-

ples, which broadly apply to RPC frameworks.

We implement NASS for Android’s Binder RPC frame-

work. NASS outperforms prior work regarding interface ex-

traction, target exploration and bug finding capabilities, even

without access to source code. NASS has identified 12 unique

bugs in up-to-date Google, Samsung, Xiaomi, and OnePlus

devices, with five CVEs assigned so far.

1 Introduction

Smartphones have become the most intimate piece of tech-

nology. As such, smartphones are a promising target for ma-

licious actors, as a compromised phone becomes a powerful

spying tool. In the past, there have been multiple publicly

documented instances where Android smartphones were com-

promised [17,24]. A common exploitation pattern is an initial

compromise of an internet-facing app, such as WhatsApp

or Chrome, and then one or more privilege escalation steps

often targeting a kernel bug to obtain root privileges. Root

privileges enable spyware to stealthily harvest all the user’s

data unhindered by permission restrictions placed on apps.

To counteract the threat of compromised apps targeting

the kernel, Google is sandboxing apps to limit direct access

to the kernel. Apps only have access to a limited number of

system calls and kernel drivers. In the past, attackers have still

found ways to exploit the kernel despite the sandbox. How-

ever, directly attacking the kernel from an app is becoming

increasingly difficult. As the Binder kernel driver, accessible

by design from apps, is rewritten in Rust [33], attackers must

look for other avenues to expose the kernel’s attack surface.

Android system services are highly privileged user space

daemons, which facilitate access to the kernel for apps. Apps

interact with system services via Binder Remote Procedure

Calls (RPC). Almost all Android framework APIs used by

apps communicate with system services, which access the

hardware on behalf of the app. While all apps are constrained

by the same strict sandbox which restricts access to the kernel,

each system service has its bespoke sandbox with access to

specific kernel APIs. For performance reasons, many system

services are native, and implemented in C++. On five recent

devices, 528 (30% of all system services) are native system

services. As RPC is used to allow communication from lower

to higher-privilege contexts, vulnerabilities triggerable over

RPC may be exploited to escalate an attacker’s privileges. By

exploiting a system service the attack surface exposed by the

kernel is significantly increased as many services, by design,

have access to more kernel APIs.

While prior work has identified the importance of securing

native system services [8, 28], it has not effectively addressed

proprietary system services. Out of the 528 native services

mentioned above, 316 services are entirely proprietary and 44

are only partially open-source as they also load proprietary

components. The security of these proprietary services is

especially relevant since these are often part of the Hardware

Abstraction Layer (HAL), with privileged access to the kernel.

To address the security of proprietary native system services,

we propose NASS, a fuzzer that can target all native Android

system services. NASS addresses two challenges, interface

awareness and coverage, not addressed by prior work.

The interface exposed by a system service defines the sig-

natures of functions exposed as RPCs. As pointed out by

FANS [28], effectively fuzzing RPC servers is only possible

with awareness of the server’s exposed interface. Unfortu-

nately, these interfaces are not publicly disclosed for propri-

etary RPC servers which poses a strict limitation for existing

approaches [28]. NASS’ primary contribution sets out to over-

come this limitation.

NASS’ approach is inspired by the generic design of RPC

frameworks. Our major insight stems from three common

RPC design principles (discussed in Section 3) that lead

to the separation of automatically generated Inter-Process

Communication (IPC) and (de)serialization logic on the one

hand, and the manually-implemented application logic of the

RPC on the other hand. Particularly the uniformity of auto-

generated code, typically generated from domain-specific in-

terface description languages, allows NASS to employ sys-

tematic dynamic analyses to fully recover the interface defini-

tions from proprietary RPC servers. In detail, this technique

called deserialization-guided interface extraction (DGIE) au-

tomatically recovers the complete interface definition from a

proprietary RPC server by dynamically analyzing the server’s

execution of RPC framework-specific deserialization prim-

itives when processing incoming requests. We implement

DGIE for Android’s RPC-over-Binder to recover the interface

definition of proprietary system services without requiring

source code or the necessity to capture IPC requests sent by

the system. As a result, the knowledge of the target service’s

interface enables interface-aware fuzzing, allowing the fuzzer

to generate inputs that are always successfully deserialized by

the target RPC server. Additionally, it enables the creation of

interface-aware mutators which mutate RPC arguments while

adhering to their semantics.

Prior work has fuzzed system services in a black-box man-

ner. System services are complex, multi-threaded processes,

closely coupled with the rest of the system. Collecting stable

coverage that is directly related to fuzzer dispatched RPCs is

challenging. NASS enables grey-box coverage guided fuzzing

of system services by leveraging the structure of RPC code

to trace the service’s execution only during the processing of

fuzzing input using dynamic binary instrumentation.

We used NASS to fuzz proprietary system services on

five recent commercial off-the-shelf (COTS) devices from

Google, Xiaomi, Samsung, and OnePlus. So far, we have

discovered 12 unique bugs with five CVEs assigned so far.

We have responsibly disclosed all bugs to the affected vendors.

NASS outperforms prior work in terms of interface recovery,

coverage, and discovered bugs.

In summary, we present the following contributions:

• We are the first to identify the prevalence and impor-

tance of the attack surface exposed by proprietary native

Android system services.

• Based on common RPC design principles, we present a

novel technique, DGIE, leveraging dynamic analysis, to

precisely extract the interface definition of proprietary

APIs exposed over RPC.

• We propose an approach to extract stable coverage re-

lated to fuzzer dispatched RPCs from real-world multi-

threaded RPC servers.

• We implement NASS, a fuzzer that leverages our insights,

to efficiently fuzz any native Android system service.

NASS is the first system that fuzzes proprietary system

services with interface awareness and coverage.

We will open-source NASS’ implementation to enable fur-

ther research into Android system services and RPC fuzzing.

2 Android System Services

Service 1

Service 2

Service 3

Service 4

Service 5

Device 1

Device 2

Device 3

APP

LAYER

FRAMEWORK

LAYER

HAL

LAYER
KERNEL

Legend: Binder RPC System Calls Native Java

Figure 1: The user space architecture on modern Android

devices with a binderized HAL.

The architecture of the modern Android user space consists

of three layers: the app layer, the framework layer, and the

hardware abstraction layer (HAL). Since Android 8, as part

of project Treble, communication between the framework and

HAL layer exclusively takes place over Binder IPC.

All user space processes running at any layer are isolated

from all other processes with discretionary access control

(Linux permissions), system call filtering (seccomp), and

mandatory access control (SELinux).

Processes running at the app layer are user-facing applica-

tions (Android apps). Since apps may be malicious or contain

vulnerabilities, they are subject to the most restricted sandbox.

This sandbox restricts access to most kernel APIs, especially

kernel drivers. To interface with the underlying hardware,

apps communicate with system services, which in turn either

communicate with other system services or the kernel. This

interposition layer restricts hardware accesses to those imple-

mented in the service and enables enforcement of Android

permissions.

System services are user space processes running at the

framework or the HAL layer. System services expose APIs

over RPC that client processes can invoke. The Binder IPC

kernel driver provides the RPC transport layer. System ser-

vices running in the framework layer are the backend im-

plementations of the Android framework API used by apps.

System services running in the HAL layer interact with the

hardware directly (usually by communicating with a kernel

driver) and are thus dependent on the underlying hardware.

Note that a system service may belong to both the framework

and the HAL layer.

To illustrate how system services in these different lay-

ers facilitate hardware access for an app, take for example

an app that wishes to take a picture using the camera. The

cameraserver service in the framework layer implements the

backend for the standard android.hardware.camera2 API.

The app will first obtain a handle to the cameraserver ser-

vice’s android.hardware.ICameraService interface. Af-

terwards, the app uses the obtained handle to invoke the nec-

essary RPC functions in the cameraserver system service. The

cameraserver system service in turn communicates with the

camera HAL system services over RPC. The camera HAL

system services finally have the SELinux permissions to in-

teract with the hardware-specific camera kernel driver and the

camera hardware.

System services may be implemented in Java or natively

in C++. System services may be open-source (part of the

Android Open Source Project–AOSP) or proprietary. In gen-

eral, all the system services running in the HAL layer are

proprietary since these services are specific to the underly-

ing hardware and are thus developed by the original equip-

ment manufacturer or original design manufacturer. Vendors

may extend the Android framework API (to support vendor-

specific apps shipped on the device), resulting in proprietary

system services running in the framework layer as well.

3 RPC Design Principles

RPC enables clients to execute API functions in other pro-

cesses (RPC servers) as if they were local functions. An RPC

server’s interface definition contains the signatures of func-

tions exposed over RPC. We identify three common RPC

design principles, which apply to Android’s RPC over Binder

but can also be found in other RPC frameworks. In Section 6

we leverage these design principles to design DGIE, which au-

tomatically recovers the interface definition from proprietary

RPC servers.

Ab Abstraction of IPC Binding Code It is common prac-

tice for developers to separate API-specific code and IPC-

specific code. By abstracting away the underlying IPC mech-

anisms, developers can focus on the API functions without

having to worry about IPC minutiae. It also makes the API

functions portable between different IPC implementations

and versions.

To facilitate this separation, IPC binding code is imple-

mented in the client stub and the server stub. The client stub

takes care of serializing the target function’s arguments and

sending the IPC request to the server process. When the client

calls the remote API function, the client stub is invoked in-

stead. The server stub is invoked after receiving an IPC re-

quest. It deserializes the function arguments and invokes the

target API functions.

Si Single Entrypoint The entry point is the function in-

voked by the underlying IPC transport layer after receiving an

IPC request. The entry point function maps the incoming IPC

request to the target RPC interface and invokes that interface’s

server stub. Using a single entry point centralizes the handling

of IPC requests, allowing the IPC transport layer to forward

all incoming requests to the entry point without needing to

parse its contents. This design separates the IPC transport

layer from the IPC processing layer.

St Standard Deserialization Routines Deserializing input

arguments from the incoming IPC request involves mapping

input bytes back to higher-level types. These deserialization

routines invoked in the server stub must be consistent with the

client stub’s serialization routines. Furthermore, the format

of serialized arguments may depend on the underlying IPC

mechanism. To ensure consistency and compatibility, both

serialization and deserialization routines are standardized,

either automatically generated or part of a runtime library

available to both client and server.

In practice, RPC frameworks implement these design prin-

ciples starting with an interface definition language (IDL).

The developer defines the RPC interface in the IDL and the

RPC framework’s compiler takes care of emitting the client

and server stub code. For instance, Android developers can

use the Android Interface Definition Language (AIDL) to

define the system service’s interface. Two further propular

RPC frameworks gRPC and Thrift, which we will discuss in

Section 9, leverage their own IDLs.

