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Abstract—Fuzzing evolved into the most popular technique
to detect bugs in software. Its combination with sanitizers has
shown tremendous efficacy in uncovering memory safety errors,
such as buffer overflows, that haunt C and C++ programmers.
However, an important class of such issues, the so-called use-
of-uninitialized-memory (UUM) errors, struggles to gain similar
benefits from fuzzing endeavors. The only fuzzer-compatible
UUM sanitizer available to date, MSan, requires that all libraries
are fully instrumented. Unlike address sanitization, for which
partial instrumentation results in false negatives (missed detec-
tion of bugs), UUM sanitizers require complete instrumentation
to avoid false positives, hampering testing at scale. Yet, full-stack
compiler-based instrumentation can be a daunting prospect for
compatibility and practicality. As a result, many programs are
left untested for UUM bugs.

In this paper, we propose an efficient multi-layer, opportunistic
design that does not require (source-based) recompilation of all
code without harming accuracy. The multiplicity of executions
when fuzzing offers us the opportunity to learn what any
encountered false positive looks like, and later ignore them when
we meet them again with new test cases. Such an avenue is
feasible only if one can resort to fast techniques to effectively
discriminate candidate errors, or false negatives will then occur.

We show how to realize this design by using the dynamic
binary translation of QEMU for compatibility and lightweight
code analysis techniques to achieve scalability and accuracy.
As a result, we obtain a fuzzer-friendly, performant sanitizer,
QMSAN, that effectively tackles current practicality challenges
of UUM error detection. On a collection of 10 open-source and
5 proprietary programs, QMSAN exposed 44 new UUM bugs. In
our tests, QMSAN incurs slowdowns of 1.51x over QEMU and
1.55x over the compiler-based instrumentation of MSan, showing
no false positives and false negatives. QMSAN is open-source.

I. INTRODUCTION

Programming languages like C and C++ remain prevalent
despite being prone to memory errors. While safer alternatives
exist, most software is implemented in unsafe languages due
to performance requirements or the need to access low-level
systems features. In C and C++, programmers are responsible
for ensuring memory safety and must take care not to introduce
buffer overflow, use-after-free, or double-free vulnerabilities
along with proper initialization of all memory. As these

bugs often have security implications, exposing and mitigating
memory safety errors remains a crucial area of research.

Use-of-uninitialized-memory (UUM) errors occur when the
outcome of a program computation depends on an indetermi-
nate value. A program reads an indeterminate value from a
storage location when no prior assignment initialized it fully,
or at all, since its declaration [1]. Like other memory safety
errors, UUM errors may be difficult to detect because they do
not necessarily result in conspicuous behavior (e.g., program
crashes) but may subtly and silently corrupt the program state,
and come with an unpleasant property of unpredictability [2].
For example, an uninitialized stack variable may show left-
over data from stale stack frames from prior function calls.
Unfortunately, in the hands of a capable attacker, these errors
may become exploitable, as witnessed for notable UUM bugs
that enabled information disclosure, remote code execution,
and guest-to-host privilege escalation [2], [3], [4], [5], [6].

Software sanitizers effectively detect memory safety errors.
These tools safeguard one or more memory safety properties
at run-time by instrumenting program code with tripwires
that expose safety violations during execution. As dynamic
analysis tools, sanitizers suffer from the coverage problem
and require that the bug is reached and triggered through an
actual execution to detect it. Therefore, they are very effective
in combination with techniques like fuzzing, which broadly
explores the program [7]. For UUM errors, currently, the only
way to detect them when fuzzing is using Google’s MSan [8].
Similarly to other popular sanitizers like ASan [9], MSan uses
compiler instrumentation to insert run-time checks on data
uses to check if their sources were properly initialized.

MSan faces a key practical limitation: all code under test
must be compiled with MSan instrumentation. Looking at the
C/C++ programs tested daily by the OSS-Fuzz initiative, we
note that only 210 out of 528 (40.5%) show MSan support at
the time of writing. According to the OSS-Fuzz bug tracker,
though, MSan was helpful to expose over 289 UUM bugs
in them in the past 18 months. We also recall a notable
setback when OSS-Fuzz upgraded its backend in 2021 to
Ubuntu 20.04 [10], which led its maintainers to disabling
MSan for 72 projects due to enduring compatibility issues
with instrumented libraries. Being MSan available only for
LLVM, also software whose external dependencies (or the
program itself) come built with gcc or other compilers is out
of its reach. Furthermore, no UUM sanitization is available in
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binary-level fuzzing systems that recently emerged for security
analysis of COTS binaries [11], [12], [13], [14], a capability
helpful for security assessment of proprietary products or
software assembled with modules from third-party vendors.

We stipulate that these limitations do not stem primarily
from implementation gaps, if at all. For example, while pop-
ular sanitizers for bounds checking inspect only memory load
and store operations, UUM sanitizers must track the effects of
all instructions and maintain initialization information also for
intermediate values that do not reside in memory. This intu-
itively requires a careful modeling of program computations.
In their study, the authors of MSan report how developers
were often reluctant to use binary-level UUM sanitizers like
Memcheck [15] and Dr. Memory [16] due to their high
overheads, measured in the 10-20x range.

MSan successfully mitigated the problem by turning it into
a simpler one, having the compiler both insert more efficient
instrumentation and optimize the machinery for modeling
instructions. However, this resulted in a less generally ap-
plicable solution. If we draw a comparison with the widely
popular ASan, failing to instrument all code may result in
false negatives for ASan (specifically, bugs affecting library
implementations), and in a high false positives rate for MSan,
a characteristic significantly more negative for the usability
of a sanitizer tool [1]. We conclude that a UUM sanitizer
that pursues generality must deal with the requirement of
instrumenting all code and attain low overhead to be practical.

Our proposal: We present QMSAN, a fuzzer-friendly,
practical, and performant sanitizer that detects UUM errors
in binary code. As accurate detection of UUM errors is
expensive, especially if done at the binary level, we propose
an opportunistic multi-layer design to achieve efficiency.

For the vast majority of fuzzer executions, we analyze
only memory load and store operations and check loaded
bytes for potential violations. This design avoids the expensive
shadow propagation instrumentation required on nearly all
other program instructions for a UUM sanitizer to correctly
handle legitimate copying of uninitialized memory. As a result,
we call our reported violations potential as these may be false
positives due to the incomplete modeling of program code.

However, when fuzzing, one may learn from the large plu-
rality of executions conducted until that moment to assess the
nature of violations. Based on this insight, if in an execution
we reach a previously marked false positive, we simply ignore
it. Conversely, for new violations, we repeat execution under
full instrumentation and learn about their nature, memorizing
details of false positives. Discriminating the identity of viola-
tions would normally require testing under full instrumentation
or, worse, root cause analysis. As an efficient proxy, we
propose to consider the address of the offending instruction
and contextualize it to the execution to avoid the risk of
treating distinct violations as identical. Our contextualization
involves temporal (e.g., a priorly encountered violation) and
spatial (e.g., the calling context) properties of the execution
that are cheap to track and, in practice, discriminate well
different violations occurring at a given address.

The design we propose dramatically reduces the need to
perform slow executions under full instrumentation and yields
appreciably faster end-to-end fuzzing performance. We devise
it in the user emulation backend of QEMU, resulting in a so-
lution, QMSAN, compatible with state-of-the-art fuzzers like
AFL++ and able to analyze binaries from multiple platforms
(we currently support the x64 and AArch64 architectures).

Our experimental evaluation estimates the bug-finding ca-
pability of QMSan on 10 OSS-Fuzz subjects without MSan
support and 5 proprietary programs, exposing 44 new bugs. We
responsibly disclosed them to the developers and cooperated in
their mitigation; at the time of writing, 4 vendor-issued CVEs
have been assigned. For performance analysis, we study the
overheads of QMSan on MSan-compatible benchmarks used
in prior studies on binary sanitization, measuring an overhead
of 1.51x atop QEMU and a relative overhead of 1.55x on the
slowdown that MSan’s compiler-based instrumentation adds
when fuzzing.

To summarize, we propose the following contributions:
• We conceptualize MSan’s algorithm at the binary level

for fuzzing purposes, addressing the key limitation of
requiring instrumented libraries to make it practical.

• To achieve scalability, we design a multi-layer technique
that reduces the slowdown without causing false posi-
tives, thanks to a fast opportunistic detector that applies
accurate UUM analysis only to very few test cases.

• QMSAN: an open-source, multi-architecture implemen-
tation of the approach in the User emulation of QEMU,
readily compatible with the AFL++ fuzzer. QMSAN is
available at https://github.com/heinzeen/qmsan.

• We present experiments to estimate the bug finding abil-
ities of QMSAN and measure accuracy and performance
aspects of the approach, using a collection of 15 open-
source and proprietary Linux programs. We identify and
responsibly disclose 44 new bugs in 13 of them.

II. BACKGROUND AND CHALLENGES

This section introduces techniques and challenges for de-
tecting UUM errors, especially in combination with fuzzing.

A. Sanitizers and Fuzzing

Memory safety violations are the basis for the most se-
vere security vulnerabilities and have been extensively re-
searched [1]. As a first line of defense, programmers can
look for problems in their code using tools based on static
or dynamic program analysis.

Static analysis tools tend to “err” on the side of caution, be-
ing conservatively correct in exposing issues as they consider
all possible program execution paths. Dynamic analysis tools,
also colloquially “sanitizers”, are more precise but work on a
single execution instance at a time; they exist for memory
safety errors, as well as for other classes of programming
errors [17], [1]. In short, static analysis is prone to false
positives, reporting potential issues that are not bugs, and
dynamic analysis to false negatives, missing some bugs.
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Sanitizers are currently in high popularity for their proven
efficacy in vulnerability discovery [1]. To mitigate the cover-
age problem typical of dynamic program analysis, they can
be used in combination with techniques designed to explore
the execution space of a program. In particular, the combi-
nation with fuzzing has proven itself dramatically effective
in practice, exposing many security-relevant vulnerabilities in
heterogeneous code bases [18], [19], [20].

