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Abstract—Virtual devices are a large attack surface of hyper-
visors. Vulnerabilities in virtual devices may enable attackers
to jailbreak hypervisors or even endanger co-located virtual
machines. While fuzzing has discovered vulnerabilities in virtual
devices across both open-source and closed-source hypervisors,
the efficiency of these virtual device fuzzers remains limited
because they are unaware of the complex behaviors of virtual
devices in general. We present Truman, a novel universal fuzzing
engine that automatically infers dependencies from open-source
OS drivers to construct device behavior models (DBMs) for
virtual device fuzzing, regardless of whether target virtual devices
are open-source or binaries. The DBM includes inter- and
intra-message dependencies and fine-grained state dependency of
virtual device messages. Based on the DBM, Truman generates
and mutates quality seeds that satisfy the dependencies encoded
in the DBM. We evaluate the prototype of Truman on the
latest version of hypervisors. In terms of coverage, Truman
outperformed start-of-the-art fuzzers for 19/29 QEMU devices
and obtained a relative coverage boost of 34% compared to
Morphuzz for virtio devices. Additionally, Truman discovered
54 new bugs in QEMU, VirtualBox, VMware Workstation Pro,
and Parallels, with 6 CVEs assigned.

I. INTRODUCTION

Hypervisors or Virtual Machine Monitors (VMMs) are
the core software abstraction layer between Virtual Ma-
chines (VMs) and the underlying physical hardware. Hyper-
visors are essential to prevent attacks against co-located VMs
or the underlying infrastructure from denial of service (DoS),
information leak, control flow hijacking, and other security
threats. Unfortunately, hypervisors, as with other software, are
susceptible to vulnerabilities. In 2024, several vulnerabilities
inside virtual USB controllers affected VMware products,
allowing information leakage or VM escapes [1].

Fuzzing is an efficient technique for discovering vulnerabil-
ities. The community has proposed various fuzzers to improve
hypervisor security. Compared to CPU and memory virtualiza-
tion [2], [3], [4], virtual devices capture greater attention [5],
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[6], [7], [8], [9], [10], [11], [12], [13], since they correspond
to the main attack surface to hypervisors. The input for
virtual devices consists of virtual device messages [11], which
are commands and data interacting with interfaces of virtual
devices, such as Port IO (PIO), Memory-mapped IO (MMIO),
and Direct Memory Access (DMA). For example, an MMIO
virtual device message may contain a read operation with an
access size and a register address. Since virtual devices operate
according to the specifications of their physical counterparts,
virtual device messages are ordered and structured.

Specifically, virtual device messages are also subject to
constraints imposed by inter- and intra-message dependen-
cies [11]. Inter-message dependencies determine the order
of virtual device messages, implying that one message must
follow another. Intra-message dependencies encompass two
constraints within a single message: constraints on a single
field and relationships between fields. While existing research
has explored virtual device fuzzing, several challenges remain.

First, a generic and automatic method capable of extracting
a broad range of inter- and intra-message dependencies is
missing. Existing work [11], [9], [8] has shown that both inter-
and intra-message dependencies enhance code exploration and
bug discovery capabilities, whereas random fuzzing [14] leads
to shallow exploration of the code space. However, these
dependencies are manually transcribed from a specification
(Nyx-Spec [8]), which is not scalable; semi-automatically
extracted from the virtual device source code (ViDeZZo [11]),
which is limited by the availability of the source code; distilled
from execution traces (MundoFuzz [9]), which is incomplete;
or explored simply through a combination of heuristics and
randomness (Morphuzz [10] and V-Shuttle [7]), which shows
limited efficiency in discovering vulnerabilities in limited time.

Challenge 1: Efficient hypervisor testing requires an au-
tomatic approach to extract a broad range of inter- and
intra-message dependencies without manual help, source
code of virtual devices, or random exploration.

Second, inter- and intra-message dependencies are insuf-
ficient to fuzz “bus-hidden” devices. The interfaces of bus-
hidden devices are hidden by the corresponding bus, which
prevents direct access to the device. Consequently, the guest
must interact with the bus to access the device indirectly. These
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devices are commonly found in virtualized environments, such
as virtio devices on the virtio bus and USB devices on the USB
bus. Despite inter- and intra-message dependencies, fuzzers
struggle to explore the code space of bus-hidden devices
due to the lack of state dependency awareness. A virtual
device operates in multiple states throughout its lifecycle, and
states are often not explicitly documented in the specifications.
For example, a virtio device in the setup state only accepts
configuration messages while the device processes data mes-
sages in the transmission state. Consequently, the device has
different inter- and intra-message dependencies in different
states. State dependency refers to the set of inter- and intra-
message dependencies that are valid in a specific state and
how the device transitions between states.

Challenge 2: Exploring the code space of bus-hidden de-
vices requires knowledge of the device’s state dependency
to guide the exploration.

We have two observations to address the above challenges.
First, the source code of an OS driver corresponding to

a virtual device implicitly encodes inter- and intra-message
dependencies. Even though virtual devices of hypervisors are
closed-source, we can find open-source OS drivers for them.
In practice, developers often implement a virtual device by
referring to the corresponding OS driver [15]. Since the virtual
device and its corresponding OS driver adhere to the same
specification [16], we can infer the inter- and intra-message
dependencies from the OS driver and overcome challenges
such as analyzing closed-source hypervisors (e.g., VMware
Workstation) or hypervisors written in diverse languages (e.g.,
QEMU is written in C, and VirtualBox is in C++).

Second, a comprehensive device behavior model guides
the fuzzer to explore the code space of bus-hidden devices.
A device behavior model (DBM) not only captures a virtual
device’s inter- and intra-message dependencies but also the
state dependency. State dependency is essential for bus-hidden
devices that are not accessible directly and operate within
a two-layer structure: the bus and device layers. The bus
layer exposes interfaces for communication, while the device
layer interacts with the bus layer for specific operations.
With the domain knowledge of the Linux kernel drivers [17],
state dependency can be approximated by analyzing both
the bus driver and the specific device driver simultaneously.
Equipped with the device behavior model, the fuzzer guides
the generation and mutation of virtual device messages toward
unexplored or under-explored code.

We introduce Truman, named after The Truman Show,
where the protagonist discovers his controlled reality in the
virtual world. Truman is the first generic and automatic
tool that extracts device behavior models (DBMs) from open-
source OS drivers to fuzz virtual devices. First, Truman
statically analyzes the OS driver to extract inter-, intra-, and
state dependency graphs, forming a DBM (Section III-A). We
develop a flow-, field-, and path-sensitive static analyzer lever-
aging Linux driver domain knowledge. While the Linux kernel

consists of 30M lines of code (LoC) [18], static analysis of
individual drivers remains feasible due to their relatively small
size. For example, the virtio bus driver has only around 2K
LoC [19]. Second, we develop a fuzzing engine that leverages
the DBM to generate and mutate virtual device messages that
satisfy dependencies (Section III-B). Specifically, Truman
generates messages at different granularity, ranging from a
single message level to the state level, directs the dependency-
aware mutation to reduce the number of faulty messages, and
executes messages on different hypervisors.

We have implemented a prototype of Truman, consisting
of a static analyzer to generate the DBM and a fuzzing engine
that parses the DBM, generates and mutates virtual device
messages that satisfy dependencies. We compared Truman
against two start-of-the-art (SOTA) approaches (Morphuzz
and ViDeZZo) and a naive baseline (AFL++) for coverage
evaluation. Truman outperforms the three fuzzers on 19/29
QEMU devices after 48-hour fuzzing. Regarding the known
bug discovery capability, Truman discovered 10 bugs in
the last major version of QEMU (v8.0.0) within 24 hours,
outperforming Morphuzz and ViDeZZo, which found four
bugs. Additionally, Truman discovered 54 new bugs across
QEMU, VirtualBox, VMware Workstation Pro, and Parallels,
with 31 bugs fixed and 6 CVEs assigned.

In summary, we make the following contributions:
• We first identify that the device’s state dependency is re-

quired for fuzzing bus-hidden devices lacking direct access.
• We propose a generic, automatic, and novel approach to

extract inter- and intra-message and state dependencies
from open-source OS drivers to guide the fuzzing of vir-
tual devices based on the observation that the OS driver
implicitly encodes the specification of the virtual device.

• We evaluated the prototype of Truman and the results show
that Truman surpasses two SOTA fuzzers in 19/29 QEMU
devices and discovers 54 new bugs in recent hypervisors,
with 6 CVEs assigned and 31 bugs fixed.

• Truman is open-sourced at (https://github.com/vul337/
Truman).

II. BACKGROUND AND MOTIVATING EXAMPLE

A. Device Specification and Bus-hidden Devices

Virtual devices and the corresponding OS drivers adhere to a
standard specification [16], a document that describes the pro-
tocol, ensuring seamless interaction between the guest OS and
virtual devices. The OS driver is the software implementation
of the device specification and is responsible for translating
the requests of the guest OS into virtual device messages.
Conversely, the virtual device is the hardware abstraction
of the device specification responsible for handling virtual
device messages. Although both OS drivers and virtual devices
work together to implement the same specification, OS drivers
encode high-level knowledge of the usage of virtual devices.