4 Motivation

RPC calls (through Binder) cross a security boundary from

one Android sandbox to another. These sandboxes have dif-

ferent privileges, giving access to other system services or

kernel APIs. As such a vulnerability in a system service trig-

gerable over RPC could be exploited to escalate privileges. In

this section, we explain why system services are a promising

target for attackers.

We assume an attacker who is executing code in Android’s

app layer and is looking to fully compromise the phone by

elevating privileges to root. In Figure 1 the attacker is symbol-

ized by the red icon. There are many ways our attacker could

have gained code execution in the app layer. The attacker may

have exploited a vulnerability in an app (e.g., Chrome 0-days,

or one-click RCE exploits in WhatsApp [17, 24]) or the vic-

tim installed a malicious app. The attacker’s compromised

app is running on a modern Android phone and is subject to

correctly configured access control, seccomp and SELinux

policies. In the past 10 years, attackers further elevated their

privileges predominantly by exploiting a kernel vulnerability.

However, the attack surface of the kernel, which is directly

accessible by a malicious app is shrinking rapidly. On mod-

ern phones, an app is sandboxed to a small subset of benign

system calls and the Binder kernel driver. The Binder driver

enables the IPC communication between apps and system

services as well as system services between themselves. By

design, apps need access to the Binder driver. This along with

the complexity of the Binder driver has made it the prime

target for privilege escalation in recent years [22, 23, 36, 42].

However, there is an active push to rewrite the Binder driver

in Rust [33]. Once deployed, this change is expected to close

this avenue for triggering bugs in the kernel. Furthermore, as

more kernel mitigations, implemented in the mainline Linux

kernel, trickle down to deployed phones [30], exploiting a

kernel vulnerability becomes even more challenging.

One way for attackers to open up the attack surface of the

kernel is to compromise a system service. System services are

subject to the same restriction mechanisms as apps. However,

by design, the SELinux policy applied to system services ei-

ther grants them access to other system services or the kernel.

Either type of service is an interesting target for our attacker.

Compromising a HAL system service with extended access

to the kernel (for example a vendor-specific kernel module)

significantly increases the kernel’s attack surface exposed

to the attacker. Compromising a framework system service

with access to HAL system services allows the attacker to

directly communicate with these HAL system services and

mount attacks against them. System services implemented

in C++ are the most promising targets for such an attacker,

since these system services may be vulnerable to memory

corruption vulnerabilities, which can be exploited to achieve

arbitrary code execution.

There is evidence that malicious actors have already started

targeting Android system services to escalate privileges. In

July 2024 a new entry was added to Google Project Zero’s

“0-day in the Wild” tracking sheet describing a vulnerabil-

ity in a kernel driver on the Samsung S10 exploited on real

phones [39]. What is notable about this vulnerability is that

it was exploited not from an app but from a system service,

namely the cameraserver service. The kernel driver containing

the vulnerability was only accessible from the cameraserver

process and the exploit was part of a privilege escalation chain.

The cameraserver is a native system service that was likely ex-

ploited first and used as a stepping stone to exploit the kernel

vulnerability.

While the cameraserver is part of the AOSP, many native

system services are closed-source proprietary binary blobs.

Inspecting the services running on five recent Android phones

showed a large number of such proprietary services deployed.

As Table 1 suggests, out of 528 native services, 316 (60%) are

O
verall

G
oogle

Pixel 9

Sam
sung

S23

X
iaom

i R
M

N
ote

13

O
nePlus 12R

Infinix
X

670

S. 1784 371 388 310 437 278

N.S. 528 146 110 61 162 49

P.N.S. 316 102 67 20 117 10

F.P.N.S. 23 10 0 0 13 0

H.P.N.S. 293 92 67 20 104 10

Table 1: An overview of the native (N) services (S) running

on five recent COTS devices. 60% of all native services are

proprietary (P), out of which 92% run in the HAL (H) layer

and 8% in the framework (F) layer.

proprietary. Furthermore, out of the 212 native services that

are part of the AOSP, 44 load proprietary binaries (21%). This

includes the aforementioned cameraserver service. All this

proprietary native code is exposed over RPC and is reachable

either from an app or another service.

5 Challenges

Our goal is to find memory corruption bugs in proprietary

native Android system services triggerable via RPCs. Fuzzing

has proven to reliably find bugs in native code. However, ap-

plying fuzzing to complex, proprietary RPC servers presents

two key challenges. As these challenges have so far not been

solved, no effective fuzzing has been applied to native propri-

etary Android system services, leading to a blind spot in the

security of the Android user space. This is especially critical

since HAL system services, with the most access to the kernel,

account for over 92% of proprietary native system services.

C1 Automated Complete Interface Definition Extraction

For Proprietary RPC Servers. The RPC interface defini-

tion defines the signatures of API functions exposed over RPC

by the server. When an IPC request is received, the server

stub attempts to deserialize the API function arguments from

the IPC request’s argument bytes (according to RPC design

principle Ab). If the argument bytes cannot be deserialized

to the expected arguments, the stub will return early without

executing the target API function. In order to apply effective

fuzzing to RPC servers, the fuzzer needs to be aware of the

interface definition. This way the fuzzer can generate IPC

argument bytes that are correctly deserialized by the server

stub and will execute the target API functionality. Otherwise,

the fuzzer will waste cycles fuzzing automatically generated

stub code — which is likely correct. For open source targets

the interface can be recovered from the IDL source file. How-

ever, for proprietary RPC servers, the interface definition is

unknown and has to be extracted.

C2 Isolating Coverage For Proprietary HW/SW-

Dependent Multithreaded RPC Servers. Coverage-

guided grey box fuzzing has emerged as the predominant

form of fuzzing [9, 41]. While the problem of extracting

coverage from binary-only targets is mostly solved [10],

extracting stable coverage that is directly connected to

the sent IPC request from proprietary RPC servers is

challenging. Android RPC servers usually have intricate

hardware and software dependencies. For sufficiently

complicated dependencies rehosting the RPC server in

a dedicated fuzzing environment becomes prohibitively

difficult (think back to our cameraserver example which

needs access to the specific camera HAL services which

in turn need access to the camera device driver) and thus

the only way to dynamically execute the RPC server is in

its original environment, with the expected hardware and

software dependencies interacting with the server. Often RPC

servers are multi-threaded programs that host multiple RPC

interfaces. Naively collecting coverage from all threads for

all received requests will lead to spurious coverage due to

other system components interacting with the RPC server and

instability due to the non-determinism of thread scheduling.

Prior Work on Android System Service Fuzzing. For An-

droid’s RPC over Binder two prior works propose solutions

to fuzz native services, neither of which addresses C1 or C2 .

FANS [28] uses source code analysis to infer a service’s inter-

face definition. As this approach requires source code it does

not apply to proprietary system services. BinderCracker [8]

records IPC requests triggered during phone usage. It extracts

partial information on the service’s interface definition by

inspecting the captured IPC request. While this technique

applies to proprietary system services it is not exhaustive. It

can only recover the expected arguments for RPC functions

the system uses during normal operation, missing out on the

attack surface exposed by rarely used or unused RPC func-

tions. Both FANS and BinderCracker fuzz Android system

services in a black box fashion without coverage feedback.

6 Design

We propose NASS, an approach that addresses both chal-

lenges to effectively fuzz real-world native RPC servers.

NASS leverages the fact that RPC servers adhere to the three

RPC design principles (abstraction of IPC binding code Ab ,

single entry point Si , and standard deserialization routines

St) identified in Section 3.

NASS incorporates DGIE, which builds on RPC design

principles Ab and St , to extract the target server’s interface

definition addressing C1 . Furthermore, NASS enables evolu-

tionary mutation-based grey box fuzzing of interdependent

and multithreaded RPC servers by integrating stable cover-

age collection, which is collected from the single entry point

Si , addressing C2 . NASS’ approach is applicable to all RPC

frameworks compliant with these three design principles. In

1 class SomeObj : public :: Parcelable{

2 std::vector<std::string> strings; int anInt; String aString;

3 }

4 status_t SomeObj::readFromParcel(){

5 if(!data.readStringVector(&strings)) return −1;

6 if(!data.readInt32(&anInt)) return −1;

7 if(!data.readString(&aString)) return −1;

8 }

9 status_t Demo::onTransact(

10 uint32_t code, const Parcel& data,

11 Parcel* rep, uint32_t flags) {

12 switch(code) {

13 case 1: {

14 SomeObj obj;

15 if(!data.readParcelable(&obj)) return −1;

16 return reply.writeInt32(f1(obj)); }

17 case 2: {

18 int32_t a; std::vector<int> b;

19 if(!data.readInt32(&a)) return −1;

20 if(!data.readInt32Vector(&b)) return −1;

21 return reply.writeInt32(f2(a,b)); }

22 }};

23 virtual int32_t f1(SomeObj obj) {

24 ...

25 }

26 virtual int32_t f2(int a, std::vector<int> b) {

27 ...

28 }

Listing 1: The source code of the example service. Brown

lines indicate automatically generated server-stub code while

teal lines show application-specific, manually written logic.

The service exposes two RPC functions, f1 and f2. The ser-

vice’s entry point function is Demo::onTransact. Figure 2

shows the service’s interface defintion (including the defini-

tion of SomeObj) and how NASS extracts it.

this work, we applied NASS to Android’s RPC over Binder.

For both extracting the interface definition and coverage

collection, NASS uses dynamic analysis. The dynamic anal-

ysis only uses addresses of standard library symbols or ad-

dresses previously extracted by NASS’ dynamic analysis,

making NASS’ design applicable to binary-only targets.

To motivate our design decisions, we will use a running

example of a toy native Android system service. Our exam-

ple system service is shown in Listing 1 and exposes two

functions over RPC.

6.1 Coverage Collection for RPC Servers

NASS leverages coverage for both extracting the target RPC

interface and fuzzing. RPC servers are often multi-threaded

programs with at least one thread handling incoming IPC

requests for a given interface. A single server process may

host more than one RPC interface. Other system components

may be invoking RPCs on the other interfaces hosted in the

target server’s process. Both interface extraction and fuzzing

rely on coverage information that is stable and directly related

to the sent IPC request.

Conforming with RPC design principle Si , every RPC

server’s interface has an associated entry point function,

which is invoked by the IPC transport layer after receiving an

IPC request destined for that interface. To extract coverage

of sent IPC requests, NASS hooks the entry point function.

