
type++: Prohibiting Type Confusion
With Inline Type Information

Nicolas Badoux
EPFL

nicolas.badoux@epfl.ch

Flavio Toffalini†
Ruhr-Universität Bochum; EPFL

flavio.toffalini@rub.de

Yuseok Jeon
UNIST

ysjeon@unist.ac.kr

Mathias Payer
EPFL

mathias.payer@nebelwelt.net

Abstract—Type confusion, or bad casting, is a common C++
attack vector. Such vulnerabilities cause a program to interpret
an object as belonging to a different type, enabling powerful
attacks, like control-flow hijacking. C++ restricts runtime checks
to polymorphic classes because only those have inline type
information. The lack of runtime type information throughout
an object’s lifetime makes it challenging to enforce continuous
checks and thereby prevent type confusion during downcasting.
Current solutions either record type information for all objects
disjointly, incurring prohibitive runtime overhead, or restrict
protection to a fraction of all objects.

Our C++ dialect, type++, enforces the paradigm that each
allocated object involved in downcasting carries type information
throughout its lifetime, ensuring correctness by enabling type
checks wherever and whenever necessary. As not just polymor-
phic objects but all objects are typed, all down-to casts can
now be dynamically verified. Compared to existing solutions, our
strategy greatly reduces runtime cost and enables type++ usage
both during testing and as mitigation. Targeting SPEC CPU2006
and CPU2017, we compile and run 2,040 kLoC, while changing
only 314 LoC. To help developers, our static analysis warns where
code changes in target programs may be necessary. Running the
compiled benchmarks results in negligible performance overhead
(1.19% on SPEC CPU2006 and 0.82% on SPEC CPU2017)
verifying a total of 90B casts (compared to 3.8B for the state-of-
the-art, a 23× improvement). type++ discovers 122 type confusion
issues in the SPEC CPU benchmarks among which 14 are new.
Targeting Chromium, we change 229 LoC to protect 94.6% of
the classes that could be involved in downcasting vulnerabilities,
while incurring only 0.98% runtime overhead over the baseline.

I. INTRODUCTION

The C++ language provides high-performance and object-
oriented abstraction capabilities. C++ organizes objects in
parent-child relationships, in which child classes inherit (and
extend) attributes and functions from their parents. Ideally, any
new class represents a new type in the program, thus designing
flexible software architectures. Casting operations enable more
modular software development as objects can be passed to
functions defined for another type. Unfortunately, C++ does
not enforce type safety and cannot check the correctness of

†Work done while at EPFL.

all cast operations due to limited type information available
at runtime, resulting in the risk of type confusion. Type
confusion happens when the program interprets an object as
belonging to a different type. In these attacks, fields may
be interpreted as different types (e.g., an int misinterpreted
as a pointer) or invoking unexpected virtual functions. Type
confusion vulnerabilities in C++ applications are a building
block to mount code-reuse [1] and data-only attacks [2]
in a wide range of software products, such as Telegram
(CVE-2021-31318), Firefox (CVE-2023-25736, CVE-2023-
25737), or Google Chromium (CVE-2019-5757, CVE-2020-
6464, CVE-2022-3315, CVE-2023-6348). Across all these
CVEs, developers tried to detect these vulnerabilities (e.g.,
using static_cast or custom runtime type information)
but ultimately failed due to mismatches between the expected
static types in the source code and the dynamic type of the
objects at runtime. Type confusions are reported under the
Common Weakness Enumeration CWE-704: Incorrect Type
Conversion or Cast and caused by CWE-843: Access of
Resource Using Incompatible Type.

Considering the impact of type confusion attacks, re-
searchers designed new languages that are type-safe by design,
such as Java or Rust [3]. These languages prohibit erroneous
typecasts, mitigating the attack surface. However, due to the
compatibility between C++ and C, enforcing type safety and
thereby mitigating type confusion is challenging. For inter-
operability, C++ provides an almost duality between classes
and C-style structs. Once an object has been allocated, there
is no inherent way of retrieving its type from the memory
encoding. In C, casts merely determine the fields’ offset.
With polymorphic objects (those with virtual functions), C++
introduces vtable pointers (vptr), i.e., runtime type information
(RTTI) to uniquely identify the type of the object. Without
vtable pointer, the type of a memory area remains opaque
at runtime. C++ provides different cast operations offering
varying guarantees. Only dynamic casts execute a runtime
check, but can only be used for polymorphic objects since they
rely on the RTTI of vtable pointers. Conversely, static casts
leverage the declared types in the source code to statically
check class relationships while C-style casts carry neither
a dynamic nor static check. To enforce type safety, only
dynamic_cast should be used [4], an option that core
contributors of the standard envision to ease even at the cost
of breaking the ABI [5].

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230053
www.ndss-symposium.org

mailto:nicolas.badoux@epfl.ch
mailto:flavio.toffalini@rub.de
mailto:ysjeon@unist.ac.kr
mailto:mathias.payer@nebelwelt.net

LLVM-CFI [6] leverages RTTI to protect casts involving
the fraction of polymorphic objects, i.e., only around 3% of
all the casts in our benchmarks. Alternatively, the academic
community proposed several sanitizers [7], [8], [9], [10], [11],
[12], [13] that track all objects involved in down-to casts and
check their types against disjoint metadata. However, they
incur high overhead and are imprecise (e.g., if object copy is
incorrectly tracked), resulting in both false positives and false
negatives. Therefore, C++ remains prone to type confusion, a
common attack vector used in exploits.