Bus-hidden devices are virtual devices that operate behind
bus systems, such as the virtio bus or USB bus. Examples in-
clude devices like virtio-sound and USB storage. Specifically,
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1 void virtio_snd_set_config(VirtIODevice *vdev,
2 const uint8_t *config) {
3 VirtIOSound *s = VIRTIO_SND(vdev);
4 const virtio_snd_config *sndconfig =
5 (const virtio_snd_config *)config;
6
7 memcpy(&s->snd_conf, sndconfig,
8 sizeof(virtio_snd_config));
9 le32_to_cpus(&s->snd_conf.jacks);
10 le32_to_cpus(&s->snd_conf.streams); // overwrite
11 le32_to_cpus(&s->snd_conf.chmaps);
12 }
13
14 void virtio_snd_handle_rx_xfer(VirtIODevice *vdev,
15 VirtQueue *vq) {
16 msg_sz = iov_to_buf(elem->out_sg, elem->out_num, 0,
17 &hdr, sizeof(virtio_snd_pcm_xfer));
18 if (msg_sz != sizeof(virtio_snd_pcm_xfer)) {
19 goto rx_err;
20 }
21 stream_id = le32_to_cpu(hdr.stream_id);
22 if (stream_id >= vsnd->snd_conf.streams // check
23 || !vsnd->pcm->streams[stream_id]) {
24 goto rx_err;
25 }
26
27 stream = vsnd->pcm->streams[stream_id]; // overflow
28 }

Fig. 1: A heap-buffer-overflow bug in the virtio-sound device.

para-virtualized devices, such as virtio devices, are important
in cloud environments for their ability to enhance performance
and efficiency by reducing latency and overhead. They are
widely used in cloud platforms like AWS [20] and Google
Cloud [21] to ensure scalability and high performance. Unlike
other virtual devices, bus-hidden devices are not directly
accessible through standard interfaces such as Port IO (PIO),
Memory-mapped IO (MMIO), and Direct Memory Access
(DMA). Bus-hidden devices exhibit a two-layer structure com-
prising the bus and device layers. The guest OS interacts with
interfaces exposed by the bus layer, indirectly controlling the
specific device. The two-layer structure introduces additional
challenges for fuzzing. Consider the example of a virtio
device. The virtio bus layer negotiates features and configures
communication channels, while the device layer handles the
virtual device’s specific functions. Communication between
the guest OS and the virtio device occurs through a structure
named virtqueue, a shared memory region between the guest
OS and the virtual device. In the setup state, the bus layer
negotiates the device features and sets up the virtqueue. Once
the virtqueue is established, the virtio device moves to the
transmission state, where it transfers messages between the
guest OS and the virtio device.

B. Motivating Example

We use a heap-buffer-overflow bug (shown in Figure 1) in
the virtio-sound device to illustrate the challenges of fuzzing
virtual devices. The bug occurs when the guest OS sends
a crafted stream ID to the virtio-sound device, overwriting
the configuration, and the virtio_snd_set_config()
does not validate the configuration of streams correctly,
leading to a heap-buffer-overflow bug. Specifically, the
virtio_snd_handle_rx_xfer() transfers the audio

buffer provided by the guest to the device. The function
parses the virtual device message first and gets the stream
ID from the message header (Line 21). Then, the function
checks if the stream ID is within the expected range (Line 22).
However, if a malicious guest overwrites the configuration
of streams by virtio_snd_set_config(), the crafted
stream ID will be in the “expected” range (Line 22), but the
device does not create the stream yet, leading to heap-buffer-
overflow (Line 27). The root cause of the bug is that the
virtio_snd_set_config() does not validate the guest-
provided configuration correctly. Triggering the bug requires
three types of dependencies.

• Inter-message Dependency: To reach out to the buggy
function virtio_snd_handle_rx_xfer(), the guest
must send virtual device messages to the virtio core layer
in the correct order during the setup state. Specifically,
the guest must first send virtual device messages to set
the correct queue size and address in the setup state. The
correct order of virtual device messages ensures that the
virtio device transfers to the transmission state, allowing
proper communication between the guest and the virtual
device in the transmission state.

• Intra-message Dependency: As Section II-A mentions, the
virtio-sound device uses the virtqueue to communicate
with the guest. The guest must set up the address of the
transmission message to the virtqueue correctly to reach the
buggy function, which requires the dependencies between
the fields of the transmission message.

• State Dependency: The guest must be aware of the state of
the virtio device to reach the buggy function. For example,
sending a transfer message to the virtio device on the
first attempt is useless since the virtio device is in the
setup state and does not retrieve the buffer. Therefore,
the guest must first send messages that satisfy inter- and
intra-message dependencies in the setup state to the virtio
device. Then, the guest sends messages that depend on
initial messages during the transmission state. The message
sequence ensures that the virtio device transitions correctly
between states, triggering the buggy function.

In summary, triggering the bug must satisfy all three types
of dependencies, which poses a challenge for a fuzzer that
is unaware of these dependencies. To address the challenge,
we extract these dependencies from the OS driver, as shown
in Figure 2. For the inter-message dependency, since the OS
driver encodes the messages that set the virtqueue size and
virtqueue address (Lines 3 to 5), we extract these messages as
the inter-message dependency. Similarly, we extract the intra-
message dependency from the virtio driver, which initializes
the buffer to set the correct address and length (Lines 10 to 12).
The OS driver of the virtio device typically performs opera-
tions that set up the device in the probe function. Therefore, we
collect and group these operations in the probe function as the
dependency of the setup state (Lines 19 to 21). The extraction
ensures that the fuzzer handles the dependencies appropriately,
allowing the fuzzer to trigger the bug efficiently.
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1 int vp_active_vq(struct virtqueue *vq, u16 msix_vec) {
2 // Inter-message dependency
3 vp_modern_set_queue_size(mdev, index, vring_size);
4 vp_modern_queue_address(mdev, index, desc_addr,
5 avail_addr, used_addr);
6 }
7
8 static unsigned int virtqueue_add_desc_split(struct

vring_desc *desc, unsigned int i, dma_addr_t addr,
unsigned int len, u16 flags) {

9 // Intra-message dependency
10 desc[i].flags = flags;
11 desc[i].addr = addr;
12 desc[i].len = len;
13
14 return desc[i].next;
15 }
16
17 static int virtio_dev_probe(struct device *_d) {
18 // State dependency
19 virtio_add_status(dev, VIRTIO_CONFIG_S_DRIVER);
20 virtio_add_status(dev, VIRTIO_CONFIG_S_FEATURES_OK);
21 virtio_add_status(dev, VIRTIO_CONFIG_S_DRIVER_OK);
22 }

Fig. 2: The virtio OS driver encodes state, inter-message, and
intra-message dependency.

C. Threat Model

We assume that the attacker has control over the guest OS
in the cloud environment, which is consistent with related
work in hypervisor security [5], [6], [7], [8], [9], [10], [11],
[12], [13]. The attacker crafts arbitrary malicious PIO, MMIO,
and DMA virtual device messages and sends them to virtual
devices. Next, by leveraging vulnerabilities in virtual devices,
the attacker can leak information, prevent the virtual devices
from working, and even escape from the virtual machine,
potentially compromising the entire cloud environment.

III. DESIGN

Truman extracts device behavior models from open-source
Linux kernel drivers to assist in virtual device fuzzing. Linux
supports various peripherals, making it a suitable platform for
extracting device behavior models [22]. Our key insight is that
a virtual device and its corresponding OS driver are governed
by a common specification [16], ensuring they function to-
gether. Therefore, we can leverage the knowledge implicitly
encoded in OS drivers to fuzz virtual devices. Open-source
OS drivers are promising candidates for inferring knowledge
about virtual devices based on the following benefits. First,
even if a virtual device is proprietary and closed-source,
the OS drivers are generally open-source. For example, we
found that every virtual device in VMware Workstation Pro
has the corresponding open-source driver, even self-developed
virtual devices such as Virtual Machine Communication Inter-
face (VMCI) [23]. Second, the interface of virtual devices is
generally unified regardless of how differently virtual devices
are implemented across different hypervisors. Analyzing a
driver provides insights applicable to various hypervisors. This
makes it possible to develop a generalized framework that
works across different hypervisors. Third, OS drivers serve as
consumers of virtual devices and clearly show how to interact

with devices. Therefore, device behavior models are more
easily extracted from OS drivers than virtual devices based
on the observation.

Figure 3 depicts Truman’s two main steps. First, Truman
models the behavior of a virtual device by three types of
dependencies: inter-, intra-message, and state dependencies,
and extracts them from OS drivers via flow-sensitive, path-
sensitive, and field-sensitive static analysis. Truman generates
the device behavior models consisting of the above three kinds
of dependencies as the output of the first step (Section III-A).
Second, given the device behavior models, Truman assists
in fuzzing via dependency-aware generation and mutation
of seeds (Section III-B). Specifically, Truman develops a
fuzzing engine that generates seeds at different granularity
based on device behavior models to explore the code space
of virtual devices effectively, especially for bus-hidden de-
vices. Additionally, Truman mutates messages at the message
level, sequence level, and state level guided by the device
behavior models. The inter-message dependency keeps the
order of messages, the intra-message dependency ensures the
constraints of the fields, and state dependency restricts the
dependencies in different states. Finally, Truman catches bugs
with AddressSanitizer (ASAN) [24] for open-source virtual
devices and with crash signals for closed-source targets.

A. Constructing Device Behavior Model

Truman extracts device behavior models from the open-
source OS drivers. Device behavior models are crucial for
improving the efficiency and effectiveness of fuzzing virtual
devices. These models help accurately generate and mutate
seeds by understanding the message dependencies and state
transitions within the device, thereby reducing the time to
cover the same code as random fuzzing and increasing the
probability of discovering more vulnerabilities.

A device behavior model describes a virtual device using
inter-, intra-message, and state dependencies. To extract these
dependencies, Truman performs the following steps. First, to
extract inter-message dependencies, Truman traces operations
by traversing the OS driver using a new flow-sensitive, path-
sensitive, and inter-procedural static program analyzer (Sec-
tion III-A1). Second, Truman extracts two types of intra-
message dependencies (Section III-A2). For constraints affect-
ing a field in a message (e.g., the lower 8 bits of a 32-bit field
must be equal to a constant), Truman builds an expression
tree to represent the construction of the field. Additionally, for
the dependency between fields of a message (e.g., the pointer
relationship between DMA buffers), Truman leverages static
taint analysis to infer the relationship between fields. Third,
Truman utilizes the two-layer structure of bus-hidden devices
to extract state dependency (Section III-A3). Specifically,
Truman divides the state according to different types of
functions in the bus driver first and further refines the state
based on the message type extracted from the specific device
driver. Combining the above three types of dependencies,
Truman constructs the device behavior model for the virtual
device. Figure 4 shows an example.
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write(Q_SEL, 0x1)
write(Q_SIZE, 0x8)

write(Q_SEL, 0x1)
write(Q_EN, 0x1)

write(Q_SEL, 0x1)
write(0xFF, 0x8)

write(Q_SEL, 0x10)
write(Q_EN, 0x1)

vq_buf
vq_desc 1

HDR_SIZE
Type: AND

Type: CONSTANT
Value: 0x10

Type: CONSTANT
Value: 0xFF

0x10 & 0xFF

vq_desc 2

WRITE16(Q_SEL)
WRITE16(Q_SIZE)

WRITE16(Q_SEL)
WRITE16(Q_MSIX)

WRITE16(Q_SEL)
WRITE16(Q_EN)

transmis
sion

cleanup

setup

PCM_STOPPCM_START

Fig. 3: Overview of information that Truman extracts from OS drivers and how Truman assists in virtual device fuzzing.