Every time a client sends an IPC request to the target inter-

face, NASS’ hook is triggered. By inspecting the IPC request

NASS can deduce if the IPC request was sent by itself or an

unrelated system component. In the latter case NASS’ hook

returns and lets the server continue normally. Otherwise, the

hook starts tracing the current thread, updating the coverage

bit map for each encountered basic block, until the entry point

function returns. This way NASS can guarantee that coverage

is only collected for code relevant to handling its own IPC

requests.

For our example service in Listing 1, the entry point func-

tion is Demo::onTransact. Coverage for this service will be

collected when this function is called until it returns.

6.2 Deserialization-Guided Interface Extrac-

tion

Starting from the entry point function, the server attempts to

deserialize the input arguments based on the target RPC func-

tion’s signature. After successfully deserializing the expected

arguments, the target RPC function is called. The invocation

of this server stub after receiving an IPC request follows RPC

design principle Ab . The server stub enforces the interface

definition by ensuring that the received argument bytes can be

deserialized to the expected arguments. For proprietary RPC

servers, the interface definition is not known in advance. By

dynamically analyzing the server stub, NASS automatically

infers the interface definition for proprietary RPC servers

leveraging DGIE.

In the first step, NASS identifies all exposed RPC functions.

The target RPC function is typically identified either by a nu-

meric value (as in Android Binder IPC, which uses an integer

whose most significant byte is masked) or by a string (as used

in gRPC or Thrift) in the IPC request. In both scenarios, the

set of possible identifiers is finite. In the case of a string iden-

tifier, the string is stored in the target server’s binary. Iterating

over all strings in the server binary will eventually find the

RPC identifiers. NASS iterates through these identifiers, send-

ing IPC requests to the target server and monitoring coverage.

Whenever new coverage is observed, it indicates the discovery

of a new RPC function. NASS then records the corresponding

identifier for future use. For the example service in Listing 1

NASS identifies two RPC functions (identifiers 1 and 2) after

iterating over all possible 3-byte values.

Following RPC design principle St , the server stub uti-

lizes standard routines to deserialize RPC arguments. NASS

identifies the address of these routines and observes their exe-

cution. In the case of Android system services, these routines

INTERFACE DEFINITION

Object SomeObj{

String[] strings;

int anInt;

String aString;

}

interface IExample{

f1(SomeObj obj);

f2(int i1, int[] i2);

}

SERVER STUB

Entry
Point

read
String[]

read
Int32

read
String f1

read
Int32

read
Int32[]

f2

f1

f2

DGIE

NASS

write
String[]

write
Int32

write
String

write
Int32

write
Int32[]

1

2

C
O

M
P

IL
E

R
H

O
O

K
IN

G

R
P

C

Figure 2: An overview of how NASS uses DGIE to extract the

interface definition from the compiled server stub by hook-

ing it and invoking RPCs. The target interface contains two

functions f1 and f2. The argument of the f1 function is a

high-level object, which unrolls to a linear sequence of dese-

rializers in the server stub.

are exported by the libbinder.so and libbinder_ndk.so

libraries, whose serialization and deserialization routines are

defined in the AOSP in Parcel.h and binder_parcel.h

respectively.

RPC function arguments are deserialized one after another,

observed as either a single invocation of a deserialization rou-

tine or a sequence of multiple deserialization routines (for

object argument types). In both cases, NASS can observe

the invoked deserializers and use the standard serialization

routines to generate RPC argument bytes that are success-

fully deserialized by the observed sequence of deserializers.

NASS iteratively invokes RPC functions, using the previ-

ously discovered identifiers, observes the deserialization rou-

tines and updates the extracted interface definition until no

more new deserialization routines are observed, implying that

all RPC function arguments were deserialized successfully

and the target RPC function has been called. NASS asso-

ciates the observed sequences of deserializers with the used

RPC function identifier. The sequence of used deserializers

maps to a deserializer-level RPC function signature. While

NASS cannot recover the high-level objects for RPC func-

tion arguments, in the server stub these objects are unrolled

to a linear sequence of standard deserializers. To recover

the deserializer-level function signature for f1 for the ex-

ample service from Listing 1, NASS first invokes f1 over

RPC with random bytes as the argument and observes the

invocation of the readString[] deserializer. NASS adds

this deserializer to its interface for identifier 1 and then in-

vokes f1 again with argument bytes consisting of a serialized

String[] and random bytes. This time NASS observes first

a call to readString[] and readInt. This is repeated until

NASS has extracted all three deserializers needed to call f1.

Figure 2 gives an overview of this process.

As long as the server stub follows RPC principles Ab and

St the sequence of deserializers for any RPC function is un-

rolled to a linear sequence of standard deserializers, which

NASS is guaranteed to recover. NASS repeats the same enu-

meration for all previously discovered RPC functions until

it has fully extracted the interface definition. The extracted

interface definition maps each RPC function to a sequence of

serialization functions that mirror the sequence of deserializa-

tion functions used in the server stub.

6.3 Interface Aware Fuzzing

With a way to collect coverage and having extracted the in-

terface definition, NASS has all the pieces in place to effi-

ciently fuzz the target RPC interface. NASS leverages the

extracted interface definition to generate seeds that adhere to

the server’s interface definition. NASS’ fuzzing component

implements an interface-aware mutator, which only mutates

the value of the arguments of the RPC call without changing

the structure of the request. By adhering to the extracted in-

terface definition, NASS can effectively target the functions

exposed over RPC with the expected types without wasting

cycles on inputs that get rejected by the server stub.

The mutator is aware of the argument types and imple-

ments mutations that adhere to the semantics of the type.

Given RPC design principle St , the standardized deserial-

ization functions used by the server also have a counterpart

serialization function. NASS uses these to serialize the mu-

tated argument values in the format expected by the server

stub. Mutated and serialized RPC arguments are sent to the

target server over the supported IPC transport channel and

coverage is collected starting from the entry point function

until its return. The coverage is fed back to NASS and used

for seed scheduling.

7 Implementation

NASS’ implementation is designed to target any Android na-

tive service deployed on COTS devices. Since system services

are often closely coupled to the underlying hardware, we fuzz

services in-situ in their original environment. This way any

crashes found by NASS’ implementation are true positive

crashes and not an artifact of the rehosting environment. Af-

ter crashing a service we rely on Android’s init process to

automatically restart and correctly initialize the target ser-

vice. NASS’ implementation requires root permissions to run.

Since system services are user space processes, the root user

has full control over these processes. NASS’ implementation

runs as root and uses dynamic binary instrumentation (DBI)

to hook and trace the target service. We build our DBI on top

of F RIDA [32].

NASS is implemented in three modules. The instrumen-

tation module is injected into the target service process. Its

job is to hook and inspect the service’s state at runtime and

during fuzzing to collect coverage. The client component is

responsible for sending IPC requests to the target service and

when fuzzing mutating IPC requests, reading the coverage

bitmap, and scheduling seeds. Both the aforementioned mod-

ules run on the device. The orchestrator module runs on the

host and sets up both the instrumentation and client modules

over the Android Debug Bridge (ADB).

To apply NASS to a target service, NASS only requires

the Binder handle which serves as an identifier to send IPC

requests to the service. NASS queries the ServiceManager

service, to whom all Android processes have a handle and

which is responsible for distributing service handles, to obtain

the handle to the target system service.

7.1 Entrypoint Identification

To hook the entry point function its address has to be known.

The entry point function’s address of a given RPC interface

can generally not be directly inferred from the service binaries’

symbols. In Android system services the entry point function

is called the onTransact function. NASS’ instrumentation

module automatically extracts the address of the target ser-

vice’s onTransact function by hooking Android’s user space

Binder library at the point when execution is handed over to

the onTransact function. The hook is triggered by NASS’

client module sending an IPC request to the service.

7.2 Coverage Collection

NASS’ instrumentation module hooks the onTransact func-

tion. Every time a client sends an IPC request to the target

interface the hook is triggered. To collect coverage only for

IPC requests sent by NASS’ client module itself, the hook

inspects the IPC request and checks if the process id (PID)

of the caller is the same as the client module’s PID. If so,

the instrumentation module starts tracing the current thread’s

execution using F RIDA Stalker until the onTransact func-

tion returns. Every time a new basic block is encountered,

the coverage bitmap shared between the instrumentation and

client module is updated. With this technique, we achieve

between 30 to 400 executions per second when fuzzing on

COTS devices.

7.3 Interface Extraction

NASS’ implementation iteratively applies DGIE to extract

the service’s interface definition. DGIE itself is split into two

phases: a fuzzing phase to extract a preliminary interface def-

inition and a refinement phase to extract its deserializers. For

Ab -compliant server stubs, this implementation is functionally

equivalent to DGIE as described in Section 6.2, providing the

same guarantees, while allowing to probabilistically explore

server stubs violating Ab . We found instances of developers

violating RPC design principle Ab , intertwining application-

specific logic with the server stub. This potentially introduces

control-flow dependencies in the server stub based on deseri-

alized values. By first fuzzing the server stub, mutating the

structure of the serialized argument bytes and their values,

NASS can trigger code that has control-flow dependencies on

the deserialized values.

Preliminary Interface Definition To extract a preliminary

interface definition, NASS fuzzes the RPC server. Coverage

is collected as described in Section 6.1. IPC requests that

triggered new coverage are saved to the seed corpus and mu-

tated further. In the context of NASS, a seed stores one IPC

request. These seeds contain the RPC function identifier and

the serialized argument bytes. Seeds are mutated by chang-

ing the function identifier or by adding/removing/mutating

a serialized argument. New coverage implies one of three

scenarios: the server stub was able to deserialize more of

the expected arguments, new application-specific code in the

server stub was triggered, or the new coverage is related to

the functionality of the RPC functions themselves.

The resulting seed corpus contains the preliminary inter-

face definition, which maps RPC functions to byte arrays of

serialized arguments. Note that this byte array maps to many

possible sequences of deserializers, which may not match the

deserializers used in the server stub. In the example system

service from Listing 1, an Int64 RPC argument with value

0 may be correctly deserialized to call f2. Note that the first

four bytes map to the Int32 and the next four bytes encode

the length of a 0-sized array. However, fuzzing f2 with a

Int64 argument will lead to many rejected inputs due to the

strict enforcement of the length value encoding of the integer

array. This one-to-many relationship of serializing functions

(whose output bytes are successfully deserialized by one or

multiple deserializing functions) allows the fuzzer to easily

generate IPC requests covering the deserializers in the server

stub.