Sanitizers operate by instrumenting the application code
with checks acting like tripwires. Traditional sanitizers like
Memcheck [15] and Dr. Memory [16] use dynamic binary
instrumentation to rewrite a program while it executes with
machinery apt to intercept various memory safety problems,
such as spatial or temporal violations of heap memory safety,
and UUM errors that are the focus of this paper. However,
binary-level sanitizers incur prohibitively high performance
overheads for fuzzing [12], [11].

Compiler-assisted sanitizers like ASan and MSan reduce
the overhead by inserting instrumentation during compilation.
The key advantages to this approach are that the compiler can
optimize and simplify or even remove redundant checks, has
insights into memory and register layouts such as for stack
frames, and the instrumentation can be more lightweight as
the compiler does not operate on binary code. Nevertheless,
security testing of binaries is important in many real-world
scenarios due to lack of source code, and researchers have
recently shown how to bring ASan-like capabilities to binary
fuzzing [11], [12], [21], [13].

B. MSan

Initially developed for UUM bug detection at scale at
Google, MSan [8] is the state-of-the-art sanitizer for UUM
errors. It uses compile-time instrumentation in LLVM to
augment program instructions with machinery to track and
validate the initialization status of memory.

For tracking purposes, MSan maintains a shadow memory
that tracks the initialization status of all program memory,
which can change every time the program writes to memory.
For validation purposes, MSan looks up the initialization status
of the portion of the shadow memory corresponding to the
memory the program wants to read. The shadow memory has
the size of program memory and MSan efficiently indexes it
by applying a bitmask to program memory addresses.

For the shadow memory to accurately reflect the effects
of program computations, MSan must instrument all memory
load and store operations. Let us consider a program fragment
that copies data between two buffers: MSan must intercept and
copy the initialization status of the source bytes, or a later read
from the second buffer may wrongly appear as uninitialized.

Challenge 1: UUM error detection requires tracking all
memory accesses. Failing to do so leads to false positives.

Another challenge in UUM sanitization is that detecting one
or more uninitialized bytes in a load operation does not imply a
UUM bug. With many code patterns, such as copying partially

initialized buffers (or padding bytes) or optimizations in library
code, reading and copying uninitialized data is a legitimate
action [8], [15], [16]. This forces MSan, and similarly binary-
level UUM sanitizers, to defer inspection to data uses instead
of immediately reporting a violation at the read access. MSan
checks the initialization status of data coming from memory
when the program uses it for one of:

1) evaluating a branch condition involving such data;
2) dereferencing a pointer derived from such data;
3) passing such data as an argument to a system call or to

a sensitive (e.g., involved in I/O) library call.
To track how read data flows into uses, UUM sanitizers have

to track all types of instructions (except branches) and model
for their effects: they must propagate the initialization status
from the shadow memory throughout the execution until a data
item sees its use or gets discarded. In essence, the sanitizer
has to perform a forward information flow analysis.

In MSan, this mechanism is dubbed shadow propagation
and follows predefined propagation rules. These rules fall into
two kinds: approximate rules when coarse-grained modeling
of the effects is acceptable for accuracy and desirable for
performance, and precise rules if accurate modeling is cheap
or when coarse-grained modeling would hamper propagation
accuracy too much. As a result, shadow propagation avoids
false positives from copying of uninitialized memory, a pat-
tern that occurs fairly often in practice [8]. Unfortunately,
shadow propagation appreciably increases run-time overhead
for two reasons: the many more instructions it must instrument
(besides load/store ones) and the variable modeling costs for
them.

Challenge 2: Accurate UUM error detection requires (i)
tracking nearly all instruction types (to avoid false positives
from legitimate copies of uninitialized bytes) and (ii) perform-
ing validation only at uses of memory-derived data.

In light of Challenge 1 and 2, the attentive reader could
argue that tracking memory accesses and subsequent com-
putations may be necessary not only for program code, but
for libraries, too. This is indeed true and applies to the C
standard library already (unless the program uses from it only
popular functions for which MSan provides an interceptor1

that synthetically captures their execution effects). In our
experience, failing to provide instrumented libraries results
in an astounding number of false positives already after few
minutes of fuzzing of programs of moderate complexity.

Challenge 3: All library code must be instrumented, too.

This third challenge impacts the compatibility and, there-
fore, the practicality of using MSan for fuzzing. For several
programs, recompiling all libraries may be a daunting prospect
or present additional challenges. We believe this fragility
showed in the setback experienced by the OSS-Fuzz initiative

1This concept is present also in ASan to model the effects of common
memory manipulation functions [12], mainly to avoid false positives with
routines that allocate memory or manipulate it through highly optimized code.
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1 void foo(){
2 char buf[4], a;
3 read(0, buf, 4);
4 a = buf[0];
5 if(a==MAGIC_BYTE)
6 puts("Hello world!");
7 }

1 push %rbp
2 movq %rsp, %rbp
3 subq $0x10, %rsp
4 leaq -0x4(%rbp),%rsi
5 xorl %edi, %edi
6 movl $0x4, %edx
7 call read
8 movb -0x4(%rbp),%al
9 movb %al, -0x5(%rbp)

10 movsbl -0x5(%rbp), %eax
11 cmpl 0x41, %eax
12 jne L
13 leaq hello_world, %rdi
14 call puts
15 L: addq $0x10, %rsp
16 pop %rbp
17 ret

Fig. 1. A simple function that reads from stdin and checks whether the first byte equals a predefined value. C source on the left, x64 assembly in the rest.

mentioned in Section I. Yet, our experimental results on a
small sample of the OSS-Fuzz projects missing MSan testing
suggest that many of them may harbor UUM errors that
modern fuzzers would readily expose once given the “right”
technical means.

C. Binary-level UUM Errors Detection

We use the fragment of Figure 1 to showcase some of
the extra challenges that binary-level UUM sanitizers face
compared to compiler-based solutions. These arise from mul-
tiple factors: information loss during compilation (e.g., storage
location and lifetime of variables), optimized paths in library
code that result in accesses that do not exist in source code (or
in the compiler’s intermediate representation), and the limited
visibility binary sanitizers have on code (i.e., run-time only).

These factors cause binary-level UUM sanitizers to unneces-
sarily propagate shadow information and conduct superfluous
checks, leading to higher run-time overhead. Fortunately, un-
like address sanitization, these factors do not affect recall: that
is, binary-level UUM detection does not face false negatives
relatable to loss of information during compilation2.

When MSan analyzes the C fragment on the left side of
Figure 1, it instruments it as follows:

• On line 2, it marks as uninitialized the shadow memory
portions corresponding to the storage for a and the
contents of buf. We count this as two operations.

• On line 3, it marks the shadow memory for buf[0]
depending on the outcome of the read operation. An
interceptor aids the MSan runtime in modeling read.

• On line 4, it performs shadow propagation by copying the
initialization status of the shadow memory for buf[0]
into the shadow memory for a.

• On line 5, it checks whether a is initialized when evalu-
ating the branch condition.

In total, MSan realizes a total of 5 operations from shadow
memory initialization, shadow propagation, and initialization
checking at uses. Thanks to the information available in the
compiler intermediate representation, MSan omits unnecessary
instrumentation for the three arguments for read (two are
constants, whereas the compiler just defined the pointer to
buf) and the one for puts (it can recognize it as a constant
literal). Applying LLVM’s -O3 optimization to the code

2The only exception we can think of are C++14’s indeterminate values for
expressions, which Memcheck handles with heuristics [1].

would then reduce the number of MSan operations to just
2: initializing the shadow memory for buf[0] and checking
it at its use in the if statement after a is optimized away.

When a binary-level UUM sanitizer analyzes the assembly
counterpart of the original code, it has to perform significantly
many more operations. We describe the workflow below:

• Function prologue (lines 1-3) and epilogue (lines 15-
17) require recognizing the allocation of 16 bytes on the
stack (indistinguishably for a and buf), but also shadow
propagation on the initialization status of %rbp during
register spilling and fetching from stack.

• Argument preparation (lines 4-6) for calling read re-
quires updating the initialization status for the shadow
registers that the sanitizer tool must maintain alongside
the shadow memory. Before allowing the call on line 7,
the tool will inspect the three (shadow) registers that,
according to the calling convention, carry the arguments
for the sensitive API call at hand. The tool can then model
the call with an interceptor to update the initialization
status of buf[0] upon return.

• Evaluating the branch condition (lines 8-11) requires
shadow propagation for shadow memory contents at
-0x4(%rbp) and for shadow registers %al and %eax.

• Finally, the tool will do shadow propagation on line 13
and register inspection upon calling puts (line 14).

Challenge 4: Compared to compiler-based approaches like
MSan, binary-level UUM error detection incurs higher over-
heads from unnecessary shadow propagation and checks.

Finally, alongside having to analyze many more operations
than compiler-based solutions, binary-level UUM sanitizers
face additional challenges from optimized pathways in library
code and other behaviors that access uninitialized memory
without causing a semantic (or security) violation. We find
the following cases to be the most common instances:

• Stack probing. Code reads from an uninitialized location
to ensure stack growth before making an allocation that
may overgrow the current page boundary.

• Stack resizing. Instead of adding to the stack pointer,
compilers may shrink the stack by “popping” data from
unused stack slots to dead registers. These operations can
also occur alongside computations that move valid values
back into registers for later use.
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• Aggressive optimization. Libraries may feature behaviors
such as load widening [9] to speed up memory operations,
reading more data than strictly necessary (e.g., accessing
4 bytes for a 3-byte data element).

For example, in an execution of /bin/ls we measured:
Action type Count Location
Stack probing 2 libc

40 /bin/ls
Stack resizing 20 /bin/ls
Load widening 151 libc

While stack probing may be easy to identify with heuristics,
the other two cases demand the use of shadow propagation (or
a similar dataflow analysis) to suppress harmless violations.

Challenge 5: Binary-level UUM error detection has to handle
constructs that do not exist at the source code or the compiler
intermediate representation-levels.

III. DESIGN

This section describes the design of QMSAN by first
presenting a general overview and then detailing its core com-
ponents and how they face the five challenges of Section II.