1 Setup state [id = 0, prev = 2, next = 1]:
2 - Inter-message dependency:
3 - write [region = 0, size = 4, offset = 0x20]
4 - write [region = 0, size = 4, offset = 0x24]
5 - Intra-message dependency: ...
6 - offset 0x20 [value = 0x10 & 0xff]
7 - offset 0x24 [value = random | 0x40]
8 Transmission state [id = 1, prev = 0, next = 2]:
9 - PCM_START state [id = 1.1, prev = 0, next = 2]:
10 - Inter-message dependency: ...
11 - Intra-message dependency:
12 structure {
13 structure {
14 element [type = int32, value = 0x104]
15 }
16 element [type = int32, mask = 0x03]
17 }
18 - PCM_STOP state [id = 1.2, prev = 0, next = 2]:
19 Cleanup state [id = 2, prev = 1, next = 0]:
20 - Inter-message dependency: ...
21 - Intra-message dependency: ...

Fig. 4: An example of the device behavior model.

vp_iowrite16(index, &mdev->common->queue_select);
vp_iowrite16(size, &mdev->common->queue_size);

vp_iowrite16(index, &cfg->queue_select);
vp_iowrite16(vector, &cfg->queue_msix_vector);

vp_iowrite16(index, &mdev->common->queue_select);
vp_iowrite16(enable, &mdev->common->queue_enable);

Driver of Virtio Bus InterDep Graph

WRITE16(Q_SEL)
WRITE16(Q_SIZE)

WRITE16(Q_SEL)
WRITE16(Q_MSIX)

WRITE16(Q_SEL)
WRITE16(Q_EN)

Fig. 5: Example of the inter-message dependency graph ex-
tracted from the virtio driver.

1) Extracting Inter-message Dependency: Inter-message
dependencies encode the order of virtual device messages,
which is crucial for virtual devices to function correctly.
Figure 5 shows an example of the inter-message dependency
graph extracted by Truman from the virtio bus driver. For
each virtqueue of the device, the driver first sets the size
and the interrupt vector of the virtqueue, then enables the
virtqueue. The fuzzer must follow this specific order to set
up the device correctly. Otherwise, the virtio device will fail
and fall into an error state.

Previous virtual device fuzzers [10] use general fuzzing
engines (e.g., libFuzzer [25]) to learn these dependencies,

while others encode this knowledge using a grammar [8]
or initial seeds [7]. However, these existing methods require
manual work, which is incomplete or inaccurate. Since OS
driver implementation reflects the virtual device’s behaviors,
Truman automatically extracts meaningful inter-message de-
pendencies from OS drivers. Intuitively, Truman identifies the
order of messages by traversing the control flow graph (CFG)
and call graph (CG) of the OS driver via inter-procedure static
analysis. Specifically, Truman records the (W/R, size,
offset) tuple of each message and the order of the mes-
sages. Eventually, Truman employs a three-step approach to
build an inter-message dependency graph for each device from
its corresponding OS driver.

First, Truman collects kernel functions that perform opera-
tions and maps these functions to virtual device messages. To
achieve this, Truman gathers a list of standard functions for
executing operations from the official Linux documentation
(e.g., iowrite16() for an IO operation). These functions
show the direction of the operation (read or write) and the size
of the operation (e.g., 16-bit or 32-bit). Additionally, Truman
defines heuristics to identify customized wrapper functions
defined by a specific driver to complete the function list.
For example, the virtio driver defines vp_iowrite16(),
which wraps iowrite16(). Both vp_iowrite16() and
iowrite16() represent a two-byte MMIO write. A list of
recognized functions is shown in the Appendix Table V.

Second, based on the list of standard functions, Truman
conducts flow-sensitive analysis to record all function call sites
starting from entry functions [26] of the driver. The entry
function is usually defined as a member of the xxx_ops
structure according to the Linux kernel’s documentation. Flow
sensitivity is necessary to keep the virtual device messages in
the same order as the interactions between drivers and devices.

Third, since the driver operates under different conditions,
Truman performs path-sensitive analysis to record all possible
paths of the driver. The path-sensitive analysis guarantees
that Truman records all operations in all paths, significantly
enriching the inter-message dependency. Truman is not im-
pacted by path explosion since the code lines of the driver
are limited (the virtio bus driver has only 2K LoC). Thus, the
number of paths remains manageable. Additionally, Truman
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Algorithm 1 Constructing Expression Tree for an IO Value

Input: IO value
Output: Expression tree root

1: root ← new ExpressionTree()
2: if value is constant then
3: root.type ← CONSTANT
4: root.value ← GetConstantValue(value)
5: else
6: operation ← GetOperation(value)
7: type = GetOperationType(operation)
8: if type is bitwise (OR, AND, XOR, SHIFT LEFT,

SHIFT RIGHT) or conditional (PHI, SELECT) then
9: root.type ← type

10: for operand in GetOperands(operation) do
11: child ← ConstructExpressionTree(operand)
12: root.addChild(child)
13: end for
14: else
15: root.type ← RANDOM
16: end if
17: end if
18: return root

ignores the condition of branches when performing the path-
sensitive analysis, further constraining the complexity of the
analysis. In this way, Truman creates a directed graph of inter-
message dependency where each node defines a message, and
the edge defines the order of the message.

2) Extracting Intra-message Dependencies: Intra-message
dependencies contain two types of constraints. The first is the
constraints of single message fields, such as the requirement
that the lower 8 bits of a 32-bit field be equal to a constant.
The second is the dependency between multiple fields of a
message, such as a pointer of a DMA buffer must point
to another. Truman develops different approaches to extract
these two types of dependencies.

Constraints Affecting a Single Field: Virtual device
messages are usually restricted by constraints. Take the IO
message as an example. An IO message follows the pattern
(address, size[, value]). A 32-bit value of an IO
message results from a bitwise OR operation of two 16-bit
values with different meanings. Truman not only records
the order of the operation but also the value of each opera-
tion during constructing the inter-message dependency graph.
Truman conducts a backward dataflow analysis to recover
the constraints of the value and generates an expression tree
to represent the dependencies, as shown in Algorithm 1. The
algorithm also holds for DMA messages, where a field in a
DMA buffer has constraints. Truman utilizes the expression
tree to generate and mutate the value of an operation with
dependencies in the fuzzing stage. Figure 6 depicts the expres-
sion tree of a value field of an MMIO write message in the
sdhci driver. The sdhci driver sends a command to the SD
card, and the value is constructed by the bitwise OR operation
of the command and flags. The expression tree describes the

Type: OR

Type: SHIFT Type: AND

Type: AND Type: CONSTANT
Value: 8

Type: PHI Type: CONSTANT
Value: 0xFF

Type: CONSTANT
Value: 0xFF

Type: PHI Type: CONSTANT
Value: 0x1

Type: CONSTANT
Value: 0x2

Type: CONSTANT
Value: 0x41

Type: CONSTANT
Value: 0x3F

Fig. 6: An example of the expression tree for the IO value
MAKE_CMD(command, flag) extracted from the sdhci
device driver, where the macro MAKE_CMD(c, f) is defined
as (((c & 0xFF) ≪ 8) | (f & 0xFF)).

dependency of the values, and Truman generates the value of
the IO message based on the expression tree.

Dependency Between Fields: A virtual device message
contains multiple fields, and fields have dependencies between
each other. The most important dependency is the pointer
relationship, which is hard to satisfy in random fuzzing. For
instance, the DMA buffer may have a pointer to another
DMA buffer. Overall, Truman employs a two-step approach
to extract the dependency between fields within a message.
First, similar to the construction of inter-message dependency
graph, Truman collects standard functions that allocate DMA
buffers from Linux kernel (shown in the Appendix Table VI)
and identifies the call sites of these functions in entry functions
of the driver. Second, Truman uncovers the relationship
between DMA buffers via a static taint analysis. To ensure
the virtual devices work as expected, the correct pointer
relationship between DMA buffers must be set. For example,
in the Linux kernel, the primary DMA buffers are often
coherent (ensuring that the device and the processor obtain
the same data), which is used to synchronize the command
of devices, and the nested DMA buffers are usually streaming
buffers (commonly used for data transfers between device and
memory for performance), which points to the primary DMA
buffer. Specifically, Truman discovers the field dependencies
via the static taint analysis defined as follows.
• Taint Sources. Truman marks the previously identified

pointers of DMA buffers and their aliases with tainted flags.
Then Truman leverages inter-procedural taint propagation,
spreading taint sources to other pointers.

• Taint Sinks. Truman checks if a taint source is referenced
by another DMA buffer, and thus Truman regards the
address of the other DMA buffer as a sink. The sink pointer
stores the address of the taint source, creating a nested
DMA buffer. If Truman finds such a sink pointer, Truman
will record the pointer between the taint source and the sink.