Refining the Interface Definition To identify the exact

deserializers, NASS refines the initial interface definition by

monitoring which deserialization routines are triggered when

replaying the IPC request seeds generated during fuzzing.

Each time the server invokes the deserialization routines,

NASS refines the preliminary interface definition by asso-

ciating a subset of the IPC request’s argument bytes with

the deserializing function used. After replaying all IPC re-

quests, NASS has observed all covered deserializers along

with the order of invocation. Replaying the Int64 with value

zero, discovered during preliminary interface fuzzing of the

example service, against f2 NASS observes an invocation of

readInt32 and readInt32[].

Iterative DGIE To extract the complete RPC interface def-

inition, NASS has to cover the entire server stub during pre-

liminary interface fuzzing, which allows triggering all dese-

rializers during refinement. To estimate the point at which

the server stub has been covered, NASS iteratively extracts

a preliminary interface definition, refines it, and then uses

it to seed the next preliminary interface fuzzing phase until,

for each RPC function identifier, no new deserializers are

observed during refinement. During refinement NASS also

replays the seeds from previous iterations to avoid any loss

of information. In the first iteration, NASS fuzzes the RPC

function identifier, iterating over all possible values to identify

the exposed RPC function identifiers. In subsequent iterations,

NASS only mutates the argument bytes to avoid redundancy.

To terminate the preliminary interface fuzzing phase, NASS

observes the rate at which new coverage is observed and pro-

ceeds to the next step when plateauing. In its current imple-

mentation NASS uses the number of new seeds in the first

two minutes and compares this to the number in subsequent

two-minute intervals, moving to refinement if the new number

of seeds is ten times lower than the initially observed rate. Ad-

ditionally, the current implementation unconditionally moves

to refinement after 20 minutes of fuzzing. While refinement

is done on a per-RPC function identifier basis, for fuzzing,

we rely on the fuzzer’s scheduler, which can target all RPC

function identifiers due to being seeded in every round with

at least one seed per exposed RPC function.

For the example service, NASS may extract the partial inter-

face definition after the first iteration for f1 (readString[]

and readInt32) but fails to cover readString. In the sec-

ond round, due to seeding the fuzzer with the partial interface

definition, NASS discovers an input that is successfully dese-

rialized to a SomeObj object, covering all three deserialization

routines required to call f1. Another iteration of fuzzing and

refinement will not trigger new deserializers, indicating that

the complete interface was extracted.

7.4 Interface Aware Mutations

There are 23 different argument types supported by NASS for

Binder IPC. Each type is serialized with the corresponding

standard serializer function and mutated based on the type.

Table 2 provides an overview of all types and mutators.

To mutate primitive types such as integers and strings,

NASS uses standard mutators that operate on bytes. Vectors

of primitive types are mutated by either mutating individual

vector entries or by removing or adding vector entries.

There are two special types for which the fuzzing input is

not sent in the IPC request itself, file descriptors, and binder

references (StrongBinder). A file descriptor argument is mu-

tated by writing the fuzzing input to a temporary file and

Type Mutators Used

Bool, Char, Short,

Int32, Int64, Float, Double
FixedLengthBytes, InsertSpecialNumber

String8, String16, CString
FixedLengthBytes, VarLengthBytes,

InsertSpecialString

BoolVector, CharVector, ShortVector,

Int32Vector, Int64Vector,

FloatVector, DoubleVector

ChangeVectorSize, MutateEntryFixed

String8Vector, String16Vector ChangeVectorSize, MutateEntryVarLength

StrongBinder MutateStrongBinder

FileDescriptor MutateFileDescriptor

Parcelable All*

ParcelableVector ChangeVectorSize, All*

Table 2: The types supported in Android’s RPC over Binder

and the corresponding mutators used by NASS.

serializing the file descriptor. The target service may then

read or write to the file descriptor sent over IPC. A Binder

reference is a handle to another system service most often

used to implement a callback, notifying the client of the status

of a previously initiated task. Such callbacks usually only

send data back to the client. NASS’ mutator handles the rare

case that a Binder reference is used to transfer more data from

the client to the service. The mutator serializes a reference

to a bespoke fuzzing input service. The fuzzing input service

returns mutated fuzzing input when receiving an IPC request.

Parcelables are high-level objects that can be serialized and

sent over Binder IPC. No general Parcelable deserialization

function exists, instead deserializing a single Parcelable ob-

ject is done with a fixed sequence of standard deserializers.

Thus NASS transparently handles Parcelables as sequences

of standard deserializers. Mutating vectors of Parcelables is

done either by mutating any one of the Parcelables members

or by adding/removing Parcelable vector entries. Adding or

removing entries to a Parcelable vector is done by inserting

or removing the sequence of argument types corresponding

to a single Parcelable entry.

7.5 Fuzzing The Service

To fuzz the service, either during DGIE or after having ex-

tracted the interface definition, the orchestrator module first

injects the instrumentation module into the target system ser-

vice and uploads the client module to the device under test.

Afterward, the client module is started in fuzzing mode. The

client is based on LibFuzzer [29] and implements custom

RPC and interface-aware mutators. Mutated IPC requests are

sent to the target service via the Binder kernel driver. Crashes

are detected by monitoring the target service’s PID after send-

ing an IPC request. If the service crashes the orchestrator

module takes care of reinstrumenting the restarted service

and restarting the client module. It also periodically restarts

the service to reset the service’s state.

8 Evaluation

Evaluating NASS, we answer these research questions:

• RQ1: Can DGIE fully recover RPC interfaces from

binary-only RPC server stubs? — Our first novelty claim.

• RQ2: Does NASS’ interface awareness improve its cov-

erage and bug-finding capability? — Our second novelty

claim.

• RQ3: Does NASS’ approach improve the state-of-the-

art in Android system server fuzzing in terms of explo-

ration, bug-finding, and interface recovery capabilities?

— Evaluating the effectiveness of our system.

• RQ4: Can NASS find bugs in proprietary system ser-

vices deployed on modern COTS devices? — Demon-

strating the usefulness of NASS on COTS devices.

• RQ5: Do proprietary system services adhere to the three

RPC design principles Ab , Si , and St ? — Justifying the

design of DGIE.

8.1 Experimental Setup

Our experimental setup aims to demonstrate NASS’ bug-

finding and code exploration capabilities, which are estab-

lished metrics in fuzzer evaluations. Additionally, we lever-

age a manually created ground truth of open-source system

service interfaces to evaluate the accuracy of DGIE.

We compare NASS to FANS [28], a fuzzer that targets

open-source native Android system services. FANS uses static

source code analysis to infer the interface definition for open-

source native system services. It then fuzzes the analyzed

services using a black box fuzzer. To collect coverage from

FANS for comparison with NASS, we extend FANS’ fuzzer

component to collect coverage for the generated seeds using

dynamic binary instrumentation, similar to NASS. We lever-

age FANS’ original seed generation algorithm to ensure a

fair comparison. Thus even though there is coverage, FANS

generates its seeds as it did originally, in a black box fashion.

With NASS’ ability to recover coverage from system services,

we are able to measure the coverage achieved by FANS’ ap-

proach for the first time, five years after its publication.

Another pertinent work is BinderCracker [8]. Unfortu-

nately, BinderCracker’s prototype is not available. While

FANS’ evaluation against BinderCracker simply compared

the absolute number of detected bugs, we evaluate Binder-

Cracker’s approach of message capturing against NASS’ self-

driven approach of DGIE on our ground-truth dataset.

We conduct these experiments on 14 open-source native

system services supported by FANS and NASS running on

Android 9 (the Android version originally used in FANS’

evaluation). We conduct this evaluation on Android 9 to al-

low for an unbiased and fair comparison against FANS. In

Service AIDL
RPC

functions

NASS disc.

RPC funcs.

NASS extr.

RPC funcs.

Capt.

RPC funcs.

keystore no 42 42 100% 36 85% 27 64%

gatekeeper no 6 6 100% 3 50% 4 66%

perfprofd no 5 5 100% 4 100% 0 0%

stats no 18 17 94% 17 94% 8 44%

wificond yes 14 14 100% 14 100% 9 57%

surfaceflinger no 50 42 84% 32 64% 23 46%

netd yes 37 37 100% 37 100% 17 45%

installd yes 39 39 100% 39 100% 27 69%

vold yes 51 51 100% 51 100% 25 49%

gpu no 1 1 100% 0 0% 0 0%

media.metrics no 2 1 50% 1 50% 1 50%

storaged yes 3 3 100% 3 100% 3 100%

thermalservice yes 4 4 100% 4 100% 1 25%

incident no 4 3 75% 1 25% 3 75%

Overall 6/14 276 265 96% 242 88% 148 53%

Table 3: Results of the ground truth study of DGIE. Extracted

RPC functions is the number of RPC functions for which

NASS extracted the correct sequence of deserializers. Cap-

tured RPC functions are RPC functions which were observed

to be used by the system while running the Android CTS.

their original paper, the authors of FANS discuss the diffi-

culty of porting FANS to other Android versions. Porting

FANS to the newest Android version would inevitably de-

grade FANS’ quality leading to skewed results. Furthermore,

between Android 9 and the newest Android version, the user

space components of Android’s RPC framework over Binder

only underwent minimal changes, and NASS works out of

the box for Android 9. We stress that NASS was designed

to run on the newest Android version and for our real-world

bug-finding evaluation we run NASS on devices with Android

versions from 13 to 15 (currently the most recent version).

The experiments to evaluate the contribution of NASS’

techniques and to compare NASS to prior work are conducted

on the Android emulator [31] running Android 9.0.0_r46

for arm64 with KVM support. The Android emulator ac-

curately runs the Android user space, executing the system

services at native speed with KVM, and allows for quick re-

sets required for long-running evaluation experiments. The

arm64 host on which we run the emulator uses an NXP Lay-

erscape LX2160A CPU with 32GB RAM and 16 cores. The

experiments evaluating NASS’ ability to target real-world

proprietary system services are conducted on five recent

COTS phones. These five phones are from five different

market-leading vendors (Google Pixel 9, Samsung S23, Xi-

aomi Redmi Note13, OnePlus 12R, Transsion Infinix X670),

fully updated running an Android version between 13 and 15,

and use a variety of SoCs (system on chip).

8.2 Interface Ground Truth Study

To understand the accuracy achieved by DGIE, we manually

analyze the server stubs of all 14 evaluation services and

compare the manually analyzed stubs to NASS’ extracted

interface definitions. To compare against BinderCracker’s

message capturing approach, we log RPC functions triggered

during phone usage. In this way, we estimate how much of

the actual interface BinderCracker can recover. To exercise

the phone, we use the Compatibility Testing Suite (CTS) [14],

which vendors use to ensure that devices are compatible with

the Android framework APIs. We ran the full test suite, which

took 60 hours, and in total captured 3 million RPC function

invocations. See Table 3 for the results.