A. Overview

QMSAN combines the most desirable features of existing
UUM sanitization approaches in a fuzzer-friendly design re-
garding both run-time overhead (the downside of binary-level
tools like Memcheck and Dr. Memory) and compatibility (the
downside of MSan) without reducing accuracy. QMSAN not
only enables UUM-aware fuzzing for binaries for the first
time, but also offers a lightweight, plug-and-play alternative to
MSan’s deployment limitations when source code is available.

The five challenges of Section II shaped the three key
components of QMSAN’s design: these synergistically coop-
erate to make UUM-aware fuzzing practical. We implemented
QMSAN atop QEMU’s User Emulation for portability and
compatibility with popular fuzzers such as AFL++.

The first component is an accurate binary-level UUM error
detector. It inspects every program or library interaction with
memory through load and store operations, and performs
shadow propagation for all code until data sees a use (fol-
lowing the same logic of MSan, Section II-B) or is discarded,
updating the shadow memory state in the process. Its capa-
bilities are identical to those of existing binary-level UUM
sanitizers.

The second component is an opportunistic UUM error
detector and features the main technical novelty we propose
in this paper. It integrates with a fuzzer and, during test case
execution, it intercepts only load and store operations. When
a memory read brings one or more uninitialized bytes, the
component recognizes a potential UUM violation and saves
it, allowing execution to continue. Upon test case execution
completion, for each recorded violation the component checks
the offending instruction and its context (temporal and spatial
properties we detail in Section III-C) to see whether a similar
violation turned out to be a false positive in the past. If new
violations are found, it asks the accurate detector to process

the test case, tracking which violations were a false positive,
and informing the fuzzer if some violation was a true positive.

The third component aids both detectors with shadow
memory management (when the program loads sections or
manages heap memory) and interceptors. We use two types
of interceptors: one to model the effects of system calls
and another to ameliorate performance by further reducing
how many violations the accurate detector component must
analyze.

B. Accurate UUM Error Detector

This component reproduces in QEMU the working of state-
of-the-art binary-level UUM detectors like Memcheck and Dr.
Memory. It maintains a shadow representation for memory
and for CPU registers, and oversees two tasks involving all
the code both from the program and the libraries the program
uses:

1) Inspecting interactions with memory contents and keep-
ing the shadow memory status up-to-date;

2) Performing shadow propagation and check the initial-
ization status of data upon relevant uses (i.e., branch
conditions, memory addressing, sensitive APIs).

For both tasks, Challenge 3 prescribes that instrumentation
and analysis extend to instructions from program and library
code to avoid otherwise frequent false positives. Dynamic
binary instrumentation with QEMU can naturally achieve this.

For the first task, the component instruments all load and
store operations (Challenge 1). For a load, it accesses and
transfers initialization information for the memory source to
the shadow representation it keeps for the destination register.
For a store, if sourcing a register, it copies the register initial-
ization status to the shadow memory for the destination, while
with an immediate value it marks the memory as initialized.

For the second task, the component instruments all instruc-
tions for arithmetic-logic computations and non-local control
flow transfers (Challenge 2). As we discussed in Section II-B,
this task is responsible for most of the run-time overhead, as
it must instrument and model the effects of these instructions.

Our design differs from MSan in what memory we track
the status of. MSan tracks the initialization status only for
objects for which either it witnesses an allocation and possibly
a deallocation (like stack variables and heap objects) or their
storage can be determined statically (like global variables).
Doing this at the binary level would be prone to imprecision, as
memory layout recovery is a hard problem in binary analysis;
also, it is not necessary for UUM error identification. QMSAN
tracks initialization information for all memory, with a default
status of uninitialized, and updates it upon store operations
as described above. This choice incidentally enables QMSAN
also to expose addressability violations with invalid stack or
heap addresses that MSan misses, as Section III-D will discuss.

We defer detailing shadow propagation rules to the imple-
mentation section. From a design perspective, we underline the
role of shadow registers and the associated costs of tracking
their initialization status (Challenge 2). In practice, only a
small fraction of initialization state checks involves direct
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accesses to memory; very often, uses involve register contents
derived from previously read memory values. For the sake of
precision, QMSAN shadows general-purpose registers with up
to bit-level precision for the initialization status of their data.

C. Opportunistic UUM Error Detector

The second component centers around the integration into
the testing pipeline. Our key innovation is an opportunistic,
multi-layer method to detect UUM errors when fuzzing that
mitigates the performance penalties (shadow propagation and
library code analysis) and compatibility limitations of existing
binary-level and compiler-based methods.

Opportunistic Analysis: The main design choice we make
for this component is to instrument only load and store
operations, doing away with the expensive shadow propagation
(Challenge 2) the accurate detector does on the other instruc-
tions. But as we noted in Section II-B, partial instrumentation
promptly leads to false positives (Challenge 1-2-3).

However, in the context of a fuzzer, we stipulate that one
can learn from the large plurality of executions conducted
until that moment to assess the nature of violations. Based
on this insight, if all the violations we find for a test case
closely match violations that priorly turned out to be false
positives in past executions, we ignore them; otherwise, we
repeat execution through an accurate UUM error detector
component and check the outcome, memorizing details of new
false positives.

This filtering aims to avoid redundant validation work
for false violations that are a consequence of our partial,
propagation-free instrumentation. These may routinely surface,
for example, every time the program runs a given operation on
an object kind (e.g., copying a structure that contains padding
bytes). Obviously, the filtering needs to be efficient enough so
as to minimize the number of test cases that call for expensive
validation, but also sufficiently precise to not discriminate
two distinct violations as identical, or this may lead to false
negatives. To efficiently and safely implement such a design,
we therefore asked ourselves two questions:

1) Do we have to validate violations in real time?
2) What defines the identity of a violation?

Validating Violations: For the first question, we stipulate
that violation assessment can, and should, be deferred. As
we discussed in Section II-B, only data reaching relevant
uses warrants sanitization, but tracking such data flows needs
additional instrumentation (Challenge 2). However, in the
presence of a UUM bug, any offending use necessarily derives
from one of the (potentially many) data buffers reported as
apparently uninitialized when loaded from memory.

Therefore, we can safely do away with real-time violation
analysis and continue execution, minimizing the impact on the
fuzzing throughput and allowing further violations to occur
until execution ends: all violations will be processed together.

Then, to avoid thrashing effects between violations, we
make the following choice. When handling a store operation,
unlike the accurate detector where we copy the initialization
status of the source, in the opportunistic detector we always

mark the destination as initialized in the shadow memory. To
justify the soundness of this choice, we note that if any written
byte derives from uninitialized data, this detector would have
anyway flagged the memory load operation that introduced
said data, and will then assess whether to invoke its accurate
counterpart to study the test case execution in its entirety.

In summary, we record all apparent violations during the
execution of a test case, postponing their validation to the end.
The curious reader may wonder whether, upon suppressing
a violation, marking also the sourced memory as initialized
would help. We think it would not: this could reduce analysis
costs of future accesses on the involved bytes, but also lead to
false negatives when a different violation (e.g., from another
function) later occurs on one or more of the “silenced” bytes.

Identity of Violations: The ability to accurately recognize
a reported violation as a previously encountered one is crucial
for the accuracy and the scalability of our approach. We note
that precisely determining if two violations are the same is
intrinsically hard due to the factors at hand: the identity of the
source object, the code accessing it, and the computations that
follow the access until the use (which in turn depend on the
program state when the loading takes place).

The characterization of violation identities has a large im-
pact on accuracy and performance. A too loose definition may
erroneously consider a violation as equivalent to one deemed
as a false positive before: this may introduce false negatives,
but incidentally higher throughputs thanks to the fewer test
cases sent to the (expensive) accurate detector. On the other
hand, an overly narrow definition may be costly to compute
(e.g., it may need to closely track other execution aspects) and
lead to frequent invocations of the accurate detector.

For the heuristics we explore in this paper, we chose not to
take into account object identity. Accurate object identification
is a hard problem in binary analysis. But even if accurate
information were available, programs often create and destroy
a large number of objects: precise identifiers would give us an
overly sensitive criterion prone to explosion effects, whereas
coarse-grained identifiers may pave the way to false negatives.

A first reasonable criterion to model a violation may be
instead using the identity of the offending instruction that reads
from memory that the opportunistic detector considers unini-
tialized. Instructions are trivial to identify and, most typically
in practice, only a handful of them access uninitialized shadow
memory regions across all program executions.

As we will see when discussing our experimental results,
such a strategy already enables a fuzzer to expose UUM
bugs, but may miss others depending on program and input
characteristics. For example, at a given time, an instruction
may turn out to be a load widening case (Challenge 5) or, more
simply, an access to data that we capture imprecisely because
we skip shadow propagation (Challenge 2). Once we add the
instruction to an ignore list for suppressing violations, we will
miss in the subsequent executions any UUM bug for which
the instruction reads uninitialized data from another object, or
even from the same object when initialized in a different way.
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To tame this imprecision, we augment the offending instruc-
tion criterion with two heuristic feedback sources:

• Spatial locality. We further distinguish instructions by
the calling context of the enclosing function. Context-
sensitivity is a property known to enhance many program
analyses. In our scenario, functions may work on different
types of objects depending on the values flowing through
different call graph ancestors to the enclosing function.
Therefore, we use calling contexts as a partial, coarse-
grained proxy for data-flow diversity [22], modeling them
with a hash value.

• Temporal locality. When a test case raises multiple po-
tential violations, their interleaving may be an additional
source of information. We find a different sequence of
violations indicative of the program engaging in different
behaviors3 than before. Starting with the second violation,
we combine the identifier of the violation (instruction
address, possibly augmented with spatial locality) with
the one of the most recent violation. This provides us
with a cheap way to capture different objects undergoing
different manipulations that share some code during their
processing work.

Our validation experiments show that, for the subjects
we tested, the combination of the two heuristics does not
cause any false negatives compared to MSan or binary-level
sanitizers.