• Propagation Rules. Truman utilizes a summary-based taint
flow construction approach to efficiently propagate the
inter-procedural taint flows as shown in SUTURE [27].
In the intra-message dependency graph of dependencies

between fields within a message, a node represents a field
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vq_desc = dma_alloc(NUM * DESC_SIZE);
vq_buf = dma_alloc(HDR_SIZE);

vq_buf->code = VIRTIO_SND_R_CTL_INFO;
vq_buf->control_id = id;

vq_desc->addr = vq_buf;
vq_desc->len = HDR_SIZE;

Driver of Virtio Bus IntraDep Graph

vq_buf

vq_desc 2

vq_desc n

…

vq_desc 1 HDR_SIZE

code

control_id

Fig. 7: Example of the intra-message dependency graph ex-
tracted from the virtio bus driver.

in the message, and an edge between nodes represents a
pointer from one field to another. Figure 7 shows an example
of constructed intra-message dependency graph for the virtio
sound device. The virtio sound driver first allocates a buffer for
the vq_desc and then for vq_buf. Next, the driver writes
the address of vq_buf to a field in vq_desc. Truman
extracts the relationship between the vq_desc and vq_buf
from the driver.

3) Extracting State Dependency: State dependency defines
the set of inter- and intra-message dependencies that must be
satisfied within a specific virtual device state and the transition
of different states. State dependency is crucial for virtual
device fuzzing, especially for bus-hidden devices (e.g., virtio
devices). Each state has a different set of dependencies that
must be satisfied. For example, the virtio device has multiple
states, including setup, transmission, and error. In the setup
state, the guest must set up the properties of the virtqueue,
while in the transmission state, the driver must fill the message
to the virtqueue. If a guest sends a message to the virtqueue
first without setting up the virtqueue, the virtio device will
report the error.

In previous research, FuzzUSB [28] identifies states of
USB gadgets based on the input point in a coarse-grained
manner, which cannot distinguish different states with the
same input point in virtual devices (e.g., pci_dma_read()
and dma_memory_read()). Other research divides the
states based on state variables, which cannot be applied to
bus-hidden devices because the devices have two layers of
structure, and the solution cannot find the relationship between
variables in the two layers. The above indicators for states are
not suitable for virtual devices. We propose a new automatic
approach to extract state dependency at fine-grained based on
observing a two-layer structure of bus-hidden devices.

First, Truman divides the state based on different types
of functions in the bus driver. OS drivers usually abstract
the functionality of devices under the same bus by defining
a set of standard functions. Take the virtio bus driver as an
example. The virtio bus driver typically implements functions
such as probe(), resume(), and remove(). As the name
implies, the probe() function is used to set up the device,
and the resume() function is used to resume the device.
Therefore, Truman divides the state based on the special func-
tions defined in the driver. Specifically, Truman groups the
inter- and intra-message dependencies extracted in probe()
as the setup state and the dependencies in the remove() as

struct virtio_driver = {
.name = "virtio",
.probe = virtio_probe,
.remove = virtio_remove,

}

Driver of Virtio

struct message_header *hdr = message->header;
/* command could be 

VIRTIO_SND_R_PCM_START or VIRTIO_SND_R_PCM_STOP */
hdr->hdr.code = cpu_to_le32(command);
hdr->stream_id = cpu_to_le32(vss->sid);

transmis
sion

cleanup

setup

StateDep Graph

PCM_STOP

PCM_START

Fig. 8: Example of the state dependency graph extracted from
the virtio driver.

the cleanup state. The functions also imply transitions between
different states, such as the probe() function, usually called
before the resume() function, indicating the transition from
the setup state to the resume state. Additionally, Truman
groups the dependencies defined in entry functions for user-
space the transmission state. Truman manually maps the
states and the functions as shown in Appendix Table VII.

Second, Truman refines the state based on the message
type extracted from the specific device driver. The transmission
state can be divided into more fine-grained states depending
on the message type requested. Truman conducts a backward
analysis from the point of adding the message to the buffer.
The analysis extracts the structure of the message and the
possible value for the fields. Messages for virtio devices
usually include the message type in the header, Truman
extracts the message type based on heuristics, that is, variables
of the message type are usually named as type or code.
Then, Truman links the message type to the corresponding
state. For example, Truman extracts the states pcm start and
pcm stop of the virtio-sound device based on the request
type of the message (VIRTIO_SND_R_PCM_START and
VIRTIO_SND_R_PCM_STOP), as shown in Figure 8.

B. Performing Dependency-aware Fuzzing

Truman develops a fuzzing engine that leverages the device
behavior models to generate, mutate, and execute virtual
device messages with dependencies to explore the code space
of the virtual device effectively. The fuzzing engine includes
three main components: generator, mutator, and executor. The
generator and mutator are independent of the specific hyper-
visor implementation. The analyst only needs to implement a
specific executor to support a new hypervisor.

1) Generator: Based on the device behavior models ex-
tracted from OS drivers, Truman generates seeds at four
levels of granularity, including the message level, basic block
level, function level, and state level. The size of seeds increases
from the message level to the state level. Each level of granu-
larity is suitable for different scenarios; for example, the state-
level seed is suitable for transitioning between different states.
Truman employs a probability distribution to determine the
level of seeds to generate.

Message Level: The message level seed is an IO message
or a DMA message. For a single IO message with a tuple as
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(address, size[, value]), the address and size
fields are randomly generated, and value to be written is
generated based on the intra-message dependency graph (ex-
pression tree). For a DMA message, Truman generates a
DMA buffer and fills the buffer based on constraints of a
field (expression tree) and the pointer relationship in the intra-
message dependency graph.

Basic Block Level: At the basic block level, Truman
generates seeds by creating each message within a basic block.
This ensures that the generated messages align with the control
flow within that specific basic block.

Function Level: The inter-message dependency graph ex-
tracted by Truman also records the inter-procedural control
flow graph (ICFG) of the driver, Truman generates the
function-level seed by randomly choosing a path in the ICFG
and generating messages along the path. This approach ensures
that the generated seeds reflect the sequence and dependencies
of basic blocks within a function.

State Level: Truman generates a state-level seed by travers-
ing the state dependency graph and mapping the state to
the corresponding virtual device messages. A state-level seed
encompasses messages in multiple functions, ensuring that the
generated seed represents a more comprehensive semantic of
the virtual device.

2) Mutator: The device behavior model not only facilitates
seed generation but also enables seed mutation. Importantly,
Truman is capable of incorporating dependency-aware seed
mutation directly into the fuzzing engine. This approach
leverages the understanding of inter- and intra-message de-
pendencies and state dependency mapped out in the device
behavior model. Specifically, Truman extends the message-
level and sequence-level mutators defined in ViDeZZo [11]
and introduces new state-level mutators.

Message-level mutators: These mutators focus on modifying
the content of individual messages, including operations such
as ChangeAddr, ChangeValue, etc. Truman enhances
message-level mutators by incorporating the intra-message
dependency in the device behavior model. For example, the
ChangeValue mutator, which changes the write value of an
IO message, previously generated a new value randomly. In
contrast, Truman re-evaluates the expression tree of the value
and generates a value that satisfies the dependency. For the
DMA message, Truman maintains the structure of the DMA
buffer but changes the value of a field in the buffer based on
the intra-message dependency graph.

Sequence-level mutators: These mutators explore the
combination of messages, including InsertMessages,
RemoveMessages, ShuffleMessages, etc. Truman en-
hances the sequence-level mutators by incorporating the inter-
message dependency from the device behavior model. For in-
stance, the InsertMessages mutator inserts a new message
into the message sequence, and Truman first chooses a mes-
sage and follows the order in the inter-message dependency
graph to generate new message sequences.

State-level mutators: These mutators restrict the message
and sequence level mutators to the current state of the virtual

1 int init_device_behavior_model(const char* path) {
2 DBM dbm = parse_dbm_from_file(path);
3 return 0;
4 }
5
6 void add_interface(Type type, int addr, int size) {
7 if (interface_exists(type, addr, size)) {
8 return;
9 }

10 interfaces[interface_count].type = type;
11 interfaces[interface_count].addr = addr;
12 interfaces[interface_count].size = size;
13 interface_count++;
14 }
15
16 int get_messages(Messages* messages) {
17 Sequence generated_seq = generator();
18 for (int i = 0; i < generated_seq.size; ++i) {
19 message_t msg = generated_seq[i];
20 add_message(messages, msg);
21 }
22 return generated_seq.size;
23 }

Fig. 9: APIs that are provided by the fuzzing engine.

device. By leveraging the state dependency in the device
behavior model, Truman ensures that mutated seeds are valid
within dependencies of the current state. For example, the
value of an MMIO write message with the same offset may
have different constraints in different states.

3) Executor: The executor executes the messages generated
and mutated by the fuzzing engine, so it depends on the
specific hypervisor. The fuzzing engine in Truman provides
APIs for the hypervisor-specific executor, as shown in Fig-
ure 9. These include init_device_behavior_model()
to initialize the device behavior model, add_interface()
to add a new interface if it does not already exist, and
get_messages() to generate and add a sequence of mes-
sages to the provided messages object.

IV. IMPLEMENTATION

Truman extracts the device behavior models from Linux
drivers, generates and mutates quality seeds to fuzz the virtual
devices, and finally discovers bugs in different hypervisors. To
build device behavior models, Truman first compiles Linux
drivers to bitcode with Clang 13.0.0 (required by SVF), then
leverages SVF [29] based on LLVM 13.0.0 [30] to conduct
the static program analysis, and uses SUTURE [27] to perform
the static taint analysis. After constructing the device behavior
models, Truman utilizes the fuzzing engine to generate and
mutate seeds and performs dependency-aware fuzzing for
different virtual devices. Truman consists of around 3,000
lines of C++ for static analysis, 2,500 lines of C++ for the
fuzzing engine, and 2,000 lines of Python scripts for setting
up the environment, gluing the components of Truman, and
analyzing the results.