NASS extracts 265 out of 276 exposed RPC functions and

recovers the correct sequence of deserializers for 242(88%)

of them. Six out of 14 services use automatically generated

server stubs. For these services NASS recovers the correct

sequence of deserializers for 100% of RPC functions.

NASS’ interface extraction struggles for services where de-

velopers include application-specific logic in the server stub

such as the SurfaceFlinger, gatekeeper, incident, gpu

and media.metrics services, only recovering the correct de-

serializer sequence for 58% of RPC functions. These services

violate RPC design principle Ab . Thus NASS is not guaran-

teed to recover the complete interface definition. However, as

the coverage evaluation in Section 8.3 will show, even FANS’

source code-based approach struggles with these services. For

the remaining three non-AIDL services NASS extracts the

correct sequence of deserializers for 90% of RPC functions.

Even though these services do not use autogenerated server

stubs, developers still mostly adhered to RPC design principle

Ab .

Relying on dynamically capturing IPC messages only re-

covers 53% of RPC functions, compared to NASS’ 88%. Thus

BinderCracker’s approach vastly underestimates the exposed

attack surface.

RQ1. DGIE recovers complete interface definitions

for system services adhering to RPC principles Ab .

RQ3. Relying on capturing IPC requests vastly under-

estimates the exposed attack surface, only recovering

53% of all RPC functions compared to DGIE’s 88%.

8.3 Coverage And Bug Finding

We now measure NASS’ exploration and bug-finding capabil-

ities. These experiments include an ablation study including

a non-interface-aware configuration of NASS, NASS (NI),

and the comparison against the state-of-the-art system server

fuzzer FANS. NASS (NI) uses standard byte-level mutators

without knowledge about the IPC argument types. This base-

line allows us to quantify the effects of NASS’ interface aware-

ness.

We conduct fuzzing experiments using the 14 evaluation

services from Section 8.1 to compare NASS, NASS (NI), and

FANS. We fuzz each service five times for 12 hours. To mea-

sure coverage, we replay the seed queue against the target

service and use a modified version of NASS’ coverage instru-

B
as

ic
B

lo
ck

C
o
v
er

ag
e

0%

50%

100%

100%

50%

0%

keystore gatekeeper perfprofd stats wificond

surfaceflinger netd installd vold

Time: 0 to 12 hours NASS FANS NASS (NI)

Figure 3: Basic-block coverage observed over 12 hours of fuzzing across nine of the 14 evaluation services. The plots for the

remaining five services can be found in the Appendix Figure 4. NASS (NI) is the non-interface-aware configuration of NASS.

The shaded regions indicate min and max coverage achieved by the respective fuzzer across five runs.

Service # Crashes / # Unique Crashes

NASS FANS NASS(NI)

wificond 0 0 0 0 0 0

netd 0 0 2 2 0 0

installd 4 0 11 7 2 0

storaged 0 0 0 0 0 0

thermalservice 0 0 0 0 0 0

gatekeeper 2 0 2 0 2 0

incident 1 0 2 0 2 0

media.metrics 0 0 0 0 0 0

gpu 0 0 0 0 0 0

surfaceflinger 0 0 3 3 0 0

perfprofd 1 1 0 0 0 0

stats 2 0 4 2 2 0

keystore 1 1 0 0 0 0

vold 8 7 1 0 0 0

Sum 19 9 25 14 8 0

Table 4: The manually deduplicated crashes detected by

NASS, FANS and, NASS without interface-awareness (NI).

Unique crashes were only detected by one fuzzer.

mentation to collect the addresses of executed basic blocks.

Additionally, we determine a conservative lower bound for

the maximally achievable coverage per service by leverag-

ing control-flow reachability. Concretely, we analyze each

service (i.e., main binary and libraries) using the Ghidra de-

compilation framework and extract the control-flow graphs

for all functions in which we covered at least one basic block.

Then, we establish the maximally achievable coverage by

counting the total number of basic blocks over all function

control-flow graphs. Figure 3 shows the coverage graphs of

the fuzzing campaign where 100% indicates the conservative

lower bound of achievable coverage, and Table 4 lists the

deduplicated crashes discovered by each fuzzer across five

runs for the fuzzed services. See Appendix Table 8 for the

absolute number of basic blocks for each service.

Five evaluation services have an interface with less than

four RPC functions and the RPC functions themselves have

very few basic blocks. As NASS and FANS start out by al-

ready covering most of the services’ exposed code, the cov-

erage graphs show both NASS and FANS almost instantly

plateauing. The coverage graphs for these services can be

found in the Appendix Figure 4. For these services NASS’

non-interface aware configuration is able to compensate for

missing interface awareness with coverage-feedback, even

outperforming FANS on four services. NASS’ interface ex-

traction failed to identify one of the two RPC functions for

the media.metrics service, see Table 3, leading to NASS’

low coverage.

Overall NASS outperforms FANS in terms of coverage

for eight out of the 14 services and achieves parity for four

out of the remaining six services. While FANS leverages

sophisticated source code analysis and manual variable-to-

semantics mapping, NASS achieves similar results or even

outperforms FANS using automatic binary-only analysis, re-

lying on coverage and hooking. Furthermore, NASS outper-

forms its non-interface-aware configuration for all except

two services (gatekeeper and media.metrics). These two

services violate RPC design principle Ab causing NASS’ ex-

tracted interface definition to be incorrect and hampering

NASS’ ability to explore the service.

In terms of bugs discovered during the campaign, NASS

discovered 19 and FANS discovered 25, while NASS without

interface awareness only discovered 8. Out of the 19 bugs

discovered by NASS, 9 were only discovered by NASS, and

for two services NASS was the only fuzzer to discover bugs.

Out of the bugs listed in FANS’ paper, we were able to identify

13 affecting our evaluation services. From these 13 original

FANS bugs, NASS discovered 11 of them. The two bugs

missed are in the surfaceflinger service, for which NASS’

interface extraction struggled due to the service violating RPC

design principle Ab .

NASS struggles to achieve the same coverage and/or num-

ber of bugs discovered as FANS for services that impose very

strict semantic requirements on input parameters (netd and

installd), such as file paths or IP addresses, returning early

or aborting the process if these semantic requirements are not

met. FANS satisfies these strict requirements by applying a

hardcoded set of heuristics dependent on the RPC argument

name. For instance, an RPC argument file is populated with

a path pointing to an existing file on the system. Since NASS’

primary focus is closed-source system services where the orig-

inal name of RPC arguments is removed in the compilation

process, it cannot rely on such heuristics. Hence, NASS usu-

ally violates strict semantic requirements, which hampers its

exploration and bug finding ability for a small set of services.

However, adding FANS-style mutation heuristics to NASS

is only limited by the amount of reverse-engineering effort

an analyst is willing to spend on accurately identifying the

semantics of RPC arguments. This effort, while important for

fuzzing in production, is beyond the scope of this research.

RQ2. NASS outperforms its configuration without

interface-awareness in terms of coverage and bug-

finding capability.

RQ3. Compared to FANS’ source-code based ap-

proach NASS achieves parity in terms of coverage

and discovers bugs missed by FANS.

8.4 Real-World Bug Finding

We fuzzed 316 proprietary services on five devices to evaluate

NASS’ ability to find bugs on COTS devices. Table 6 shows

the results of this fuzzing campaign.

In our campaigns, NASS discovered 2590 crashes. As

NASS fuzzes in a persistent manner we build up state dur-

ing fuzzing, which can make reproducing crashes difficult.

We attempt to reproduce the crashes by replaying the crash-

ing seed and if the crash is not reproduced we replay the

seed corpus generated before the crashing seed. This way

we can reproduce 2029 crashes. We deduplicate the crashes

based on the backtrace and manual analysis resulting in 72

unique, reproducible crashes. We consider all of these crashes

bugs as they can be triggered over the IPC boundary from

another process’ sandbox. We differentiate between bugs that

simply cause a service to crash, such as null pointer derefer-

ences or C++ exceptions, and bugs that may potentially be

weaponized to achieve a useful memory corruption primitive.

NASS discovered 60 and 12 such bugs respectively. Out of

the 34 services where NASS found non-exploitable crashing

bugs, 26 are compliant with RPC design principles. One of

the 11 services where NASS found a memory corruption bug

is not compliant with RPC design principles. Table 5 gives an

overview of the discovered memory corruption bugs. These

bugs could be weaponized to, e.g., achieve arbitrary code exe-

cution in affected services. We have responsibly disclosed the

discovered bugs to the vendors. So far, five CVEs have been

assigned. We present three case studies of the discovered bugs

to demonstrate their severity.

Use After Free, Pixel 9. This vulnerability affects the

android.hardware.radio.sap.ISap/slot2 service on

the Pixel 9. The RPC function exposed over command ID

1 allows clients to dispatch an apdu request. Each apdu re-

quest is stored in a linked list, identified by a token provided

as an RPC argument. After completing the request the service

traverses the linked list and frees the first apdu request match-

ing the token. When handling command ID 1, the vulnerable

service does not check for duplicate tokens. NASS triggered

the crash by sending two requests to command ID 1 with the

same token, causing the service to free an apdu request still

in use after completing the first request, leading to a use after

free. This use after free could have been exploited to achieve

code execution in the rild_exynos process running as the

privileged radio user. It was assigned CVE-2024-47040 by

Google and fixed in November 2024.

Arbitrary Write, OnePlus 12R. This vulnerability af-

fects the vendor.oplus.hardware.engineer.IEngineer

service on the OnePlus 12R. The vulnerable RPC function

sets an integer value in a memory buffer using the user-

provided index and value without any range check, leading to

an arbitrary memory write (in integer range).

Heap Overflow, Samsung S23. This vulnerability af-

fects the vendor.samsung.hardware.radio.network ser-

vice on the Samsung S23. One of the RPC functions dese-

rializes a network protocol message from the IPC request

(using a sequence of seven different deserializers). A field

of this message is the message length, a signed integer. The

deserialized message is later copied to an internal buffer for

dispatching using the attacker-controlled length. Even though

the service makes sure the value is not larger than the maxi-

mum message size, the check is signed. As a consequence, a

negative length value will lead to a heap-buffer-overflow.

RQ4. NASS’ interface-aware and coverage-guided

fuzzing discovers vulnerabilities on real-world COTS

devices.