Library Instrumentation: The opportunistic detector sup-
ports selective instrumentation: users can configure it to ignore
library-level memory accesses and track only program code for
efficiency. If users want to focus on the program (a reasonable
choice with well-tested libraries), QMSAN can skip library
code analysis with a residual risk of false negatives.

When library code processes a program buffer with unini-
tialized parts, QMSAN may catch on such UUM errors when
the program processes the output of the library. As QMSAN
did not track the write operations that initialize such bytes,
their shadow status appears as uninitialized and QMSAN
forwards an apparent UUM violation to the accurate detector.

However, we foresee two cases evading this logic. In one,
the output is a primitive value and the library does not write
it to memory, as with return values of functions. In the
other, library code receives one buffer containing uninitialized
input and another buffer as the destination for UUM-affected
computations; the program has written to the destination
buffer before (therefore, in future reads, QMSAN sees a stale
initialization status from those writes) and reuses it here.

In various tests, we observed instances of the first case with
C library functions that analyze buffers, as with comparators,
and apparently no instances of the second case. Therefore, for
the evaluation, we enable selective instrumentation and use
standard interceptors for such functions. In summary, QM-
SAN’s design tackles Challenge 3 and, partially, Challenge 4-5
for burden ascribable to libraries, whereas all existing solutions

3Drawing an analogy with coverage-guided fuzzing, this is similar to using
edge rather than basic block identity to recognize novel interesting behaviors.

would easily incur false positives (and false negatives) if they
ignore library code.

D. Runtime Helper Component

The third component of QMSAN assists its two detectors
in additional tasks. As we mentioned, one is to update the
shadow memory to account for statically initialized contents
from an executable and for dynamic heap allocation.

Free operations are particularly important for UUM detec-
tion because the allocator may reassign a buffer to a subse-
quent allocation operation. Therefore, QMSAN must mark any
freed bytes as uninitialized or it would miss UUM errors from
an incomplete initialization of a new object that reuses storage.

As anticipated in Section III-B, this also allows us to detect
accesses to a previously freed buffer and other rogue memory
dereferencing on stack or heap. Technically speaking, these are
addressability bugs that MSan misses4, but our design catches
them for free as we must track allocations for correctness.
Section V-C will detail some exemplary bugs we found.

The other main task we delegate to this component is
devising interceptors. We distinguish between those needed for
correctness and others that ameliorate performance. The first
kind model the output of system calls that allocate or populate
buffers on behalf of user code: this necessity is shared with
existing UUM sanitizers, as otherwise one would all miss the
effects of memory manipulations from kernel code.

The second kind of interceptors aid both detectors. We
intercept the invocation of C library functions for memory and
string manipulation with highly optimized implementations
(e.g., load widening, inline assembly sequences, or vectorized
alternatives). For the accurate detector, these are not strictly
needed, but ease the implementation work for exotic cases.
For the opportunistic detector, modeling them can reduce the
total amount of unique violations requiring accurate analysis
that originate from invoking a few functions of common use.

E. Discussion

Our design realizes a practical approach to UUM error
detection when fuzzing, limiting the use of more expensive op-
erations (like shadow propagation) to when previously unseen
violations occur. New violations present themselves rarely: in
our experiments, 99.8% of executions are opportunistic (Ta-
ble VII). The net effect of using only the lighter opportunistic
detector for most executions is enhanced performance, which
in turn can lead to strong practical value as we will show by
testing heterogeneous code bases harboring UUM bugs.

The technical innovation of QMSAN lets us handle off-
the-shelf binaries for fuzzing (a scenario precluded to existing
binary-level tools due to their overheads) and overcome practi-
cal limitations of MSan that hinder its use for fuzzing (mainly,
the need to instrument through recompilation all program and
library code to avoid otherwise frequent false positives).

4Its authors explain in [8] that proper handling of (general) addressability
bugs introduces complexity (e.g., maintaining a richer shadow map and adding
red zones), and that running ASan after MSan is still faster than using binary-
level sanitizers able to capture both kinds of errors. The paper was published
before fuzzing in combination with sanitizers became a popular combination.
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In terms of soundness, our design avoids false positives:
each potential violation the opportunistic detector spots for the
first time undergoes inspection in the accurate detector, which
is as sound as existing UUM tools (Appendix A). However, by
suppressing violations that closely resemble priorly discarded
false positives, our approach may incur false negatives if
violation identification is imprecise (or with the edge cases
of Section III-C when skipping library code). While we did
not observe false negatives in our accuracy tests, this does
not imply their absence in other settings. We believe residual
risk roots in two aspects: rare patterns (e.g., uninitialized
data flowing through multiple levels of memory indirection)
and nondeterministic execution. Future work may study the
characteristics and prevalence of the former and propose new
refinement heuristics. The latter is instead mitigated when the
fuzzer later generates similar test cases for execution.

For portability, our design requires standard binary in-
strumentation capabilities. We believe one may bring it to
Windows systems with modest implementation work, likely
atop DynamoRIO [23] for ease of integration with WinAFL
and derived fuzzers. As Windows supports only x64 and
AArch64 platforms, an implementation shortcut may be to use
an existing sanitizer (e.g., Dr. Memory) as accurate detector.

A promising avenue that our design enables is the concur-
rent use of (binary-level) ASan and MSan-style sanitization
when fuzzing. Currently, users have to compile and test two
separate binaries due to runtime incompatibilities. In prelim-
inary experiments, we verified that our additions to QEMU
seamlessly coexist with those of QASan. In future work, we
would like to optimize their combination by having them share
the shadow memory and relevant instrumentation code.

To further optimize the opportunistic detector, one may use
static analysis to identify and ignore load operations on bytes
guaranteed to be initialized (Challenge 4). This may be the
case, for example, with stack reads dominated in the control
flow by store operations on those locations. A static analysis
to use for this end must come with soundness guarantees or
the optimization could cause false negatives. As binary-level
sanitizers have visibility on code only when about to execute
it (Section II-C), such an optimization would be orthogonal to
the design, but we would like to explore it in future work.

IV. IMPLEMENTATION

This section details relevant implementation aspects of QM-
SAN. We add ∼5000 LOC atop the User Emulation component
of QEMU (v. 3.1.1), which AFL++ uses as a high-performance
binary fuzzing backend. Among them, we use ∼1500 LOC to
implement 70 TCG-level lifters to manage shadow propagation
and ∼1800 LOC to implement 110 interceptors. We then add
another ∼300 LOC to AFL++ to carry the violation analysis
logic at the end of test case execution, issuing an execution
under the accurate detector when needed and tracking the
known false violations.

The shadow map mirrors the 64-bit address space with a
32 TB zero-initialized memory buffer allocated at program
startup: thanks to standard operating system optimizations,

V = initialized V’ = 0xff
V = uninitialized V’ = 0
Reg = imm Reg’ = initialized
Reg1 = Reg2 Reg1’ = Reg2’
Reg = load Mem Reg’ = Mem’
Mem = store Reg Mem’ = Reg’
Mem = imm Mem’ = initialized
V = A & B V’ = (A’ | B’) & (∼A | B’) & (A’ | ∼B)
V = A | B V’ = (A’ | B’) & ( A | B’) & (A’ | B)
V = A ⊕ B V’ = A’ & B’

V = A ≪ B V’ =

{
(A′ ≪ B) initialized(B)
0 uninitialized(B)

V = math(A, B) V’ = A’ & B’

TABLE I
SHADOW PROPAGATION RULES FOR INSTRUCTIONS. GIVEN A PROGRAM
VALUE VAL , VAL’ IS ITS SHADOW-REPRESENTATION VALUE. FOR THE

SAKE OF BREVITY, WE REPRESENT REGISTERS HERE AS A WHOLE;
QMSAN MANAGES THEM WITH UP TO BIT-LEVEL PRECISION.

only a (program workload-dependent) fraction of it will result
in allocating physical pages. This choice is analogous to MSan.
However, to account for our different treatment of storage
lifetime, we flip the meaning of the 0 value: that is, 0 means
initialized for MSan and uninitialized for QMSAN. Except
for statically populated regions (e.g., .rodata), QMSAN
considers all memory uninitialized as default.

For the accurate detector component, Table I lists the
propagation rules of MSan that we adapted to account for the
different value semantics and for modeling shadow registers.
Following the implementations of existing UUM sanitizers, for
propagation we balance between precise and coarse-grained
modeling of instructions. Operations in the third table group
need only a few instructions to be modeled with bit-level
accuracy: this is fortunate, as this accuracy removes otherwise
recurrent false positives with string manipulations. For the
other operations, as precise bit-level reasoning would be too
expensive, we use a fast instrumentation (last table row5)
to propagate the presence of any uninitialized bit in either
operand to the destination, a choice done also by other tools.
Our implementation also supports vectorized instructions.

For the opportunistic detector component, we mentioned
that QMSAN records all violations and inspects them only
at the end of the execution, looking for new violations that
warrant analysis in the accurate detector. Conceptually, this
is similar to a coverage-guided fuzzer that tracks coverage
information through coverage map updates and only when
execution ends it inspects the test case’s map against a global
map looking for newly met coverage. Our implementation
operates similarly: we maintain a global “violations map”
across executions and one for the current test case. If the latter
contains one or more previously unseen potential violations,
we feed the test case to the accurate detector component
and examine them, updating our global map to memorize
violations that turned out to be a false positive.

Finally, for the helper component, we use the LD_PRELOAD
method to supply to the program under test a library that
interposes on selected functions: specifically, those for heap
management (e.g., malloc, realloc, free) and those for
which we want to register interceptors. As mentioned, we use

8



110 interceptors: we borrowed ∼40 of them from QASan [12],
and the rest are original. As a rough proxy of implementation
complexity, MSan uses 106 own interceptors and 601 shared
with other sanitizers for LLVM.

V. EVALUATION

This section presents the experimental results we obtained
from tests conducted to estimate the bug finding capabilities of
QMSAN on real-world software and to analyze accuracy and
run-time overhead aspects of the design. We also conduct com-
ponent analysis studies to better understand its performance.