A. Preparation of Static Analysis

1) Identify the Corresponding OS Driver of the Virtual
Device: Truman pairs a virtual device under test and its
corresponding OS driver by checking if they have the same
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device identification. A driver typically defines an array of
device IDs of supporting devices. The format of the structure
of the device ID and the semantics for identifying device IDs
are bus-specific. For a PCI device, the vendor ID field and the
device ID field are used to match the driver with the device.
With the pair of vendor ID and device ID, Truman can locate
the exact OS driver corresponding to a virtual device, laying
the foundation to extract the device behavior model from the
OS driver and then fuzz the virtual device.
Truman first compiles the corresponding Linux driver with

Clang and generates a bitcode file for further analysis (one
bitcode file per driver). Specifically, we develop a Clang
wrapper that finds the necessary files for the Linux driver,
emits LLVM bitcode from these files, and merges all necessary
bitcode files of a driver. Next, we extracted the device IDs
and the driver’s IDs. For a specific virtual device under
the PCI bus, Truman gets the device ID after probing the
device during running. As for the device driver side, the
device IDs are always embedded in a special structure named
id_table according to the document, Truman extracts the
corresponding device IDs by static analysis. Generally, the
driver supports multiple chipsets of hardware; thus, Truman
searches the IDs in the driver that the driver supports to match
the exact hardware. Finally, Truman records the pair of the
virtual device and the corresponding driver to the database.

2) Locate Driver Entry Functions: Truman needs to iden-
tify entry functions as the start point of static analysis to extract
the device behavior model from the OS driver. Entry functions
are typically of two types: functional entry and interrupt han-
dlers. Truman uses heuristics to locate the two types of entry
functions: functional entry functions and interrupt handlers.
First, we develop a set of regular expressions to match the
entry functions of the drivers (usually named as xxx_ops).
Similarly, Truman processes interrupt handlers of the driver
by identifying the registration function from the documenta-
tion. According to the documentation, interrupt handlers are
always registered using the function request_irq() and
other similar functions. Truman recognizes the argument of
register functions as interrupt handlers.

B. Static Analysis to Construct DBMs

1) Alias Analysis: Since addresses of PIO/MMIO regions
and DMA buffers are pointers, it is important to precisely
identify their aliases to extract the inter-message dependency
graph and intra-message dependency graph. However, a gen-
eral alias analysis cannot be aware of the relationship since
these addresses are global variables, which are not be passed
as function arguments, and even worse, driver entry functions
often are not invoked by each other, which breaks the inter-
procedural analysis based on the call graph. The general alias
analysis fails to build a connection between the two regions
and thus cannot determine if the regions are the same.

To address the above challenges, Truman develops a multi-
layer object unfolding (MLOU) alias analysis. Based on the
fact that these addresses are usually stored in a top-level global
structure for a Linux driver, MLOU alias analysis calculates

1 MMIO_WRITE(region_id, address, size, value)
2 MMIO_READ(region_id, address, size)
3 PIO_WRITE(region_id, address, size, value)
4 PIO_READ(region_id, address, size)
5 DMA_TRANSMISSION(data, data_length)

Fig. 10: Message types supported by the executor.

a pointer’s offset within the global structure and regards a
pointer as an alias of another pointer if two pointers’ offsets
are the same. The analysis starts from a PIO/MMIO region
or DMA buffer address (pointer), iterates multiple structural
layers, and calculates the pointer’s offset in the top-level global
structure. Truman conducts a few optimizations during the
visit to multiple structural layers.

2) Device Register Identification: When building the inter-
message dependency graph, precisely identifying the IO region
the IO function reads from and writes to is crucial since many
virtual devices have multiple regions. Specifically, for each
IO call instruction, Truman first extracts the address operand
of the instruction. Then, it separates the offset from the
base address by analyzing the GetElementPtr instructions.
Next, Truman looks for the corresponding alias of the base
address in the IO region table. If not found, Truman applies
the MLOU alias analysis mentioned above to decide which
IO region the base address belongs to and then updates the IO
region table. Finally, Truman records the constant offset.

C. The Fuzzing Engine

We develop a fuzzing engine to parse the device behavior
model and generate or mutate dependency-aware seeds for the
virtual device. The goal of the fuzzing engine is to minimize
the effort of porting the fuzzer to different hypervisors. The
key design of the engine is to hide the parsing process of the
device behavior model and the generation or mutation of the
seeds. To support a new hypervisor, developers only need to
implement a hypervisor-specific executor and use the APIs
provided by the fuzzing engine. The executor is message-
driven and must dispatch messages shown in Figure 10.
Specifically, we implement Truman based on two executors:
QTest for QEMU and Hyper-Cube OS for other hypervisors.
The fuzzing engine uses protocol buffers [31] to serialize and
deserialize the seeds.

V. EVALUATION

A. Evaluation Setup

To compare the performance of Truman with existing
hypervisor fuzzers fairly, we conducted the evaluation with the
following generic setup. The specific setup will be described
in the corresponding subsection.

Fuzzers: We selected SOTA virtual device fuzzers Mor-
phuzz (version 9.0.0) and ViDeZZo (commit adc2a22) as
baseline. We also adapted a generic fuzzer AFL++ (commit
598a3c6b) to fuzz without any domain-specific knowledge.

Coverage and Sanitizers: To collect code coverage of
QEMU, we instrument QEMU using Clang’s source code
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Virtual Device Linux Driver (under drivers) Inter-Dep Graph Intra-Dep Graph State-Dep Graph Time(s)v5.15 v6.1 v6.6 v5.15 v6.1 v6.6 v5.15 v6.1 v6.6
VirtualBox

lsilogicsas scsi/mpt3sas/mpt3sas.c 61 61 61 49/7 49/6 49/6 5 5 5 2.59
virtio-scsi scsi/virtio_scsi.c 92 77 75 33/6 31/6 31/6 10 10 10 0.32
VMware

svga gpu/drm/vmwgfx/vmwgfx.c 139 153 140 69/1 79/1 71/1 6 6 6 5.01
pvscsi scsi/vmw_pvscsi.c 15 15 15 9/5 9/5 9/5 3 3 3 0.11

QEMU Audio
ac97 sound/pci/intel8x0.c 133 133 133 58/1 58/1 58/1 3 3 3 0.14

intel-hda sound/pci/hda/intel-hda.c 32 32 32 10/0 10/0 10/0 12 12 12 0.15
QEMU Storage

am53c974 scsi/am53c974.c 12 12 12 10/1 10/1 10/1 2 2 2 0.07
ahci ata/ahci.c 35 35 35 13/1 13/1 13/1 7 7 7 0.11

nvme NVMe/host/NVMe.c 28 28 28 9/19 9/19 9/19 7 7 7 0.18
QEMU Network

igb net/ethernet/intel/igb/* 874 898 873 192/6 202/7 188/7 8 8 8 4.6
e1000 net/ethernet/intel/e1000/* 563 563 562 172/10 172/10 171/10 5 5 5 1.28

virtio-net net/virtio_net.c 92 77 75 33/11 31/11 31/11 15 15 15 0.32
QEMU Display

ati video/fbdev/aty/aty128fb.c 131 131 131 55/0 55/0 55/0 6 6 6 0.17
sm501 mfd/sm501.c 46 46 46 14/0 14/0 14/0 2 2 2 0.15

virtio-gpu gpu/drm/virtio/* 92 77 75 33/14 31/14 31/14 18 18 18 0.32
QEMU USB

ehci usb/host/ehci* 174 180 180 33/6 36/6 36/6 11 11 11 0.77
xhci usb/host/xhci* 272 272 283 80/6 80/6 85/6 11 11 12 2.35

TABLE I: The corresponding OS drivers for virtual devices, the statistics of extracted device behavior models, and the average
analysis time for different long-term kernel versions. Numbers in the table are the count of nodes in the dependency graph.

coverage profiling [32]. We capture a snapshot of the corpus
of fuzzing every 10 minutes and replay the corpus afterward
to observe the trends in coverage increase. For bug detection,
we also instrument QEMU with ASAN to capture memory
corruption. We rely on VM crashes to identify bugs for closed-
source hypervisors such as VMware Workstation Pro and
Parallels Desktop.

Fuzzing Resources: We evaluated Truman on a server
with 16 physical cores of Xeon Gold 5218 and 64GB RAM
installed with Ubuntu 22.04. The server was exclusively used
for fuzzing to avoid interference from other processes. We
fuzzed every virtual device on one CPU core and bound the
fuzzing process to the CPU core for 48 hours to perform a
coverage comparison. For other evaluations, we limited the
fuzzing duration to 24 hours. We repeated the evaluation five
times to ensure the stability of the results.

B. Device Behavior Modeling

To evaluate the effectiveness of Truman in extracting de-
vice behavior models from OS drivers, we conducted the static
analysis on the OS drivers of different long-term maintained
versions (v6.6, v6.1, and v5.15) of the Linux kernel. To
ensure the diversity of hypervisors, we evaluated both open-
source hypervisors (VirtualBox and QEMU) and closed-source
hypervisors (VMware Workstation Pro). We also chose rep-
resentative virtual devices from different categories: storage,
network, display, and USB. Table I shows the statistics of the
device behavior models extracted by Truman from different
Linux kernel versions. We illustrate the results as follows:

The Pair of Virtual Devices and OS Drivers: Truman suc-
cessfully found the corresponding OS drivers for all 17 virtual
devices, including virtual devices in VMware Workstation Pro,

which are closed-source. The corresponding vendor ID and
device ID of devices are shown in Table VIII in the Appendix.
Since the vendor ID and device ID are used to identify the
driver, they remain the same since the drivers are created and
the IDs are not modified in different OS versions.

Inter-Message Dependency Graph: The number of nodes
in the inter-message dependency graph indicates the number
of unique operations the device performs. The results differ
across different versions of the Linux kernel because of the
updates or cleanup of the OS drivers. The igb driver in
Linux kernel v6.1 has the highest number of nodes in the
inter-message dependency graph. In contrast, the am53c974
driver has the fewest nodes, indicating different characteristics
of various categories of devices. For the network devices
and USB devices, the number of nodes in the inter-message
dependency graph is relatively high, indicating that the devices
have more complex interactions with the guests. From the
aspect of different versions of the Linux kernel, the results
are stable, 11 out of 17 devices remain results across different
kernel versions. Other devices only have a slight change,
which is expected because the device driver may have some
updates or fixes across different versions. The results show
that Truman is suitable for different Linux kernel versions.