Device Service Bug Type Disclosure Status Assigned Severity CVE

Pixel 9 vendor.google.battery_mitigation.IBatteryMitigation OOB read fixed high CVE-2025-0085

Pixel 9 android.hardware.secure_element.ISecureElement OOB read fixed medium CVE-2024-56186

Pixel 9 android.hardware.radio.sap.ISap UAF fixed high CVE-2024-47040

Pixel 9 android.hardware.boot.IBootControl OOB read fixed high CVE-2024-47039

Pixel 9 android.hardware.radio.config.IRadioConfig stack overflow fixed high CVE-2025-26459

Pixel 9 android.hardware.radio.sim.IRadioSim OOB read disclosed low N/A

Pixel 9 android.hardware.radio.sim.IRadioSim heap overflow fixed high pending

Samsung S23 vendor.samsung.hardware.radio.network.ISehRadioNetwork heap overflow disclosed high pending

Redmi Note 13 miui.whetstone.klo† invalid unmap disclosed none N/A

OnePlus 12R vendor.oplus.hardware.fido.fidoca.IFidoDaemon OOB read disclosed N/A* N/A

OnePlus 12R vendor.oplus.hardware.engineer.IEngineer OOB write disclosed none N/A

OnePlus 12R vendor.oplus.hardware.urcc.IUrcc OOB write disclosed pending N/A

Table 5: The memory corruption vulnerabilities discovered by NASS. (*)Fixed independently of us. (†)Not compliant with RPC

design principles St .

Device
Android

Version
Crashes

Crashes

Repr. & Ded.

DoS

Bugs

M.Corr.

Bugs

Pixel 9 15 934 28 21 7

Samsung S23 14 568 11 10 1

Redmi Note 13 13 312 12 11 1

OnePlus 12R 15 736 15 12 3

Infinix X670 13 40 6 6 0

Overall 2590 72 60 12

Table 6: The results of the fuzzing campaign on five up-to-

date COTS devices.

Device # Services # Si # Ab # St # Compliant

Pixel 9 102 102 95 95 95 93%

Samsung S23 67 67 62 63 61 91%

Redmi Note 13 20 20 16 13 12 60%

OnePlus 12R 117 117 106 109 104 88%

Infinix X670 10 10 9 9 9 90%

Overall 316 *316 288 289 281 89%

Table 7: The results of the RPC design principle compliance

analysis. (*) Android’s IPC over Binder enforces Si .

8.5 Compliance of COTS Services with RPC

Design Principles

To understand if RPC design principles apply to COTS ser-

vices, we manually analyzed the server stub of all 316 pro-

prietary native services. Due to Android’s Binder IPC mecha-

nism, all services are compliant with RPC design principle Si .

For compliance with Ab , we check that there are only control-

flow dependencies due to standard deserialization routines,

not application-specific logic. For compliance with St , we

recursively follow the serialized argument byte array object

and ensure that it is only processed by standard deserialization

routines. We conservatively mark a service as non-compliant

if any principle is violated. Table 7 shows the results of the

analysis. 281 services (89%) are compliant with all three

RPC design principles. We found that 28 manually written

server stubs violated Ab by including permission checks, log-

ging, or application-specific checks on deserialized arguments.

The St principle was broken by 27 server stubs with custom

deserialization instantiating objects outside of the standard

Parcelable routines. The level of compliance is comparable

between vendors except for Xiaomi (60% compliance).

RQ5. Proprietary services deployed on COTS devices

largely adhere to all three RPC design principles.

9 Discussion

Extending DGIE to Other RPC Frameworks. While NASS’

current implementation of DGIE is specialized to work for

Android system services, DGIE is applicable to other RPC

frameworks that comply with the RPC design principles as

outlined in Section 3. In Appendix A.1 we discuss how two

established RPC frameworks gRPC [13] and Thrift [1] adhere

to these design principles. Both gRPC and Thrift are widely

established in industry, used among others by Netflix, OpenAI,

Facebook, and Uber [2,11]. While DGIE applies to these RPC

frameworks there are implementation details that need to be

taken into account. These details include identifying of entry

point addresses and deserialization routines, and mapping of

instrumented deserializers back to the RPC argument.

Coverage Collection for Other Threads. NASS collects

coverage only for the thread handling incoming IPC requests

and only while the incoming IPC request is processed. This

way NASS obtains stable and service-related coverage from

arbitrary system services. This approach limits the coverage

collection for threads that asynchronously handle fuzzer input.

The handling thread may put part of the fuzzing input into a

queue, which is then processed by another thread. Identifying

such cross-thread dependencies in binary-only programs and

handling coverage collection for asynchronous input process-

ing is an unsolved challenge that we leave to future work.

Nested Interfaces. Android system services might not di-

rectly expose their entire RPC interface. Instead, these nested

interfaces are retrieved over RPC from the top level interface.

NASS’ implementation currently does not support automati-

cally identifying and obtaining handles to nested interfaces.

However, with a handle to a nested interface, NASS can ex-

tract its interface definition and fuzz it. We leave automati-

cally identifying and obtaining handles to nested interfaces in

proprietary Android system services as future work.

Limitations of On-Device Fuzzing. NASS relies on DBI

to introspect proprietary system services running on-device.

During fuzzing, DBI incurs a 30x overhead compared to send-

ing IPC requests in a loop without instrumentation. State-

of-the-art fuzzers [9, 10] reduce the overhead from DBI by

caching rewritten basic blocks. With additional engineering

effort, this approach could be implemented for NASS’ cov-

erage instrumentation. An orthogonal approach is to rehost

COTS services in an emulated environment, enabling hori-

zontal scaling without physical devices. However, rehosting

proprietary Android components is an open research problem,

orthogonal to NASS’ contributions.

During fuzzing, state accumulates. This state may persist

a restart of the service or even a system reboot. The state

buildup can result in non-reproducible crashes, which makes

triaging much more challenging. It is however important to

note that all crashes triggered by NASS are true positives as

they were triggered via the target’s exposed interface.

NASS does not use a sanitizer. There are binary-only imple-

mentations of ASAN [10] to detect heap memory corruptions.

NASS’s instrumentation module attaches to already running

services, which makes applying ASAN retrospectively chal-

lenging since the heap state would need to be recovered.

Finally, NASS runs on rooted phones, limiting the COTS

devices that can be targeted without having to first manually

find a privilege escalation vulnerability.

10 Related Work

As system services are an important component of Android’s

architecture, a number of works have studied various secu-

rity aspects of system services. Orthogonal to our work, El-

gharabawy et. al, examined the use and security of Unix do-

main sockets as the IPC transport medium instead of Binder

[7]. One focus of prior work are DoS attacks capable of ef-

fectively shutting down the system, triggered through sys-

tem services [18, 37, 44]. While NASS’ goal is finding ex-

ploitable memory corruption bugs, the DoS bugs found by

NASS may be leveraged to effectively turn off the target ser-

vice and thus deny other user space components access to

specific features. System services are the enforcing mecha-

nism of Android permissions and many works have investi-

gated confused deputy attacks on system services. Works such

as [15, 16, 19, 35, 45] analyze system services to find paths

to privileged functionality without correct permission checks.

Xiang et. al. [38] identify the attack surface exposed by Binder

references, wherein services temporarily act as clients, send-

ing IPC requests back to the original clients. NASS takes such

bugs into account with its bespoke Binder reference mutator,

which returns fuzzing input when responding to IPC requests

sent to previously serialized Binder references.

Closely related to our efforts, there have been a number of

works on fuzzing native Android system services. First to fuzz

this attack surface and show that exploiting vulnerabilities

in native system services over Binder IPC to escalate privi-

leges is possible was Gong [12] in 2015. BinderCracker [8]

records IPC requests sent by the system to extract partial in-

terface definitions to fuzz either the Java or native services.

While BinderCracker’s insights into unrolling Parcelables us-

ing hooking are similar to ours, we map this insight to widely

used RPC principles and also demonstrate that a hooking-

based approach can extract complete interface definitions.

Most recent, FANS [28] fuzzes open source native system ser-

vices leveraging source code analysis to extract the target ser-

vice’s interface. Unlike NASS none of the above approaches

incorporate coverage for fuzzing. Furthermore, NASS is the

only system capable of extracting the complete interface defi-

nition from binary-only native system services. While there

have been many works investigating the security of Android

system services, until now none have addressed the attack

surface exposed by proprietary native system services.

More broadly researchers have studied the automatic in-

ference of expected argument types to improve fuzzing effi-

ciency. Static analysis has been applied to a variety of targets

including user space libraries [20, 21], kernel drivers [4–6],

and secure monitors [27]. Another approach is dynamically

capturing requests sent to the target [3, 40, 43] to infer the

interface definition. Machfuzzer [40] targets proprietary RPC

servers, however, it does not leverage our insights into com-

mon RPC design principles and relies on message capturing.

Compartmentalized software relies on RPC to facilitate

communication between compartments [26]. One approach

to discover compartment-interface vulnerabilities, triggerable

over RPC from one compartment to the other, is fuzzing. Ex-

isting fuzzers targeting compartment-interface vulnerabilities

such as NYX-NET [34] or ConfFuzz [25] could be extended

with DGIE to enable interface-aware fuzzing without relying

on source code.

11 Conclusion

NASS introduces an approach to fuzzing proprietary real-

world RPC servers with coverage and interface awareness.

We implemented NASS for Android RPC over Binder to fuzz

proprietary system services, a critical attack surface for priv-

ilege escalation on Android that so far had been neglected.

Our evaluation uncovered 12 bugs on up-to-date COTS de-

vices, with five assigned CVEs. We open source NASS to

enable further research on RPC fuzzing and Android system

services.

12 Ethics Considerations

As part of our evaluation, we discovered vulnerabilities on

COTS phones. These vulnerabilities could be weaponized to

target real people. We understand the criticality of our find-

ings, and we have disclosed all vulnerabilities discovered by

NASS immediately after discovery to the responsible ven-

dors. The five assigned CVEs serve as proof of our dedication

to responsible disclosure. At the time of publication, all af-

fected vendors had at least 90 days to address the disclosed

vulnerabilities.

We present novel techniques to help discover vulnerabili-

ties. We are aware that these techniques could also be lever-

aged by malicious actors. We contend that security through

obscurity is not a sustainable strategy for safeguarding soft-

ware. By openly sharing our findings, we empower organiza-

tions and researchers to harden native RPC servers, reducing

the overall attack surface available to malicious actors.

13 Open Science

We open source NASS and NASS’ evaluation setup.