The most appreciable end-to-end outcome for software
testing is, obviously, the number of bugs found. As much
software is currently out of reach of MSan for fuzzing, either
for compatibility struggles with whole-code instrumentation
or for the unavailability of the source code, we assemble
a pool of test subjects drawing from open-source projects
and commercial software. Following the best practices in the
fuzzing literature (e.g., [24]), we opt for popular programs con-
sidered in studies related to ours and, where applicable, vary
one evaluation dimension at a time. The online repository for
QMSAN hosts the key materials of the conducted evaluation.

All the tests took place on a machine equipped with an
Intel Xeon E5-2699 v4 CPU with 44 physical cores running at
2.20GHz and 256 GB of RAM with low background activity.
We bound every trial to a physical CPU core, leaving its
virtual counterpart idle and using a Docker container with
Ubuntu 20.04. We use AFL++ 4.10 with deferred initialization
to optimize the fork server6 performance and leave parameters
for fuzzing techniques at their defaults. For the test involving
open-source subjects, we use clang 18 for compiling binaries.

To avoid unnecessary repetitions in the following sections,
we remark that all the violations that QMSAN found in our
tests were true positives, according to consistency checks we
did in Memcheck, in MSan if applicable, and manually. All the
bugs we reported to developers were confirmed. To summarize,
as also expected by design, we experienced no false positives.

Our experiments aim to tackle four research questions:
• RQ1: Can QMSAN expose UUM bugs we are missing

in otherwise well-tested open-source software?
• RQ2: Can it do the same for proprietary software?
• RQ3: How accurate is QMSAN? Does it miss behaviors

compared to source-based instrumentation?
• RQ4: What run-time overhead does QMSAN incur?

What are its sources and on what does it save?
Responsible disclosure: We followed community best-

practices to disclose all the bugs we found during our tests
to the relevant parties. We contacted project maintainers,
following their prescriptions (e.g., SECURITY.md for GitHub
projects and guidelines from company websites) when avail-
able, and proposed a timeline of 90 days before reporting
any of our findings to the public. We offered our availability
to provide additional insights on the bugs and general UUM

5Due to the zero semantics, & yields 0 if either or both bits are uninitialized.
6As Appendix B discusses, QMSan can work also with persistent fuzzing.

Subject Version Fuzzing harness Bugs Fixed
libredwg 763d702 llvmfuzz 3 2
gpac 205bfe3 fuzz probe analyze 1 1
assimp b71b8f7 assimp fuzzer 2 1
libdwarf 6178ba8 fuzz debug str 2 2
serenity 7914383 FuzzJS 1 1
opensc fe2c1c8 fuzz pkcs15init 5 5
ntopng 8786f06 fuzz dissect packet 1 1
upx 3495d1a test packed file fuzzer 2 2
radare2 cfe5806 ia fuzz 0 0
libucl 5c58d0d ucl add string fuzzer 0 0

Total 17 15

TABLE II
DATASET OF OSS-FUZZ SUBJECTS USED TO ESTIMATE QMSAN’S BUG
FINDING CAPABILITIES. THE TABLE ALSO SHOWS HOW MANY BUGS, AT

THE TIME OF WRITING, HAVE BEEN FIXED FOLLOWING THE RESPONSIBLE
DISCLOSURE WE DID WITH THEIR DEVELOPERS.

issues; when our understanding of the code base allowed, we
also proposed concrete fixes. Incidentally, we engaged in rich
and constructive discussions with some of the maintainers.

A. RQ1: UUM Bugs in Well-Tested Open Source Software

As we mentioned earlier in the paper, only about 2 every 5
subjects tested daily by the OSS-Fuzz initiative (40.5%) see
MSan support, a situation stemming from compatibility strug-
gles for the others with the requirement of having to instrument
all libraries. Therefore, as a first experiment to estimate the
bug finding capabilities of QMSAN, we target open-source
projects that are routinely tested by the community but lack
explicit means to expose UUM bugs (if not as a consequence
of direct crashes or other sanitizer-found errors in surrounding
code).

To identify a reasonably small yet significant subset of OSS-
Fuzz C/C++ projects suited for this evaluation, we inspected
the OSS-Fuzz bug tracker and selected the top 10 subjects
unsupported for MSan with the highest bug-security
counts for bugs that OSS-Fuzz spotted in the 15 months
(January 2023 to March 2024) preceding our experiments. As
we want to estimate how QMSan finds bugs in otherwise well-
tested software, our rationale is that higher bug counts indicate
extensive previous testing for OOB/UAF errors (hence the
tag) and spontaneous crashes. The projects are popular and
their maintainers typically act on each reported bug readily,
an attitude that showed also in our interactions. OSS-Fuzz
has been testing most of these projects for 3 to 6 years, with
the exception of the industry-strength ntopng network traffic
probing tool and the popular upx executable packer.

Table II provides the list of subjects and the manually dedu-
plicated, previously unknown UUM bugs we found in them.
The subjects appear in descending order by the selection crite-
rion7. Among the subject’s harnesses available on OSS-Fuzz,
we chose the one that was behind most bug-security
issues reported in the considered time range. We used the

7We remark that we had to scroll through the initial top-10 as ruby,
http-pattern-matcher, and clamav faced a temporary issue in their
OSS-Fuzz build script due to upstream updates, and gdal hit an instrumenta-
tion error in the TCG component of the QEMU version we use for QMSAN.
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seeds and dictionary provided by OSS-Fuzz when available,
and none otherwise. We conducted 3 fuzzing trials of 72
hours each, exposing 17 bugs among 8 of the 10 subjects;
the developers of opensc issued CVE-2024-45616 for the
bugs.

Most bugs were triggered by either corner cases in object
initialization or bad error management. For example, in the
gpac multimedia framework, a size variable was initialized
with data from the input’s header field; this size controls a heap
allocation of a buffer for storing part of the input. By providing
a controlled size in the input archive header, an attacker could
control the size of the allocation. Providing a size value bigger
than the input size resulted in a buffer only partially initialized,
and this data would later undergo a decompression algorithm.

We also found an unusual bug in the JavaScript library of
SerenityOS, detected for a buffer that the program passes to
setjmp. The POSIX standard does not prescribe whether
setjmp has to initialize the signal mask in the context data it
writes to the buffer, and different versions of Linux and BSD
operating systems make different choices for it. The documen-
tation of SerenityOS did not cover this point. Shortly after
in the execution, a function loops over these indeterminate
bytes and conducts non-trivial operations within the Heap
module of the library. When we reported the potential issue,
the developers fixed it by zero-initializing the buffer.

Finally, we received a valuable comment by a developer
of opensc, a set of tools and libraries for working with
smart cards with cryptographic capabilities. The developer
mentioned that the issues we reported differed from what OSS-
Fuzz exposed over the last couple of years, and asked us “if
there is something we would propose to implement to allow
OSS-Fuzz to progress further and detect other issues”.

We found this comment to reflect the motivation that we
argued for QMSAN at the beginning of this paper. In light of
the promising results for bug finding ability and accuracy, our
intention would be to eventually discuss with the OSS-Fuzz
maintainers a potential integration of QMSAN in the pipeline.

B. RQ2: UUM Bugs in Proprietary Software

While a compiler-assisted solution (though with key limita-
tions) for UUM-aware fuzzing exists, software available only
in binary form cannot undergo this kind of testing. To estimate
how QMSAN can aid security analysts, as well as developers
that receive third-party components from external sources for
integration in their products, we conduct experiments on a
collection of real-world, closed-source software. We consider
5 subjects and a total of 9 binaries, testing two versions of a
program when the first bugs we found and reported were fixed
for a later version (this happened for all but one subject).

To assemble the subject selection, our options were more
limited than in the open-source scenario. We reviewed recent
papers on binary-level fuzzers or binary rewriters that can
support fuzzers [25], [13] looking for candidates that could
take input from the command line. We made this choice
because writing a harness for a closed-source program is an
orthogonal effort that faces practical complexity and potential

license issues in the required reverse engineering activity:
these are unrelated to the goals of our paper. This holds
especially for programs with a graphical interface, which
appear to us more numerous in the proprietary domain than
command-line tools, as testing programs that expect user
interaction is a hard problem for fuzzing [26]. Therefore, we
came up with the 5 subjects listed in Table III. Compared
to [25], although it syntactically meets our criteria, we leave
out lzturbo as the program has not received updates since
2014: in a feasibility 3-hour fuzzing trial, QMSAN found 15
unique crashes in it.

Unlike the experiments for RQ1 where we could inspect
sources to triage bugs, here we initially resort to stacktrace-
based crash deduplication using the top 3 frames on the stack.
Then, we refine the candidate bugs with an inspection of the
involved instructions, the object addresses, and their surround-
ings. Upon reporting the candidate bugs to the developers, we
asked them to confirm or correct our proposed bug counts.

The UUM bugs we list in Table III are the overall result of 3
fuzzing trials of 72 hours each. We did not provide dictionaries
to AFL++. As seeds, we used a PNG image from the default
seeds of AFL for nconvert and pngout, a minimalistic
RAR archive for rar, and a tiny ELF files of 100 bytes for
cuobjdump and nvdisasm. In total, we found 27 bugs.

The tests took place in two phases. Initially, we downloaded
the latest program version available from official sources and
tested it. For the two binaries from the NVIDIA CUDA
toolkit, QMSAN found 2 bugs in cuobjdump and 7 in
nvdisasm. NVIDIA promptly confirmed the bugs, issuing
CVE-2024-0072 and CVE-2024-0076 and fixing them in the
next release. For nconvert, we found 5 bugs confirmed by
the maintainer. For pngout, the maintainer was skeptical on
the usefulness of randomly-looking test cases, claiming the
detection logic for most invalid images worked reasonably
well; for the other bug, they acknowledged deeper implica-
tions, but showed no resolve in fixing it soon. Finally, for rar,
the maintainer conducted a thorough, prompt investigation of
the matter, triaging the bug to the use of an uninitialized
HMAC key. The developer concluded that, to have security
implications, one must produce a valid authentication code
from the wrong source data, but the collision probability is
unaffected by the initialization status of the key; we agreed.
The anti-pattern was fixed shortly after.