Intra-Message Dependency Graph: The values in the intra-
message dependency graph represent the number of two types
of intra-message dependencies: constraints affecting a field and
relationships between fields. The results for the constraints
affecting a field show similar patterns to the inter-message
dependency graph since most of these constraints are related
to the IO messages. The results indicate that the number
of relationships between fields is relatively small since these
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Device AFL++ p Â12 Morphuzz p Â12 ViDeZZo p Â12 Truman
Block

ahci 45.75% 0.012 1 58.88% 0.012 0 64.91% 0.012 0 50.25%
fdc 33.73% 0.012 1 39.09% 1 0.5 38.06% 0.007 1 39.14%

nvme 10.68% 0.008 1 30.56% 0.056 0.88 11.43% 0.008 1 34.25%
sdhci 54.29% 0.008 1 63.89% 0.016 0.96 70.53% 0.753 0.58 71.13%

virtio-blk 17.34% (21.96%) 0.009 1 30.48% (32.40%) 0.011 1 39.53% (31.52%) 0.650 0.4 41.11% (29.84%)
virtio-scsi 11.28% (21.44%) 0.008 1 37.04% (32.38%) 0.008 1 13.81% (27.36%) 0.010 1 57.97% (29.70%)

Audio
ac97 83.02% 0.007 1 95.33% 1 0.5 95.33% 1 0.5 95.33%

cs4231a 84.86% 0.011 1 91.57% 0.699 0.42 91.71% 0.403 0.34 91.43%
es1370 64.17% 0.007 1 67.74% 0.007 1 69.13% 1 0.5 69.13%

sb16 77.14% 0.010 1 85.19% 0.016 0.96 86.43% 0.006 0 85.66%
virtio-sound 24.22% (18.56%) 0.011 1 50.42% (29.25%) 0.139 0.8 20.18% (17.34%) 0.011 1 57.24% (21.12%)

Display
ati 81.78% 0.046 0.9 82.41% 0.452 0.66 77.71% 0.012 1 82.57%

cirrus 86.11% 0.011 1 87.58% 0.011 1 92.87% 0.011 0 90.30%
virtio-gpu 4.51% (15.14%) 0.011 1 26.65% (26.62%) 0.672 0.4 3.05% (14.43%) 0.007 1 28.39% (16.89%)
Network
eepro100 79.44% 0.548 0.64 84.49% 0.346 0.3 88.20% 0.010 0 82.41%

e1000 34.51% 0.012 1 63.31% 0.046 0.9 38.59% 0.008 1 68.10%
e1000e 58.36% 0.600 0.38 64.38% 0.691 0.4 50.49% 0.056 0.88 59.63%

igb 31.45% 0.203 0.76 34.07% 0.833 0.44 29.09% 0.020 0.96 35.42%
pcnet 52.09% 0.008 1 94.36% 0.116 0.18 64.21% 0.012 1 92.27%

rtl8139 60.18% 0.008 1 76.88% 0.059 0.88 75.80% 0.008 1 83.11%
vmxnet3 18.91% 0.011 1 23.97% 0.012 1 32.96% 0.007 1 53.41%
virtio-net 12.96% (20.41%) 0.012 1 18.12% (33.42%) 0.012 1 24.99% (35.12%) 1 0.48 25.65% (31.87%)

USB
ehci 52.97% 0.011 0.28 75.02% 1 0.52 75.81% 0.290 0.28 75.20%
ohci 54.91% 0.008 1 76.23% 1 0.5 5.05% 0.008 1 77.12%
xhci 29.56% 0.011 1 44.32% 0.526 0.64 29.78% 0.011 1 47.94%

Misc
virtio-balloon 12.24% (16.67%) 0.009 1 20.19% (25.85%) 0.009 1 16.63% (23.23%) 0.010 1 30.78% (24.66%)
virtio-crypto 8.16% (19.56%) 0.011 1 31.56% (30.23%) 0.008 1 9.04% (20.98%) 0.011 1 62.99% (21.00%)

virtio-iommu 15.11% (13.01%) 0.007 1 39.16% (25.68%) 0.290 0.7 14.48% (13.82%) 0.007 1 42.31% (16.89%)
virtio-mem 12.26% (11.85%) 0.007 1 22.07% (24.91%) 0.008 1 14.66% (13.78%) 0.004 1 28.57% (17.12%)

Virtio.Mean 12.97% 28.47% 19.09% 38.10% (+34%)
Geo.Mean 37.77% 51.62% 41.93% 55.90%

TABLE II: The branch coverage that Truman achieved compared to the state-of-the-art fuzzer, with statistical significance
(p-values) [33] and effect size (Â12) [34], and geometric mean coverage metrics. For the virtio devices, the coverage in the
braces is the coverage of the virtio core layer.

dependencies are typically shown between two different DMA
buffers, and the number of DMA buffers is typically limited.
The results show that the nvme device, network devices, and
USB devices have more DMA buffers than others, indicating
that these devices use DMA buffers extensively. The results
across different versions of the Linux kernel are stable, with
15 out of 17 devices remaining. We manually checked the
differences between the results in the device lsilogicsas
and igb, and we found that the differences are caused by the
updates of the device driver across different versions of the
Linux kernel.

State-Dependency Graph: The results show that virtio de-
vices have more states than other devices since they have fine-
grained states for different request types. The results across
different Linux kernel versions are stable, with 16 out of 17
devices remaining constant, which matches our expectations.
The only exception is the device xhci. In the newer version
of the Linux kernel, the device driver introduces a function
named hcd_pci_poweroff_late(), allowing more fine-
grained control of the power-off process of the device, leading
to the change in the state dependency graph.

Time Consumption: The average analysis time for all de-
vices is less than 5 seconds, showing the efficiency of Truman
since the OS drivers are relatively small.

C. Code Coverage Comparison

To evaluate different fuzzers by coverage across virtual
devices, we chose the latest stable QEMU version, 9.0.0, as the
benchmark for the comparison since most SOTA fuzzers only
support fuzzing open-sourced hypervisors. Truman, equipped
with QEMU’s executor QTest, was compared with Morphuzz,
ViDeZZo, and AFL++ (in the default config without CmpLog).
We selected 29 virtual devices across various categories,
i.e., audio, storage, network, display, and USB, ensuring a
broad representation. The devices not only include well-known
devices (e.g., e1000, ac97), which were thoroughly fuzzed
in previous research, but also include devices that were not
well explored in previous studies (e.g., NVMe, vmxnet3).
Additionally, we chose to evaluate virtio devices, which are
widely used in cloud production environments due to their
efficiency and high throughput.

Table II shows the coverage that Truman achieved com-
pared to the state-of-the-art fuzzers. We found that Truman
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Fig. 11: Branch coverage over 48 hours fuzzing 29 devices. The shaded regions represent the maximum and minimum coverage
achieved by fuzzers across five runs.

achieves higher coverage for 19 of 29 virtual devices and
outperforms AFL++, Morphuzz, and ViDeZZo. To statistically
validate the improvements, we conducted the Mann-Whitney
U test, as indicated by the best practices for fuzzing exper-
iments [35]. Specifically, we use the general form of the
Mann-Whitney U test, which assesses whether the coverage
values from Truman are generally higher than those from
other fuzzers. The Mann-Whitney U test is appropriate for our
context as a non-parametric test comparing two independent
samples without the assumption of normality, which suits
our coverage data. Our coverage measurements are ordinal,
independently obtained across fuzzers and runs, fulfilling the
test’s requirements of independent samples and comparability
in ranks between groups. If these assumptions did not hold,
the test could produce incorrect results, and our findings
might not be statistically significant. The Mann-Whitney U
test produces low p-values (< 0.05), indicating statistically
significant improvements achieved by Truman. However,
there are some exceptions such as the comparison between
Truman and ViDeZZo for the sdhci device, where the p-
value is 0.753. The high p-value suggests that the coverage
difference between Truman and ViDeZZo is not statistically
significant. To further evaluate the practical significance of
these improvements, we apply the Vargha-Delaney Â12 effect
size metric. The metric quantifies the probability that Truman

consistently outperforms other fuzzers, offering an intuitive
measure of performance improvement that does not rely on
normality assumptions. The Â12 metric requires an ordinal
scale for measurements and assumes independent observations
between groups, both of which are met in our setup. High Â12

values (i.e., > 0.5) suggest that Truman frequently achieves
better coverage. The AFL++ fuzzer behaves poorly in the cov-
erage comparison, which is expected since AFL++ is a generic
fuzzer without domain-specific knowledge, such as the nested
DMA buffers. For devices which are thoroughly fuzzed in pre-
vious research (e.g., ac97, rtl8139, and pcnet), Truman
obtains a similar coverage to Morphuzz and ViDeZZo because
of the existing high coverage. Truman achieves the best
coverage for all para-virtualized virtio devices and obtains a
boost of 34%. We also evaluate the coverage for two layers,
one for the specific device and another for the virtio core layer.
Truman rarely reaches higher coverage in the virtio core layer
because Truman focuses on the devices under the virtio bus.

Figure 11 shows the coverage increase over 48 hours of
fuzzing. The result shows that Truman achieves a relatively
high coverage for most devices in the first few hours of
fuzzing. We contribute the rapid coverage increase to the
device behavior model, which generates and mutates the seeds
that satisfy the expectation of the device, leading to exploring
the code space more efficiently. Note that some runs of
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Fig. 12: Branch coverage over 24 hours fuzzing bus-hidden devices across five runs. “NS” represents the coverage achieved
by Truman without state dependency.