We also participate in the artifact evaluation with the

goal of obtaining all three badges. NASS is available at

https://doi.org/10.5281/zenodo.15577630 or https:

//github.com/HexHive/NASS.

Acknowledgments

We thank the anonymous reviewers for their detailed feedback.

This work was supported, in part, by the European Research

Council (ERC) under the European Union’s Horizon 2020 re-

search and innovation program (grant agreement No. 850868)

and SNSF PCEGP2 18697.

References

[1] Apache. Apache Thrift. https://

thrift.apache.org/, 2007.

[2] Apache. Powered By Apache Thrift. https:

//thrift.apache.org/about#powered-by-apache-

thrift, 2007.

[3] Marcel Busch, Aravind Machiry, Chad Spensky, Gio-

vanni Vigna, Christopher Kruegel, and Mathias Payer.

TEEzz: Fuzzing Trusted Applications on COTS An-

droid Devices. In 2023 IEEE Symposium on Security

and Privacy (SP), pages 1204–1219, 2023.

[4] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun

Qian. SyzGen: Automated Generation of Syscall Speci-

fication of Closed-Source macOS Drivers. In Proceed-

ings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’21, page 749–763,

New York, NY, USA, 2021. Association for Computing

Machinery.

[5] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil

Cha. NtFuzz: Enabling Type-Aware Kernel Fuzzing on

Windows with Static Binary Analysis. In 2021 IEEE

Symposium on Security and Privacy (SP), pages 677–

693, 2021.

[6] Jake Corina, Aravind Machiry, Christopher Salls, Yan

Shoshitaishvili, Shuang Hao, Christopher Kruegel, and

Giovanni Vigna. DIFUZE: Interface Aware Fuzzing

for Kernel Drivers. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS ’17, page 2123–2138, New York, NY,

USA, 2017. Association for Computing Machinery.

[7] Mounir Elgharabawy, Blas Kojusner, Mohammad Man-

nan, Kevin R. B. Butler, Byron Williams, and Amr

Youssef. SAUSAGE: Security Analysis of Unix domain

Socket usAGE in Android. In 2022 IEEE 7th European

Symposium on Security and Privacy (EuroS&P), pages

572–586, 2022.

[8] Huan Feng and Kang G. Shin. Understanding and De-

fending the Binder Attack Surface in Android. In Pro-

ceedings of the 32nd Annual Conference on Computer

Security Applications, ACSAC ’16, page 398–409, New

York, NY, USA, 2016. Association for Computing Ma-

chinery.

[9] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and

Marc Heuse. AFL++ : Combining Incremental Steps of

Fuzzing Research. In 14th USENIX Workshop on Of-

fensive Technologies (WOOT 20). USENIX Association,

August 2020.

[10] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and

Davide Balzarotti. LibAFL: A Framework to Build

Modular and Reusable Fuzzers. In Proceedings of the

29th ACM conference on Computer and communications

security (CCS), CCS ’22. ACM, November 2022.

[11] Cloud Native Computing Foundation. gRPC, Cus-

tomer Success Stories. https://www.cncf.io/case-

studies/?_sft_lf-project=grpc, 2015.

[12] Guang Gong. Fuzzing Android System Services by

Binder Call to Escalate Privilege. In Black Hat USA,

August 2024. Conference talk.

[13] Google. gRPC. https://grpc.io, 2015.

[14] Google. The Compatibility Test Suite (CTS).

https://source.android.com/docs/security/

bulletin/pixel/2024-11-01, 2025.

https://doi.org/10.5281/zenodo.15577630
https://github.com/HexHive/NASS
https://github.com/HexHive/NASS
https://thrift.apache.org/
https://thrift.apache.org/
https://thrift.apache.org/about#powered-by-apache-thrift
https://thrift.apache.org/about#powered-by-apache-thrift
https://thrift.apache.org/about#powered-by-apache-thrift
https://www.cncf.io/case-studies/?_sft_lf-project=grpc
https://www.cncf.io/case-studies/?_sft_lf-project=grpc
https://grpc.io
https://source.android.com/docs/security/bulletin/pixel/2024-11-01
https://source.android.com/docs/security/bulletin/pixel/2024-11-01

[15] Sigmund Albert Gorski, Benjamin Andow, Adwait Nad-

karni, Sunil Manandhar, William Enck, Eric Bodden,

and Alexandre Bartel. ACMiner: Extraction and Analy-

sis of Authorization Checks in Android’s Middleware.

In Proceedings of the Ninth ACM Conference on Data

and Application Security and Privacy, CODASPY ’19,

page 25–36, New York, NY, USA, 2019. Association

for Computing Machinery.

[16] Sigmund Albert Gorski and William Enck. ARF: iden-

tifying re-delegation vulnerabilities in Android system

services. In Proceedings of the 12th Conference on Se-

curity and Privacy in Wireless and Mobile Networks,

WiSec ’19, page 151–161, New York, NY, USA, 2019.

Association for Computing Machinery.

[17] Google Threat Analysis Group. Buying Spying,

Insights into Commercial Surveillance Vendors.

https://storage.googleapis.com/gweb-uniblog-

publish-prod/documents/Buying_Spying_-_

Insights_into_Commercial_Surveillance_

Vendors_-_TAG_report.pdf, 2024.

[18] Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu.

From System Services Freezing to System Server Shut-

down in Android: All You Need Is a Loop in an App. In

Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, CCS ’15, page

1236–1247, New York, NY, USA, 2015. Association for

Computing Machinery.

[19] Sigmund Albert Gorski III, Seaver Thorn, William

Enck, and Haining Chen. FReD: Identifying File

Re-Delegation in Android System Services. In 31st

USENIX Security Symposium (USENIX Security 22),

pages 1525–1542, Boston, MA, August 2022. USENIX

Association.

[20] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and

Mathias Payer. FuzzGen: Automatic Fuzzer Generation.

In 29th USENIX Security Symposium (USENIX Security

20), pages 2271–2287. USENIX Association, August

2020.

[21] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon,

Junsik Kim, Intae Jeon, Taesoo Kim, WooChul Shim,

and Yong Ho Hwang. UTopia: Automatic Generation of

Fuzz Driver using Unit Tests. In 2023 IEEE Symposium

on Security and Privacy (SP), pages 2676–2692, 2023.

[22] Moshe Kol. BadSpin, CVE-2022-2042.

https://github.com/0xkol/badspin?tab=

readme-ov-file.

[23] BFS Labs. Part 2: Escalating to Root, CVE-2020-0041.

https://labs.bluefrostsecurity.de/blog/2020/

04/08/cve-2020-0041-part-2-escalating-to-

root/, 2020.

[24] Clement Lecigne. Spyware Vendors Use 0-

days and N-days against Popular Platforms.

https://blog.google/threat-analysis-group/

spyware-vendors-use-0-days-and-n-days-

against-popular-platforms/, 2023.

[25] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Yi Chien, Felipe

Huici, Nathan Dautenhahn, and Pierre Olivier. Assess-

ing the Impact of Interface Vulnerabilities in Compart-

mentalized Software . In 2023 Network and Distributed

System Security Symposium (NDSS), San Diego, CA,

USA, February 2023.

[26] Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall,

and Pierre Olivier. SoK: Software Compartmentaliza-

tion . In 2025 IEEE Symposium on Security and Privacy

(SP), pages 2884–2903, Los Alamitos, CA, USA, May

2025. IEEE Computer Society.

[27] Christian Lindenmeier, Mathias Payer, and Marcel

Busch. EL3XIR: Fuzzing COTS Secure Monitors. In

33rd USENIX Security Symposium (USENIX Security

24), pages 5395–5412, Philadelphia, PA, August 2024.

USENIX Association.

[28] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng,

Haifeng Ruan, and Jianwei Zhuge. FANS: Fuzzing

Android Native System Services via Automated Inter-

face Analysis. In 29th USENIX Security Symposium

(USENIX Security 20), pages 307–323. USENIX Asso-

ciation, August 2020.

[29] LLVM. libFuzzer. https://llvm.org/docs/

LibFuzzer.html, 2016.

[30] Lukas Maar, Florian Draschbacher, Lukas Lamster, and

Stefan Mangard. Defects-in-Depth: Analyzing the In-

tegration of Effective Defenses against One-Day Ex-

ploits in Android Kernels. In 33rd USENIX Security

Symposium (USENIX Security 24), pages 4517–4534,

Philadelphia, PA, August 2024. USENIX Association.

[31] Android Open Source Project. Android Emulator

Source. https://android.googlesource.com/

platform/external/qemu/+/refs/heads/master,

2025.

[32] Ole André V. Ravnås. F RIDA. https://frida.re,

2013.

[33] Alice Rhyl and Carlos Llamas. Using Rust in the Binder

Driver. In Linux Plumbers Conference 2023, Richmond,

VA, USA, November 2023. Conference talk.

[34] Sergej Schumilo, Cornelius Aschermann, Andrea Jem-

mett, Ali Abbasi, and Thorsten Holz. Nyx-net: Network

Fuzzing with Incremental Snapshots. In Proceedings

of the Seventeenth European Conference on Computer

Systems, pages 166–180, 2022.

https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Buying_Spying_-_Insights_into_Commercial_Surveillance_Vendors_-_TAG_report.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Buying_Spying_-_Insights_into_Commercial_Surveillance_Vendors_-_TAG_report.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Buying_Spying_-_Insights_into_Commercial_Surveillance_Vendors_-_TAG_report.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Buying_Spying_-_Insights_into_Commercial_Surveillance_Vendors_-_TAG_report.pdf
https://github.com/0xkol/badspin?tab=readme-ov-file
https://github.com/0xkol/badspin?tab=readme-ov-file
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://blog.google/threat-analysis-group/spyware-vendors-use-0-days-and-n-days-against-popular-platforms/
https://blog.google/threat-analysis-group/spyware-vendors-use-0-days-and-n-days-against-popular-platforms/
https://blog.google/threat-analysis-group/spyware-vendors-use-0-days-and-n-days-against-popular-platforms/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://android.googlesource.com/platform/external/qemu/+/refs/heads/master
https://android.googlesource.com/platform/external/qemu/+/refs/heads/master
https://frida.re

[35] Yuru Shao, Qi Alfred Chen, Z. Morley Mao, Jason Ott,

and Zhiyun Qian. Kratos: Discovering inconsistent

security policy enforcement in the android framework.

In Network and Distributed System Security Symposium,

2016.

[36] Android Red Team. How to Fuzz Your Way to Android

Universal Root: Attacking Android Binder, CVE-2023-

20938. https://androidoffsec.withgoogle.com/

posts/attacking-android-binder-analysis-

and-exploitation-of-cve-2023-20938/

offensivecon_24_binder.pdf, 2024.