A few months later, we tested the new program versions that
became available in the meantime. We found another 3 bugs
in nvdisasm (with NVIDIA issuing CVE-2024-0102), 4 in
nconvert (two had been fixed in the internal development
version), and 3 in rar. The RARLAB developers promptly
got back to us with detailed security analyses. One bug
emerged during their internal testing too and was cosmetic.
Another bug could lead to a corrupt archive depending on
the memory state, but broken files would be deleted after
extraction due to checksum mismatches. Finally, the third bug
could be used for denial of service on Linux clients. We
requested MITRE to issue a CVE identifier and the case is
being evaluated. All these bugs have been fixed at the time of
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Subject Vendor Version Bugs Fixed
cuobjdump NVIDIA 12.3 2 2
cuobjdump NVIDIA 12.4 0 0
nconvert XnView Software 7.136 5 5
nconvert XnView Software 7.155 4 4
nvdisasm NVIDIA 12.3 7 7
nvdisasm NVIDIA 12.4 3 3
pngout Ken Silverman Jan 15 2020 2 0
rar rarlab 6.11 1 1
rar rarlab 7.0 3 3

Total 27 25

TABLE III
DATASET OF PROPRIETARY SOFTWARE USED TO ESTIMATE QMSAN’S BUG

FINDING CAPABILITIES. THE TABLE ALSO SHOWS HOW MANY OF THEM
HAVE BEEN FIXED AT THE TIME OF WRITING.

Unique crashes Component analysis
Subject MSan QMSAN Address A+T A+T+S
c-ares 0 0 0 0 0
guetzli 1 1 1 1 1
json 0 0 0 0 0
libxml2 2 27 15 19 22
openssl 0 1 1 1 1
pcre2 1 3 1 3 3
re2 1 2 1 1 2
woff2 0 0 0 0 0
Total 5 34 19 25 29

TABLE IV
CRASHES FOUND ON FTS SUBJECTS. ‘A’ STANDS FOR ADDRESS; ‘T’ AND

‘S’ FOR TEMPORAL AND SPATIAL, RESPECTIVELY.

writing.

C. RQ3: Accuracy Aspects

The bug finding results for the experiments tackling RQ1
and RQ2 provide a meaningful, yet partial picture of the effi-
cacy of QMSAN. We designed a multiplicity of experiments
to assess accuracy aspects of our approach in depth.

Juliet: For the accurate detector, besides tests on com-
modity Linux command-line programs that we ran in lockstep
with Memcheck, we use the Juliet Test Suite, released by NIST
and containing programs with various weaknesses. Specifi-
cally, we focus on the weakness type pertinent to our work:
Use-of-Uninitialized-Variable (CWE-457). Juliet comes with
about 1000 test instances for it: those exercise UUM errors on
multiple data types, with either partial or no initialization at all,
and involving stack or heap memory. Each test comes in two
flavors: a good and a weak (i.e., buggy) version of the action of
interest. Some tests have nondeterministic features (e.g., they
depend on the output of the rand() function) for assessing
static analysis tools: therefore, similarly as in [12], we identify
and remove them from the pool. On the 884 tests that remain,
we obtain perfect accuracy for our accurate detector. As for
the opportunistic detector, it recognizes all true positive cases,
and misjudges 20 true negatives as false positives: in a fuzzing
setting, all those 20 instances would be sent to the accurate
detector for inspection, and the opportunistic one would learn
about their nature from the other’s output and memorize them.

MSan-compatible Subjects: A more demanding test than
Juliet is testing the accuracy of QMSAN against the output
of MSan. Therefore, we identify a pool of MSan-compatible
programs that we can use to answer RQ3 and, later, also RQ4.

Our choice falls on 8 programs from the Google’s Fuzzer
Test Suite (FTS) considered in notable recent literature on
sanitization, especially in combination with fuzzing [12], [19],
[20], [27]. The 8 subjects coincide with those from the
evaluation of QASan [12] against ASan and, most notably for
our purpose, need only the C library to be MSan-instrumented
to avoid false positives. We choose their FTS version as our
goal is to compare bug recall ability: most typically, older
program versions feature more bugs than more up-to-date
counterparts.

In the left part of Table IV, we report the overall results of
3 fuzzing trials of 24 hours each where we compare QMSAN
with MSan. When available, we use seeds and dictionaries
from FTS and, as second choice, OSS-Fuzz. QMSAN finds
all the 5 unique crashes that MSan does, but also another 29:
25 in libxml2, 2 in pcre2, and 1 in openssl and re2.
All the crashes were induced by the tripwires of the sanitizers
(i.e., the program would not have crashed spontaneously).

From a close examination of the crashes and the respective
fuzzer queues, all the additional libxml2 crashes traverse
CFG edges that AFL++ did not reach when testing the
compiler-instrumented binary. While many of these crashes
may be related (we see they all insist on a buffer hosting a copy
of the input), a coverage-guided fuzzer uses code coverage to
discriminate differences in execution, and only post-mortem
manual analysis can precisely triage bugs. Therefore, any
additional input that exposes a UUM error from a different
instruction (or stacktrace) is potentially valuable.

For the other bugs that MSan misses, the analysis is as
follows. For both openssl and re2, the additional bug
comes from better exploitation of code reached by both
QMSAN and MSan. For pcre2, both bugs are addressability
issues that only our design can capture (Section III-D).

Component Analysis: To understand how the temporal
and spatial locality refinements presented in Section III-C
contribute to make our approach precise, in the right part of
Table IV we report the results of an ablation study by repeating
the FTS experiments in a modified QMSAN version. The
numbers are collected on the same fuzzing campaign, thanks to
debugging controls that allow us to analyze potential violations
separately for each assortment of heuristics. Column Address
reports the unique crashes due to UUM violations identified by
considering only the program counter of the offending memory
load instruction. Column A+T reports data for when we refine
the criterion with temporal locality. Column A+T+S shows
the fully-fledged approach where we also introduce spatial
locality. In these tests, the temporal heuristic exposes more
bugs on libxml2 and re2, and the general results improve
appreciably when also adding the spatial one. In retrospective,
when we designed the heuristics and preliminarily tested them
with a larger pool of programs, we noted a slightly more
pronounced impact from the temporal heuristics. Nevertheless,
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Native MSan QEMU QMSAN QMSAN†

Subject exec/sec vs. Native vs. Native vs. Native vs. MSan vs. QEMU vs. QEMU vs. QMSAN

c-ares 2053.00 2.09x 2.11x 2.20x 1.05x 1.04x 1.41x 1.35x
guetzli 2096.14 2.56x 2.25x 3.17x 1.24x 1.41x 2.84x 2.02x
json 1747.18 2.17x 2.42x 2.69x 1.24x 1.12x 2.55x 2.28x
libxml2 1427.36 3.79x 2.40x 3.41x 0.90x 1.42x 3.81x 2.69x
openssl 362.51 2.41x 4.24x 19.84x 8.24x 4.68x 17.48x 3.74x
pcre2 1846.23 2.24x 2.28x 3.18x 1.42x 1.40x 1.75x 1.25x
re2 1788.10 2.27x 2.26x 3.35x 1.48x 1.48x 2.34x 1.57x
woff2 2127.90 2.13x 2.37x 2.86x 1.34x 1.20x 2.37x 1.97x
geomean - 2.41x 2.48x 3.75x 1.55x 1.51x 3.00x 1.99x

TABLE V
FTS SUBJECTS: THROUGHPUT FOR AFL++ WITH COMPILER-BASED INSTRUMENTATION, MSAN INSTRUMENTATION, QEMU INSTRUMENTATION, AND

WITH QMSAN AND QMSAN† . RELATIVE OVERHEADS ARE GIVEN FOR THE EASE OF COMPARISON.

we can conclude that the component analysis shows how both
refinements contributed to precise violation identification in
the subjects we tested here, putting QMSAN on par with
(or even above) the “accurate-by-design” results obtained by
MSan.

Additional Tests: We conclude our examination of RQ3
by detailing additional experiments we performed on QMSAN.

We first focus on the accuracy of QMSAN compared to
existing binary-level UUM sanitizers. First, for all QMSAN
queues available at the end of the experiments conducted
for RQ1, RQ2, and the parts of RQ3 discussed above, we
individually execute in Memcheck and Dr. Memory all the test
cases in which QMSAN found no violations. None resulted in
a UUM error, which would be indicative of a false negative.

Then, we restart QMSAN from a selection of these queues
and configure it to record the first 100 000 test cases AFL++
generates. The rationale is that a test case may feature new
UUM behaviors without bringing new code coverage, so a
fuzzer would not save it; the prior experiment missed this.
Restarting from saturated queues allows us to record inputs
that are reasonably more complex than those a fuzzer would
generate from simpler seeds. Existing tools raised no UUM
errors when processing these new test cases (details in Ap-
pendix A).

Finally, while our evaluation is centered on the x64 archi-
tecture for practical reasons, we made preliminary experiments
on QMSAN’s AArch64 backend to test its maturity. Alongside
validation experiments with command-line programs (both
in the accurate detector alone and in the whole system),
we repeated the RQ2 experiments on the two proprietary
programs that are available also for AArch64: cuobjdump
and nvdisasm from the NVIDIA CUDA toolkit. While these
binaries are naturally different from their x64 counterparts,
QMSAN was able to expose the same bugs as it did for
the latter, also with no significant difference in their time to
exposure. Albeit partial, we find these tests may be indicative
of good practical value that follow-up work can capitalize on.

D. RQ4: Performance Aspects of QMSAN

We conclude our experimental analysis by examining per-
formance aspects of QMSAN: run-time overheads, its sources,
and the dimensions on which it can effectively save thanks

to its design. We start by discussing a key metric for fuzzer
performance: its throughput, commonly measured in terms of
test case executions completed per time unit (seconds).