Morphuzz outperform Truman, especially for the devices
ahci, virtio-gpu, virtio-iommu, where Morphuzz
demonstrates a higher spread and maximum coverage. This
suggests that Truman ’s reliance on the device behavior model
accelerates early exploration but it may plateau more quickly,
potentially limiting the depth of exploration due to potential
limitations of our device behavior model. We also found that
there are inconsistencies between our evaluation results and
the results in the ViDeZZo paper. The inconsistencies have
two causes: First, we used a simpler but different configuration
than ViDeZZo used in their evaluation for fdc device. Second,
we found that ViDeZZo does not reset the devices between
inputs, causing a shallow bug that could cause the fuzzer to
stop early, which restricts its ability to explore the code space.

From the results, we found that Truman improved cov-
erage significantly for some devices (e.g., virtio-sound,
virtio-scsi and virtio-crypto), but not for all de-
vices (e.g., e1000e and igb). We have analyzed the existing
coverage for these virtual devices and concluded that the
relatively low coverage is mainly caused by the following
reasons: First, the configuration of virtual devices is restricted.
Truman achieved similar coverage for devices such as fdc,
sdhci, and ehci. The fixed configuration of these devices
limits the maximum coverage that fuzzers can achieve, pre-
venting fuzzers from exploring additional code beyond the
current configuration. Second, virtual devices also need inputs
from external environments. For example, the network devices
also need the network packets from external to trigger the
network operations of devices such as receive(). Fuzzers
are unlikely to explore additional code without external inputs.

D. Effectiveness of State Dependency

We evaluated the effectiveness of state dependency on
coverage by calculating both the Mann-Whitney U test and
the Vargha-Delaney Â12 effect size to compare Truman’s per-
formance with and without state dependency. The evaluation
setup is the same as the code coverage comparison, but we

Device Type Morphuzz VideZZO Truman
ac97 audio 0 0 0

intel-hda audio 1 1 1
am53c974 storage 0 1 1

ide-hd storage 1 0 2
nvme storage 0 0 2

igb network 0 0 0
e1000 network 0 0 0

virtio-net network 1 1 1
virtio-gpu display 0 0 1

sm501 display 1 1 2
ati-vga display 0 0 0

ehci USB 0 0 0
xhci USB 0 0 0

Total 4 4 10

TABLE III: Known bug discovery ability comparison between
Morphuzz, ViDeZZo, and Truman in QEMU v8.0.0.

only focus on the bus-hidden devices, which are the devices
that are not well explored by the previous research. Figure 12
shows the coverage over 24 hours of fuzzing for these devices.
The results show that inter- and intra-message dependency
alone cannot achieve high coverage for the bus-hidden devices.
The p-values indicate statistically significant improvements
in coverage for Truman compared to Truman-NS, with
all p-values less than 0.05. Additionally, the Â12 values
further demonstrate that Truman consistently outperforms
Truman-NS across all devices. We contribute the high cov-
erage of Truman to the fine-grained state dependency, which
helps the fuzzer be aware of the request type, leading to
exploring the code space more efficiently.

E. Known Bug Discovery Comparison

We evaluated the bug discovery ability of Truman by
comparing it with the state-of-the-art fuzzers Morphuzz and
ViDeZZo. We chose QEMU version 8.0.0 (the previous major
version) as the target hypervisor for fair comparison. This
version contains many old bugs that were fixed in the latest
version, which is a suitable benchmark for assessing the bug
discovery ability of different fuzzers. For virtual devices, we
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selected the same devices in the static analysis evaluation
and fuzzed each device for 24 hours, repeating the evaluation
five times to ensure the stability of the result. Due to the
randomness inherent in fuzzing, a bug was counted if it
was triggered in one of five runs. The results are shown in
Table III. From the results, Truman covered all bugs found by
Morphuzz and ViDeZZo, found 10 bugs for 13 virtual devices,
while Morphuzz and ViDeZZo found 4 bugs.

F. Discovery of New Bugs

Truman conducted a long-term evaluation of the lat-
est hypervisors to discover new bugs. We chose the most
prevalent virtualization framework, including QEMU, Virtu-
alBox, VMware Workstation Pro, and Parallels. We equipped
Truman with the QTest for QEMU and enhanced Hyper-
Cube OS for other hypervisors. To discover bugs, we compile
QEMU and VirtualBox with ASAN and keep all assertions.
For closed-source hypervisors, we rely on VM crashes to
capture the bugs. Among these targets, Truman found 54 new
bugs, including various types (assert, null-pointer-dereference,
memory leak, or stack overflow), as shown in Table IV. Some
virtual devices in QEMU have been fuzzed extensively since
2020 in OSS-Fuzz (such as ide), but Truman also discovered
new bugs. As for the responsibility of bug disclosure, we have
reported all bugs to the corresponding developers and received
some active feedback from them. We also proposed patches for
these bugs, and 31 bugs have been fixed in the latest version.

G. Case Study

We select some representative bugs found by Truman to
illustrate the unique advantages of Truman’s ability to extract
the device behavior models of virtual devices.

QEMU: Memory-leak in NVMe: NVMe is an attractive
target for fuzzing because of its high throughput and low la-
tency. However, the previous research cannot cover more code
space of the NVMe devices because the main functionalities of
NVMe are encoded in the DMA structure. If the guest wants
to trigger a command in the NVMe, it must prepare the correct
DMA buffer and fill the command field and the corresponding
buffer. Morphuzz [10] cannot recognize the command field
and its relationship with the buffer, relying on the generic
algorithm of fuzzing to test the device randomly. However,
the NVMe commands are magic numbers, so it is difficult for
fuzzers to generate randomly, but Truman extracts them from
the corresponding device drivers automatically. ViDeZZo [11]
manually extracts dependencies, and the authors do not apply
them to the NVMe device. This example shows the ability to
infer the intra-message of the device of Truman.

QEMU: Null-pointer-dereference in virtio-sound: When
the guest transfers a mismatched message to the rx buffer, the
virtio-sound drops the message and enters the error handling.
The bug exists in the error handling code of the virtio-sound
device. The root cause of the bug is that the device uses some
resources that are not initialized correctly in the error handling
code, leading to a null-pointer-dereference bug. To trigger
this bug in the error handling code, the fuzzer must follow

Device Bug Type and Location
QEMU

adb assert in adb_request
am53c974 assert in scsi_unmap_complete_noio

aspeed i2c assert in aspeed_i2c_bus_new_write
bcm2835 assert in bcm2835_thermal_read

dwc2 assert in dwc2_hsotg_read
exynos4210 assert in exynos4210_rng_read

igb assert in igb_setup_tx_offloads*

stm32l4x5 assert in rcc_update_cfgr_register
virtio-crypto assert in cryptodev_builtin_close_session

virtio-iommu assert in virtio_iommu_handle_command
virito-sound assert in virtio_snd_get_qemu_format

xlnx-ospi assert in fifo8_pop
xilinx-spips assert in fifo8_pop

ide division by zero in ide_set_sector
pl011 division by zero in pl011_get_baudrate

aspeed gpio global-buffer-overflow in aspeed_gpio_read
sm501 global-buffer-overflow in sm501_2d_operation

arm gic heap-overflow in gic_extract_lr_info
m25p80 heap-overflow in flash_erase

sifieve plic heap-overflow in sifive_plic_read
ufs heap-overflow in ufs_dma_read_req_upiu

virtio-sound heap-overflow in virtio_snd_handle_rx_xfer
virtio-sound heap-overflow in virtio_snd_pcm_in_cb

applesmc memory leak in qdev_applesmc_isa_reset
musb memory leak in musb_reset
nvme memory leak in nvme_dsm

virtio-blk memory leak in virtio_blk_zone_report
virtio-crypto memory leak in cryptodev_builtin_operation
virtio-crypto memory leak in

virtio_crypto_create_asym_session
a9gtimer NPD in a9_gtimer_get_current_cpu
arm gic NPD in gic_update_internal
lan9118 NPD in lan9118_receive

tcx NPD in tcx_blit_writel
ufs NPD in ufs_mcq_process_db

virito-sound NPD in virtio_snd_handle_rx_xfer
goldfish tty stack overflow in goldfish_tty_cmd
lsi53c895a stack overflow in lsi_reg_writeb*

tulip stack overflow in tulip_xmit_list_update*

VirtualBox
ata assert in ataR3AsyncIOThread

vmm assert in PDMCritSectLeave
buslogic division by zero in

buslogicR3OutgoingMailboxAdvance*

virtio-scsi NPD in virtioCoreR3VirtqUsedBufPut
lsilogic stack overflow in

lsilogicR3ProcessSCSIIORequest*

ehci stack overflow in ehciR3SubmitITD*

VMware
buslogic assert in buslogic.c

e1000 assert in e1000.c
hdaudio assert in alc885.c

pcnet assert in iospace_shared.h
piix4 assert in piix4SM.c

pvscsi assert in pvscsi_monitor.c
sb16 sound device FIFO overflow

Parallels
ide assert in Ide.cpp
hba assert in hba.cpp

virito-net assert in PciVirtIO.cpp
Total 54

TABLE IV: New bugs discovered by Truman in different
hypervisors. NPD stands for null-pointer-dereference. The
bugs with * are assigned with CVE numbers.

the correct sequence of the messages to the virtio core layer
and then send the message to the virtio-sound device. Such a
sequence of searching space is extremely unlikely for other
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fuzzers without dependency inference. However, Truman
extracts such inter-message dependencies from the driver, and
the fuzzer schedules the sequences of these operations.

VirtualBox: Null-pointer-dereference in virtio-scsi: The
virtual device virtio-scsi is widely used in the cloud environ-
ment to achieve high throughput, so it is sincerely security-
sensitive. The bug in the virtio-scsi comes from the invalid
receive buffer provided by the guest. The guest first interacts
with the core layer of virtio and then the virtio-scsi device.
During the interaction with the virtio-scsi virtual device, the
guest sends an invalid receive buffer to the virtio-scsi device,
and the device does not check the pointer to the buffer, causing
a null-pointer-dereference bug. To trigger this deep bug in the
virtio-scsi device error handling code, Truman must interact
correctly with the virtio core layer according to the state
dependency, such as setting up the device, configuring the
virtio queue, kicking the device to fetch the queue, finally
triggering the error state of the device. This demonstrates the
ability of Truman to traverse the state graph of the virtio
devices and try to find the possible bugs.