[37] Kai Wang, Yuqing Zhang, and Peng Liu. Call Me Back!

Attacks on System Server and System Apps in Android

through Synchronous Callback. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’16, page 92–103, New York,

NY, USA, 2016. Association for Computing Machinery.

[38] Xiaobo Xiang, Ren Zhang, Hanxiang Wen, Xiaorui

Gong, and Baoxu Liu. Ghost in the Binder: Binder

Transaction Redirection Attacks in Android System Ser-

vices. In Proceedings of the 2021 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS

’21, page 1581–1597, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery.

[39] Clement Lecigene Xingyu Jin. CVE-2024-

44068: Samsung m2m1shot_scaler0 Device

Driver Page Use-after-free in Android. https:

//googleprojectzero.github.io/0days-in-the-

wild/0day-RCAs/2024/CVE-2024-44068.html,

2024.

[40] Kun Yang, Hanqing Zhao, Chao Zhang, Jianwei Zhuge,

and Haixin Duan. Fuzzing IPC with Knowledge Infer-

ence. In 2019 38th Symposium on Reliable Distributed

Systems (SRDS), pages 11–1109, 2019.

[41] Michal Zalewski. American Fuzzy Lop. https://

lcamtuf.coredump.cx/afl/, 2014.

[42] Google Project Zero. Bad Binder: An-

droid In-The-Wild Exploit, CVE-2019-2215.

https://googleprojectzero.blogspot.com/2019/

11/bad-binder-android-in-wild-exploit.html,

2019.

[43] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue,

Jundong Xie, Hongxu Chen, Xinlei Ying, Jiashui Wang,

and Yang Liu. APICraft: Fuzz Driver Generation for

Closed-source SDK Libraries. In 30th USENIX Security

Symposium (USENIX Security 21), pages 2811–2828.

USENIX Association, August 2021.

[44] Lei Zhang, Keke Lian, Haoyu Xiao, Zhibo Zhang, Peng

Liu, Yuan Zhang, Min Yang, and Haixin Duan. Exploit

the Last Straw That Breaks Android Systems. In 2022

IEEE Symposium on Security and Privacy (SP), pages

2230–2247, 2022.

[45] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang,

Zhiyun Qian, Geng Hong, Yuan Zhang, and Min Yang.

Invetter: Locating Insecure Input Validations in Android

Services. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’18, page 1165–1178, New York, NY, USA, 2018.

Association for Computing Machinery.

A Appendix

A.1 RPC Frameworks

To illustrate how RPC design principles Ab , Si and St apply

to other RPC frameworks discuss how they apply to gRPC

and Apache Thrift, two established RCP frameworks.

A.1.1 GRPC

GRPC [13] uses the proto IDL to define the RPC interface.

From the IDL file the gRPC compiler generates source and

header files which can be included by the client and server.

In the server code the gRPC server is started and the RPC

interface is registered with the server. Si : The gRPC server’s

SyncRequest::Run function serves as the single entry point

processing the input from the transport layer (HTTP/2 in the

case of gRPC). Ab : The server stub is comprised of gRPC

server code for identifying the target RPC interface/method

and then the libprotobuf code to parse the received proto-

buf message. The programmer does not touch any of this

code, only registering the implementations of the RPC func-

tions with the gRPC server. St : Protobuf messages are de-

scribed with a TcParseTable, which is traversed in a loop

in the google::protobuf::internal::MergeFromImpl

function. In each iteration, the next relevant deserializer func-

tion in libprotobuf is called to parse the next field. See List-

ing 2 for an example gRPC server along with the relevant

code snippets of the server stub.

A.1.2 Apache Thrift

Thrift [1] uses its own IDL to define the RPC interface. From

the IDL, the Thrift compiler generates source files that contain

the server stub. The server stub is contained in the Processor

class which is registered with the ThriftServer. Si : The

dispatchCall function of the Processor class is the entry

point function invoked by the server when receiving an IPC

request to the interface. Ab : The server stub starting from

dispatchCall to the invocation of the target RPC function

is fully autogenerated. St : Each RPC function has a dedicated

https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/offensivecon_24_binder.pdf
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/offensivecon_24_binder.pdf
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/offensivecon_24_binder.pdf
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/offensivecon_24_binder.pdf
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html

1 service Demo { rpc Test (TestReq) returns (Testrep) {} }

2 message TestReq { string reqmsg = 1; }

3 message TestRep { string repmsg = 1; }

1 class DemoImpl : Demo::Service {

2 Status Test(ServerContext∗ context, const TestReq∗ req,

3 const TestRep∗ rep) override {

4 rep−>set_repmsg("Hello!");

5 }

6 }

7 int main(){

8 ServerBuilder builder;

9 builder.RegisterService(&service);

10 Server server(builder.BuildAndStart());

11 server−>Wait();

12 }

1 void grpc::Server::SyncRequest::Run(...) {

2 ...

3 auto∗ handler = method_−>handler();

4 // Deserialize the Request

5 deserialized_request_ = handler−>Deserialize(

6 call_, request_payload_,

7 &request_status_, nullptr);

8 if (!request_status_.ok()) {

9 VLOG(2) << "Failed␣to␣deserialize␣message.";

10 }

11 ...

12 ContinueRunAfterInterception(); //calls DemoImpl

13 }

1 bool google::protobuf::internal::MergeFromImpl(

2 absl::string_view input, MessageLite∗ msg,

3 const internal::TcParseTableBase∗ tc_table,

4 MessageLite::ParseFlags parse_flags

5) {

6 ...

7 while(1){

8 tc_entry = (void ∗)TcParseTableBase::entry(tc_table);

9 deserializer = (code ∗)TcParseTableBase::target(tc_entry);

10 // calls into libprotobuf

11 result = (char ∗)(∗deserializer)(msg);}

12 ...

13 }

Listing 2: An example gRPC server. The topmost box con-

tains the .proto file, written by the developer which defines

the RPC interface and protobuf objects. The second box is the

server main code which implements the actual API function-

ality and starts the gRPC server. The third box lists the entry

point function and the server stub. Based on the target RPC in-

terface, the protobuf message is deserialized. If this succeeds,

the ContinueRunAfterInterception is called which even-

tually calls the DemoImpl function. The final box contains the

deserialization loop, which iterates over the TcParseTable

table extracts the needed deserializer and calls the deserializer

function in libprotobuf.

read function to deserialize its arguments. This function uses

the deserializers exported by the TProtocol object, which

1 service Greeter { i32 greet(1:string message) }

1 Class GreeterHandler : virtual public GreeterIf {

2 int32_t greet(std::string message){

3 printf("geetings");

4 }

5 }

6 int main(){

7 ...

8 GreeterHandler handler = handler(new GreeterHandler())

9 Tprocessor processor(new GreeterProcessor(handler));

10 TSimpleServer server(processor, ...);

11 server.server();

12 }

1 bool GreeterProcessor::dispatchCall(Tprotocol∗ iprot,

2 Tprotocol∗ oprot, std::string fname, int seqId, ...){

3 // find the target RPC function handler

4 pfn = processMap_.find(fname);

5 pfn−>second(seqId, iprot, oprot, ..); // call process_∗

6 ...

7 }

8 bool GreeterProcessor::process_greet(int seqid,

9 TProtocol∗ iprot, Tprotocol∗ oprot, ..) {

10 Greeter_greet_args args;

11 args.read(iprot);

12 try{

13 iface_−>greet(args.message); // call RPC function

14 ...

15 }

1 int Greeter_greet_args::read(TProtocol∗ iprot){

2 int fid;

3 while(true){

4 iprot−>readFieldBegin(fid);

5 switch (fid) {

6 case 1:

7 iprot−>readString(this−>message);

8 }

9 }

10 }

Listing 3: An example Thrift service. The topmost box is

the Thrift IDL file. The second box contains the server code,

which starts the server along with the class containing the

developer-written implementation of the RPC functions. The

third box shows the relevant parts of the server stub. The

dispatchCall function is the entry point for the RPC inter-

face. On line 4 it maps the target RPC function to the handler,

process_greet in the case of the greet RPC function. On

line 11 of the process_greet function the arguments are

deserialized and on line 12 the target RPC function is called.

The final box is the deserialization function for deserializing

the arguments to the greet function. Each argument is deseri-

alized with standard deserializers from the TProcotol class.

holds the RPC argument bytes. Listing 3 shows the relevant

code for an example Thrift service.

B
as

ic
B

lo
ck

C
o
v
er

ag
e

0%

50%

100%
gpu incident media.metrics storaged thermalservice

(Time: 0 to 12 hours) NASS FANS NASS (NI)

Figure 4: Basic block coverage observed over 12 hours of fuzzing across five of the 14 evaluation services. These five services all

have an interface with less than four exposed RPC functions and the RPC functions themselves have very few basic blocks.

A.2 Coverage Graphs

Figure 4 shows the coverage graph for the five services not

shown in Section 8.3. Table 8 shows the maximum number of

reachable basic blocks and the basic blocks covered by each

fuzzer.

Service # Reach. BBs
NASS

Max. Cov. BBs

FANS

Max. Cov. BBs

NASS (NI)

Max. Cov. BBs

keystore 10589 3536 3087 3118

gatekeeper 2113 1010 707 955

perfprofd 2009 1159 1061 1001

stats 9847 6173 2334 2392

wificond 2208 988 779 717

surfaceflinger 6918 3394 3527 2549

netd 4472 2047 2140 1363

installd 6456 2715 2783 1676

vold 6070 2643 2677 1829

gpu 116 78 38 41

media.metrics 757 153 353 410

storaged 770 405 256 415

thermalservice 223 128 126 60

incident 518 290 82 238

Table 8: The number of reachable basic blocks and maximally

achieved number of basic blocks.

	Introduction
	Android System Services
	RPC Design Principles
	Motivation
	Challenges
	Design
	Coverage Collection for RPC Servers
	Deserialization-Guided Interface Extraction
	Interface Aware Fuzzing

	Implementation
	Entrypoint Identification
	Coverage Collection
	Interface Extraction
	Interface Aware Mutations
	Fuzzing The Service

	Evaluation
	Experimental Setup
	Interface Ground Truth Study
	Coverage And Bug Finding
	Real-World Bug Finding
	Compliance of COTS Services with RPC Design Principles

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	Open Science
	Appendix
	RPC Frameworks
	GRPC
	Apache Thrift

	Coverage Graphs