Table V shows the relative slowdowns of different config-
urations on the FTS subjects we used for tackling RQ3. We
plot the median value from a series of five 24-h trials. We
opt for these subjects so we can compare the overheads of
QMSAN also against MSan, as well as for consistency with the
accuracy considerations we provided in the previous section.
In the column Native, we report the number of executions
per second that AFL++ achieves when using its performant
afl-clang-fast backend with compiler-assisted instru-
mentation via LLVM. Next, we provide relative slowdowns
for MSan, for binary-level fuzzing using the QEMU User
Emulation backend of AFL++, and for UUM-aware fuzzing
with QMSAN. In this section, we also introduce a new fuzzer
configuration, QMSAN†, which is a version of QMSAN mod-
ified to execute every test case in the accurate detector (i.e.,
we ablate the contribution of the opportunistic component).

The first result that we observe by looking at general
trends, captured by the geometric mean of the slowdown
ratios, is that QMSAN halves (1.99x speedup) the run-time
overhead that shadow propagation and library code analysis
would introduce in the execution. In practical terms, with
QMSAN, AFL++ could test on average twice as many test
cases than with QMSAN† in the given 24-hour budget. Then,
compared to a UUM-unaware fuzzing campaign in QEMU,
we measure an average slowdown of 1.51x. For a rough
comparison, MSan introduces a 2.41x slowdown atop the
compiler-based instrumentation of AFL++. These numbers
suggest that our approach is particularly efficient in terms of
fuzzing throughput, obtaining a performance drop of 1.55x
compared to MSan despite the latter can benefit from a much
more optimized backend (under QEMU, AFL++ is on average
2.48x slower than with compiler-based instrumentation).

Only on openssl we incur higher overheads. We will
return to this subject later in the section, as we will discuss the
shadow memory access patterns we measure for our subjects.
Interestingly, in additional tests we measured substantially
lower slowdowns with its other two harnesses from FTS; the
one we use here is the only one compatible with MSan.
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QMSAN− QMSAN QMSAN†

Subject vs. QEMU vs. QEMU vs. QMSAN− vs. QEMU vs. QMSAN

c-ares 1.12x 1.20x 1.07x 1.45x 1.20x
guetzli 1.40x 1.74x 1.24x 6.80x 3.90x
json 1.20x 1.24x 1.03x 3.40x 2.75x
libxml2 1.45x 1.76x 1.21x 5.84x 3.32x
openssl 3.62x 3.96x 1.09x 16.87x 4.27x
pcre2 1.22x 1.36x 1.11x 3.48x 2.57x
re2 1.31x 1.52x 1.16x 4.38x 2.88x
woff2 1.55x 1.70x 1.10x 4.66x 2.74x
geomean 1.49x 1.68x 1.13x 4.69x 2.79x

TABLE VI
RELATIVE SLOWDOWN FOR TEST CASE PROCESSING TIME.

Subject Total executions Requested analyses One every
c-ares 80 633 233 0 -
guetzli 57 145 827 48 1 190 538
json 56 049 871 2 901 19 321
libxml2 36 183 734 926 39 075
openssl 1 578 914 8 197 364
pcre2 50 169 305 8 716 5 756
re2 46 053 114 2 110 21 826
woff2 64 339 311 9 7 148 812

TABLE VII
FTS SUBJECTS: NUMBER OF EXECUTIONS AND ISSUED REQUESTS FOR

ACCURATE ANALYSIS DURING 24 HOURS OF FUZZING.

Fine-grained overhead analysis: We refine the perfor-
mance considerations above with additional experiments for
two reasons. First, besides entropy reasons, fuzzers using
different instrumentations may slightly diverge in the pro-
gram behaviors they explore, as different instrumentations
can affect, for example, what test cases the fuzzer prioritizes
as favored. Second, end-to-end measurements can lead to
underestimating the performance contributions, because they
include the costs of input mutation and queue management
after test execution.

To establish a more refined ground for studying the impact
of our choices during binary-level fuzzing, we pick for each
subject 100, 000 test cases from a saturated corpus (just
like we did for RQ3 in the previous section) and run them
in all QEMU-based fuzzers. Table VI displays the relative
slowdowns in test case processing time. In this experiment,
we also analyze another ablated configuration for QMSAN:
specifically, QMSAN− is designed to treat all memory as
always initialized, hence it ablates from QMSAN the costs
of updating and checking the map of potential violations.

We can observe that violation assessment slows down
QMSAN by a 1.13x factor, enabling by design a much higher
performance gain. While we could measure an end-to-end
performance gain of 1.99x from QMSAN over QMSAN†,
these tests show a real benefit of 2.79x, measured by having
both fuzzers analyze the same test cases. We find that these
numbers, adding to the end-to-end overheads we discussed
above, further substantiate the efficiency benefits that we claim
for our multi-layer, opportunistic design behind QMSAN.

Other measurements: We conclude the treatment of RQ4
by detailing data points for two relevant phenomena.

Based on the runtime overheads we discussed above, the

reader may be tempted to think that our design results in
a modest number of invocations of the accurate detector
component during an execution. As our readers may see in
Table VII, we request very few test case executions during a
fuzzing campaign (and even never on c-ares). We can also
safely conclude that these requests are not the reason behind
the higher overheads we mentioned for fuzzing openssl, as
we issue 8 requests in total (approximately once every 200K
completed executions, which amount to 1.6M in 24 hours).

Finally, we provide figures we collected on the shadow
map accesses to provide an additional perspective on the
performance gains of our approach. For several subjects, these
reflect what we anticipated in Challenge 4 and 5 for how
binary-level approaches are at a disadvantage compared to
source-based solutions due to the differences in visibility and
in the code constructs. The figures we collect do not capture
shadow propagation or library instrumentation costs, but focus
on load and store operations from program code, as even
our efficient opportunistic design must instrument completely.
Each of them necessarily causes a shadow memory access.

Table VIII shows the data for the FTS subjects with 1, 000
test cases picked uniformly at random from the larger pool
of 100, 000 used in the prior experiments. Looking at the
ratios between the accesses done by MSan and by QMSAN,
in the vast majority of cases QMSAN has to instrument
more operations. We suspect the outliers json and woff2
may reflect unwanted effects from the MSan instrumentation
restraining the optimization opportunities for the clang com-
piler, especially for the write case of woff2. Remarkably,
the overwhelming amount of store operations in the program
code of openssl explains the higher run-time overheads
that we experience when fuzzing it. This analysis brought
to our attention another design opportunity: we believe these
writes occur in pathological loops where the compiler can
apply hoisting if the target and the initialization status cannot
change. In future work, we would like to study optimizations
for these behaviors in the context of the opportunistic detector,
for which it would suffice to mark only once a given address
as initialized in an execution (as long as that memory remains
allocated).

VI. OTHER RELATED WORKS

Binary Sanitization: Recently, a few works have explored
binary sanitization in combination with fuzzing. As we men-
tioned in Section I, none of them has tackled UUM errors.

RetroWrite [11] proposes an approach based on reassem-
bleable disassembly to instrument binary software. RetroWrite
uses static analysis to insert both fuzzing instrumentation and
sanitization machinery to detect for addressability issues. The
work shows how static techniques can produce good results in
binary analysis, outperforming QEMU-based dynamic analysis
by 4.5x. After the publication of RetroWrite, the developers
of AFL++ have significantly optimized the fork server and
other runtime features for use with the User Emulation of
QEMU [28], largely reducing the performance gap between
dynamic and static binary instrumentation. As a limitation,
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MSan QMSan Ratio
Subject Load Store Total Load Store Total Load Store Total
c-ares 10 250 3 977 14 227 13 603 9 659 23 262 1.33 2.43 1.64
guetzli 41 623 113 143 232 234 184 855 347 71 042 102 136 017 694 207 059 796 1.71 0.95 1.12
json 26 492 307 15 586 824 42 079 131 25 112 824 19 801 050 44 913 874 0.95 1.27 1.07
libxml2 144 661 204 39 678 510 184 339 714 188 860 261 137 939 926 326 800 187 1.31 3.48 1.77
openssl 23 660 580 5 702 123 29 362 703 64 886 395 98 870 336 163 756 731 2.74 17.34 5.58
pcre2 21 959 153 14 434 450 36 393 603 51 990 182 34 862 467 86 852 649 2.37 2.42 2.39
re2 38 172 849 16 540 906 54 713 755 52 042 314 41 401 158 93 443 472 1.36 2.50 1.71
woff2 236 241 446 176 314 501 412 555 947 320 190 558 105 619 783 425 810 341 1.36 0.60 1.03

geomean 1.55 2.24 1.73

TABLE VIII
FTS SUBJECTS: NUMBER OF SHADOW MEMORY ACCESSES FROM PROGRAM CODE DONE IN MSAN AND QMSAN.

RetroWrite can only work with position independent code, as
its design necessitates to be able to use relocation information.
Most recently, ARMore [13] has brought the capabilities of
RetroWrite to the AArch64 domain, removing the position
independent code requirement and adding other enhancements.

QASan [12] shows how sanitization can be implemented
with dynamic binary translation to detect addressability issues
while performing fuzz testing. Being both implemented inside
the TCG component of the User Emulation of QEMU, our
work shares similarities with the design of QASan, although
the instrumentation required to detect addressability issue is
conceptually very different (e.g., load and store instructions
suffice). Addressability issues can only be detected on heap
buffers, while stack variables are unsupported. This is due to
the fact that ASan-like instrumentation requires redzones to
be placed in between allocations, in order to detect possible
overflows when accessing memory. While this is easy to
achieve by interposing on heap management functions and
redirect the addresses they work on, stack-allocated storage
cannot be moved around to make room for redzones.

MTSan [21] uses Memory Tagging Extension (MTE), a
hardware feature available in the AArch64 architecture, to per-
form binary sanitization for fuzzing. With this feature, MTSan
can detect errors between stack and global objects without
the need to insert redzones. Unfortunately, this solution still
suffers from the lack of known boundaries between allocations
in both stack and global objects, so it can have false positives.
To tackle this problem, MTSan implements a technique called
progressive object recovery, which uses information about the
multiplicity of fuzzing runs to probabilistically reconstruct the
layout of stack and global objects, thus minimizing the number
of false positives.