VirtualBox: Stack-buffer-overflow in the USB controller
EHCI: The Enhanced Host Controller Interface (EHCI) is
an import USB controller attached to the PCI bus, and the
device uses DMA extensively. The bug exists in processing the
itd entry; the virtual device reads an entry from the DMA
buffer of the devices and uses it as an index of another buffer.
However, the user-provided buffer index can be large, causing
an overflow bug. Truman triggers this bug in less than one
second due to the awareness of the nested DMA structure of
the virtual device, showing the effectiveness of the Morphuzz
will fill DMA pages when the virtual device triggers the read
operation of the buffer. Still, it is not aware of the real structure
of the DMA, leading to hiding this legitimate bug.

VI. DISCUSSION

A. Support of More Hypervisors and Virtual Devices

By applying extracted device behavior models to the ex-
ecutor of Hyper-Cube [6], we have discovered vulnerabilities
in the closed-source hypervisors such as VMware Worksta-
tion Pro and Parallels Desktop. However, Hyper-Cube only
supports 32-bit guest VMs, which is not compatible with
hypervisors such as Hyper-V [36] and the macOS Virtualiza-
tion Framework [37]. Upgrading Hyper-Cube to support 64-bit
guest VMs is a challenging task. We plan to utilize the device
behavior models with the executor of Hyperpill to discover
bugs in more hypervisors.

Although software-based virtual devices are the most attrac-
tive targets of recent virtual device fuzzers, an increasing num-
ber of cloud providers are adopting a combined approach of
hardware and software, i.e., Virtual Function I/O (VFIO) [38],
Single Root I/O Virtualization (SR-IOV) [39], and Amazon
Nitro Cards [40], allowing a VM to access the actual physical
devices directly. However, discovering vulnerabilities in such
an environment is challenging, especially when collecting
coverage from hardware and detecting crashes in hardware.

B. Incompleteness of Semantics in OS Drivers

While OS drivers and virtual devices are designed to con-
form to the same specifications, allowing Truman to infer
virtual device behavior and construct corresponding device
behavior models, the semantics of OS drivers often exhibit
incompleteness for serval reasons. First, OS drivers may not
implement all the features outlined in the specification. This
is typically evidenced by “todo” comments in the code to
mark sections that require further development. The com-
ments explicitly indicate acknowledged gaps in the current
implementation. Secondly, virtual devices may incorporate
features or optimizations not thoroughly documented in the
specification, leading to a semantic mismatch between the
virtual device and the OS driver. However, Truman combines
the extracted device behavior models with coverage-guided
fuzzing to mitigate the aforementioned issues. Another po-
tential issue is the absence of a corresponding driver for a
virtual device, but this scenario is rare in practice and was not
observed in the hypervisor we tested.

C. Application in Fuzzing OS Drivers

OS drivers suffer from attacks on two sides: the syscalls
and the device input. Therefore, fuzzing OS drivers requires
inputs from both malicious users (via syscalls) and malicious
devices (via PIO/MMIO/DMA/Interrupt) [41], [42], [43], [44],
[45], [46], [47]. Syzkaller is a tool that discovers bugs in OS
drivers via syscall sequences. However, existing driver fuzzers
are restricted to the number of virtual devices, which limits
the variety of drivers that can be tested, leading to significant
gaps in code coverage and the number of bugs. Previous
research [41], [42], [43] shows that automatically generating
virtual devices for fuzzing OS drivers is challenging. With the
help of device behavior model, the automatic generation of
complex virtual devices is possible. This would expand the
range of drivers that can be tested, uncover more bugs, and
reduce both manual effort and costs, thereby enhancing the
efficiency and effectiveness of OS driver fuzzing.

VII. RELATED WORK

A. Static Analysis

Static analysis has become an essential tool in software
development, enabling a thorough review of software without
the need for execution. By utilizing methods that cover both
data and control flow analyses, it helps reveal potential vulner-
abilities that are hidden within complex software systems, such
as the Linux kernel [48], [49], [50], [51], [52]. Researchers
have developed various static analysis tools to assist developers
in identifying bugs in the code. Among them, LLVM IR is one
of the most well-known tools, offering developers a universal
way to develop their static analysis algorithms. Truman thus
adapts the existing static analysis infrastructure to analyze
open-source device drivers and is the first to extract knowledge
from them to fuzz the virtual devices.
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B. Fuzzing

Over the years, fuzzing has emerged as an efficient tech-
nique in vulnerability detection. Its initial versions, largely
characterized as black-box approaches, faced limitations due
to inefficient guidance. The introduction of AFL [53] in 2013
marked a progressive improvement, proposing the principles
of genetic algorithms, which signifies the rise of gray-box
fuzzing, collecting code coverage during run-time and guiding
the fuzzer to retain the inputs that cover new code. Researchers
then have extensively studied fuzzing and found thousands of
vulnerabilities via numerous improvements to fuzzing algo-
rithms and many useful tools [14], [54], no longer limited to
user-space programs [55], [56], [57], [58], [59], but also cov-
ering operating system kernels [60], [61], [62], [63], [64], [43],
[51], [52], [65], hypervisors [11], [13], [10], IoT devices [66],
[67], [68], [17], [69], trusted execution environment [70], [71].
Truman leverages these advancements in fuzzing, particularly
in grey-box fuzzing and its application, to develop a fuzzing
approach for virtual devices.

C. Hypervisor Fuzzing

Several notable hypervisor fuzzers have been proposed in
recent years. Among them, VDF [5] was the first to introduce
fuzzing into the hypervisor, using record and replay techniques
to test the PIO/MMIO interfaces of virtual devices but does not
support the DMA interfaces. Solutions such as Hyper-Cube [6]
and NYX [8] implemented customized operating systems for
hypervisor fuzzing, effectively covering multiple interfaces.
These approaches, however, do not engage deeply with se-
mantic information, limiting their effectiveness in detecting
more nuanced vulnerabilities.

Recent works, such as V-Shuttle [7] and Morphuzz [10],
focused on the nested DMA problem. They introduced the
concept of hooking DMA address translation functions, en-
abling translation on demand without needing to understand
the specific structure of the nested DMA. MundoFuzz [9] and
ViDeZZo [11] went further at the semantic level. Mundo-
Fuzz inferred register types and dependency information from
execution trace information. ViDeZZo, on the other hand,
determined intra-message dependencies through static analysis
of the virtual device code and inter-message dependencies
through defined mutators. VD-GUARD [12] introduces a
hybrid approach, blending static control flow analysis with
DMA-guided fuzzing to uncover vulnerabilities in virtual
devices. HyperPill [13] fuzzes both open-source and closed-
source hypervisors, leveraging the fact that hypervisors are
built on top of the same hardware virtualization specification
(Intel VT-x). Truman can enhance HyperPill in the sense of
dependency-aware in the future.

While these previous studies have made significant strides
in code coverage increase and vulnerability detection of hy-
pervisors, they also reveal gaps in reliance on source code
and dependencies of virtual devices, which Truman seeks to
address and improve upon.

VIII. CONCLUSION

Virtual devices in hypervisors are vulnerable and valu-
able targets for attackers. However, fuzzing virtual devices
needs a new generic and automatic tool to extract the device
behavior model including not only inter- and intra-message
dependencies but also state dependency. To fill this gap, we
propose Truman that extracts the device behavior model
from a virtual device’s corresponding OS driver and assist
in fuzzing. The approach proposed by Truman is feasible
because both the virtual device and its OS drivers adhere to
the same specification. Additionally, Truman also develops
a fuzzing engine to support the generation and mutation of
virtual device messages that satisfy the dependencies encoded
in the device behavior model. With the help of the device
behavior model, Truman outperforms 19 out of 29 QEMU
devices for code coverage compared to state-of-the-art fuzzers
AFL++, Morphuzz and ViDeZZo during 48-hour fuzzing and
discovers 54 bugs in the well-known hypervisor including
QEMU, VirtualBox, VMware Workstation Pro, and Parallels,
with 31 bugs fixed and 6 CVEs assigned.
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APPENDIX

Function State
probe Setup
remove Cleanup
suspend Suspend
resume Resume
Shutdown Save
xxx_ops Transmission

TABLE VII: A mapping of PCI driver functions to states.

PIO/MMIO Write PIO/MMIO Read
iowrite64 ioread64
iowrite32 rep ioread32 rep
iowrite16 rep ioread16 rep
iowrite8 rep ioread8 rep
iowrite32 ioread32
iowrite16 ioread16
iowrite8 ioread8
writeq readq
writel readl
writew readw
writeb readb
outl readl
outw readw
outb readb
pci write config dword pci read config dword
pci write config word pci read config word
pci write config byte pci read config byte
pcie write config dword pcie read config dword
pcie write config word pcie read config word

TABLE V: IO Functions in the Linux kernel.

Coherent DMA Streaming DMA
dma alloc coherent dma map single
dma pool create dma map page
dma pool zalloc dma map resource
dma pool alloc dma map sg

dma map single attrs
dma map sg attrs

TABLE VI: DMA allocation functions in the Linux kernel.

Virtual Device Vendor ID Device ID
VirtualBox

lsilogicsas 0x1000 0x0054
virtio-scsi 0x1AF4 0x1004
VMware

svga 0x15AD 0x0710
pvscsi 0x15AD 0x07c0

QEMU Audio
ac97 0x8086 0x2415

intel-hda 0x8086 0x0403
QEMU Storage

am53c974 0x1022 0x2020
ahci 0x8086 0x2415

nvme 0x8086 0x5845
QEMU Network

igb 0x8086 0x10C9
31000 0x8086 0x100E

virtio-net 0x1AF4 0x1000
QEMU Display

ati 0x1002 0x5046
sm501 0x126F 0x0501

virtio-gpu 0x1AF4 0x1050
QEMU USB

ehci 0x8086 0x24CD
xhci 0x1B36 0x000D

TABLE VIII: The Vendor ID and Device ID of virtual devices.
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