Optimizing Sanitizers: Other works have explored tech-
niques to reduce the performance cost of address sanitization
for both compiler-level and binary-level implementations.

FuZZan [19] argues that the root cause of sanitization
overhead when fuzzing is heavyweight metadata (namely, the
shadow memory), which is designed to support frequent meta-
data operations over long executions. To reduce this overhead,
FuZZan proposes a new lightweight metadata structure that
trades startup and teardown costs for slightly higher per-access
costs; then, it also proposes a technique to switch between

metadata structures at run-time to automatically detect which
is the most effective, remembering this decision throughout
the fuzzing campaign to reduce the slowdown globally.

SanRazor [18] focuses on reducing the number of sani-
tization checks. It first gets coverage information by doing
a profiling phase; then, it uses this information to analyze
sanitization checks and determines which can be removed
without losing precision. In particular, it uses both static and
dynamic information to detect which checks are dominated by
others, thus removing the need for the dominated one.

Asan-- [29] reduces the overhead from sanitizer checks by
introducing new optimizations. It first detects and removes
unsatisfiable checks by implementing a new lightweight static
approach based on control flow traversal and basic constant
propagation. Then, it removes recurring checks by using
dominator analysis. Further, it tries to merge neighbor checks
to reduce the cost of multiple checks. Finally, it optimizes
checks in loops by detecting and merging them. By doing so,
it reduces run-time overhead by 41.7% on SPEC CPU 2006.

Optimizations similar in spirit to those from SanRazor and
Asan-- may be most effective in challenging cases like the
openssl one we encountered in our evaluation, and provide
helpful benefits to most programs in general. As we mentioned
in Section III-E and later in Section V-D, we look forward to
exploring this angle soon.

VII. CONCLUSION

We presented QMSAN, the first practical, fuzzer-friendly,
and performant solution for UUM sanitization when fuzzing.
Through an opportunistic, multi-layer design, we trade a resid-
ual number of test case executions under full instrumentation
(i.e., program and libraries, with shadow propagation) for a
remarkably faster operation during fuzzing, reusing knowl-
edge about presumed violations that were false positives and
instrumenting only a program’s load and store operations.
This solves the practical limitation of MSan, avoiding false
positives in exchange for a residual risk of false negatives,
which are preferable for practical value (just as it happens
with ASan and libraries). We showcase the practical value of
QMSAN by exposing 44 new UUM bugs in 13 programs. Our
hope is that, pending positive feedback from the community,
QMSAN will be considered for inclusion in OSS-Fuzz.
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APPENDIX A
ADDITIONAL ACCURACY EXPERIMENTS

To further compare QMSAN’s accuracy with other state-of-
the-art binary-level solutions, as anticipated in Section V-C,
we generate 100, 000 test cases from saturated queues and
execute them with individual rounds in Valgrind, Dr. Memory,
and both our accurate and opportunistic detectors. We conduct
this experiment on the closed-source software of Section V-B
and extend the analysis to the 8 FTS subjects of Section V-A.

We first check whether our accurate detector and the two
state-of-the-art tools yield consistent answers, so as to spot
potential false negatives and false positives. We start by
checking if every test case that raises a UUM violation in
one of the three systems does so also in the other two,
obtaining consistent results8. This finding confirms that our
accurate detector can report a buggy test case to the fuzzer (and
the user) like existing tools would do, further validating our
implementation. We then attempt automatic deduplication of
all the reports to group UUM errors with identical stacktrace.

Table IX shows the results of this experiment. QMSAN’s
accurate detector detects the same UUM errors (both in

8We experienced false positives with Dr. Memory with both versions of
nconvert. One single false positive occurred in all executions due to
imperfect handling of string manipulation operations where safe operations
happen on potentially uninitialized data. By inspecting the log from Dr.
Memory, we could confirm the tool is still able to detect, after those false
positives, all the (true) UUM errors as in Valgrind and our accurate detector
when a test case raises one. For this reason, in Table IX we report Dr. Memory
can detect the same unique UUM violations as the other two systems.
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Program Unique reported violations
Name Opportunistic Accurate Valgrind Dr. Memory
cuobjdump 12.3 2 2 2 2
cuobjdump 12.4 0 0 0 0
nconvert 7.136 9 20 20 20
nconvert 7.155 10 17 17 17
nvdisasm 12.3 0 0 0 0
nvdisasm 12.4 0 0 0 0
pngout 28 28 28 28
rar 6.11 1 1 1 1
rar 7.0 0 0 0 0
c-ares 0 0 0 0
guetzli 0 0 0 0
json 0 0 0 0
libxml2 16 16 16 16
openssl 1 1 1 1
pcre2 1 1 1 1
re2 2 2 2 2
woff2 0 0 0 0

TABLE IX
ADDITIONAL ACCURACY EXPERIMENTS USING RECORDED TEST CASES.
THE TWO SETS OF PROGRAMS ARE, RESPECTIVELY, THE PROPRIETARY

PROGRAMS FROM RQ1 AND THE FTS SUBJECTS FROM RQ3.

quantity and identity) as existing tools. This result comes
to no surprise as its accurate detector is designed to have
identical capabilities to the state of the art. The attentive
reader would notice that, for the proprietary programs, the
counts are higher than those from Table III, which instead are
bugs manually deduplicated with the assistance of developers.
For the two versions of nconvert, all these test cases here
collectively reproduce the same, respectively, 5 and 4 bugs
from the RQ2 evaluation. For pngout, in the responsible
disclosure of the 2 bugs from RQ2, we reported 11 distinct
UUM violations and accepted the developer’s analysis of 10
being just one logic bug with the argument that they were all
about the auto-detection logic of a single file format (TGA).
This rationale seems applicable also to the 28 crashes found
in this experiment9.

We then simulate a fuzzing session by executing the op-
portunistic detector with an initially empty map of violations
(Section IV) over the 100, 000 recorded test cases. Our goal
is to assess whether, in a fuzzing session, the opportunistic
detector can expose the same UUM errors as the accurate
one. We identify unique violations among those that the
opportunistic detector sees as new and supplies to the accurate
detector for validation, and that in turn the latter reports as true
UUM errors. We provide these violation counts in Table IX.

For most benchmarks, these counts coincide with those
from the accurate detector and the other tools. The discrepan-
cies on the two nconvert versions are only apparent and
explainable with the different meaning of violation in the
opportunistic detector. As we explained throughout Section III,
the opportunistic detector sees a potential violation when a
load operation involves data marked as uninitialized in the
shadow memory, whereas the accurate detector (like existing
tools) performs shadow propagation and raises a violation at

9We did not follow up on it due to the stated intention of the developer not
to fix issues that come from inputs with apparently random contents.

the instruction that uses the uninitialized data. As we explain
below, there are no false negatives in these experiments.

By manual analysis of logs, we validate that each unique vi-
olation the existing tools found in their analyses directly stems
from one uninitialized read that the opportunistic detector
identifies (and sees confirmation for) in this experiment. For
nconvert, we identify distinct violations that are different
uses of the same data that a single load instruction reads from
memory, which the opportunistic detector reliably detects.
In other words, we are dealing with different manifestations
(uses) of the same issue (reading an uninitialized data item),
and reporting the issue once is sufficient to identify the bug10.

APPENDIX B
PERSISTENT FUZZING

Binary fuzzing literature typically centers around the use
of a fork server for testing, stopping execution when about to
enter the main function and cloning the process at each run
to execute a test case in a clean state. This choice improves
fuzzing efficiency by eliminating several costs attributable
to operating system, linker, and C library activity. When a
program performs time-consuming initialization steps in its
code, fuzzing users can also use an optimization, called de-
ferred initialization, that moves forward to a manually selected
program location the point where the fork server suspends
execution. These optimizations are standard in the fuzzing
practice and require no changes to the program under test.

Persistent fuzzing is an optimized execution mode where,
instead of forking a new process for each test case, the fuzzer
reuses one process for multiple test cases. To enable persistent
fuzzing, the program (or its portion) under test should operate
like a function that one can call multiple times and that resets
program state by itself when execution ends: each program
run must have no impact on future ones and leave no resource
leaks after its completion. For stability reasons, the fuzzer
periodically replaces the process with a newly forked one.

While persistent fuzzing can enable important performance
gains, it typically requires modifications to the program under
test, especially if the program is not a library. For example,
many OSS-Fuzz subjects come with harnesses featuring a
loop to initialize the required context, invoke the code, and
eventually clean up the program state at each execution.

QMSAN’s design is naturally compatible with persistent
fuzzing. Assuming the program comes with a harness or does
not need one, our handling of heap deallocations and function
returns automatically restores the status of the shadow memory
for heap and stack memory in use to test case execution.

From an implementation perspective, though, binary-level
fuzzer architects assume that the program under test is an off-
the-shelf binary. For example, while AFL++’s compiler-based
instrumentation provides macros to annotate harness code
provided for persistent fuzzing, its QEMU-based counterpart
only supports restoring a saved state for emulator registers and

10This dynamic loosely reminds us a notable difference between bugs and
crashes, as distinct crashes may be different manifestations of the same bug.
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pages when execution reaches a specific instruction. That is,
the latter has no natural provisions to accommodate a harness
for persistent mode, as it does not expect that one can exist.

In preliminary experiments, we tested some FTS sub-
jects with QMSAN by writing a generic harness that reads
the input from a file and passes it to the program-specific
LLVMFuzzerTestOneInput() function, and then setting
the emulator to restore registers once our harness regains con-
trol. In 1-hour tests, we obtained 2.5-5x speedups consistent
with AFL++’s QEMU-mode documentation [30]. This forced

interaction, however, may be suboptimal for performance
and implementation tweaks may improve these speedups. For
example, one may disable state restoration, place our generic
harness in a cycle, and extend the QEMU backend to inform
AFL++ about test case execution completion through signals.
This may also ease the realization of another known fuzzing
optimization that replaces input files with a shared memory. As
these implementation refinements are conceptually orthogonal
to our design, but potentially also of independent interest (e.g.,
for cross-architecture testing), we leave them to future work.
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