By introducing type++, a C++ dialect, we tackle type
confusion vulnerabilities from a language perspective. By
relinquishing some compatibility (with negligible impact in
practice), type++ checks down-to casts at runtime, guaran-
teeing that objects are only used under the respective types
specified at initialization. Our C++ dialect builds on the prop-
erty that each object is typable throughout its lifetime. type++
associates a unique type (i.e., a hidden field) to each object.
This inline type field is key for fast and effective type checks
for all casts, similar to other type-safe languages (e.g., Java
or Rust). At the same time, type++ is highly compatible with
existing C++ programs. The few incompatible code patterns
are easy to detect, and therefore amenable to straightforward
patching. We analyze and classify the code adaptations that
type++ requires. For each, we study solutions and measure the
impact of such modifications on real cases. Where the code
patterns are incompatible with type++, we devise compile-time
warnings and errors that aid developers in porting code to the
type++ dialect.

To demonstrate the efficacy of our dialect, we implement
type++ by extending Clang and LLVM. Our compiler takes
C++ programs as input, produces warnings in case of in-
compatibilities, and then emits executables protected against
downcasting type confusion.1 We deploy type++ across the
two compiler benchmarks SPEC CPU2006 [14] and SPEC
CPU2017 [15]. Additionally, we develop a benchmark to com-
pare type++ to external metadata approaches. Moreover, we
apply our type++ compiler to Chromium to show compatibility
with, likely, today’s most complex C++ code base. We choose
the SPEC CPU benchmarks because their use cases range from
simple examples (e.g., NAMD ∼3 kLoC) to large, complex
programs (e.g., Blender ∼600 kLoC) and because it allows
comparison with previous works. We successfully compile
around 2,040 kLoC, encompassing both SPEC CPU2006 and
CPU2017. Chromium is a massive, fast-moving project, and
only setting up the environment to compile it with a different
LLVM version may take months. We manage to protect 3,030
classes (out of 3,201 — 94.6%) in roughly twelve man months,
while we deem the remaining classes easy to address given
developers familiar with the codebase. For all our use cases,
we measure the performance overhead, the number of lines of
code modified during the porting, and compare it with existing
runtime type confusion mitigations.

1Unless differently specified, we use the term type confusion to refer to
downcasting type confusion throughout the paper.

Our results show that type++ only incurs on average a
0.94% overhead when considering both SPEC CPU2006 and
CPU2017 together, which is two orders of magnitude faster
than HexType, a state-of-the-art type confusion sanitizer. Ad-
ditionally, type++ validates 23 times more casts than LLVM-
CFI. Compared to previous approaches, type++ does not
suffer from false-positive type confusion detection since it
is free from incorrect object lifetime tracking that plagued
the previous type confusion detectors. Finally, type++ remains
highly compatible with the current C++ ISO Standard. When
looking at the SPEC CPU benchmark suite, inspecting the
warnings resulted in modifying 125 LoC and 131 LoC for
SPEC CPU2006 and CPU2017, respectively. For Chromium,
our porting modifies only 229 LoC out of the 35 MLoCthe
project contains.

To sum up, our contributions are:
• Specification of type++, a C++ dialect that enforces safe

down-to cast by design through our baseline property that
all objects remain typable throughout their lifetime.

• Study the adaptation required to port standard C++ pro-
grams over to type++ and propose an analysis/mechanism
to help developers with this task.

• Evaluation of type++ against both SPEC CPU2006 and
SPEC CPU2017, demonstrating its high compatibility and
low performance overhead.

• Characterization of the porting for Chromium on type++
through a twelve months long study, along with a discus-
sion of this effort.

The full source code, the documentation to replicate
our experiments, and our technical reports are open-source:
https://github.com/HexHive/typepp/.

II. BACKGROUND

C++ is an object-oriented programming language with di-
verse features and constraints due to the tight relationship with
the systems programming language C. Here, we detail the
concept of class hierarchies (§II-A), C++ casting operations
(§II-B), and the type confusion problem (§II-C).

A. Classes hierarchies and polymorphism

C++ relies on classes to implement polymorphism, which
allows a developer to abstract generic concepts and reduce
code duplication in a program. In the simplest schema, classes
are organized hierarchically in parent-child relationships. This
approach allows child classes to extend or override some func-
tionality of the parent. In particular, C++ implements function
override using a vtable, which is a table of function pointers
to so-called virtual functions [16]. For instance, the classes
Greeter and Execute in Listing 1 are both children of
the class Base. Conversely, the class UnrelatedGreeter
is disconnected from the inheritance tree. Defining a new
class means introducing a new type in the program ac-
cording to the language’s type system. Therefore, an object
of type Greeter cannot be used where an Execute or
UnrelatedGreeter object is expected.

2

https://github.com/HexHive/typepp
https://github.com/HexHive/typepp

B. Casting in C++

Casting allows the programmer to reinterpret the runtime
type of an object. In addition to implicit conversion, C++
features five distinct casting operators with distinct rules and
properties. The developer is responsible for choosing the
appropriate casting operator.

1) const_cast strips the const and volatile prop-
erty of an object. This operation has its caveats but is
unrelated to type confusion. They are thus considered out
of scope.

2) dynamic_cast changes the type of an object with
runtime verification validating the compatibility of the ob-
ject’s type. The validation routine mandated by the language
specification generally requires the presence of metadata in
the form of runtime type information (RTTI). As RTTI is only
available for polymorphic types, dynamic_cast cannot be
used for non-polymorphic objects. The C++ Core Guidelines
recommends dynamic_cast in almost all use cases as the
performance impact is, despite rumors, negligible [4].

3) static_cast changes the type of an object simi-
larly to dynamic_cast. However, no runtime check is
performed nor is RTTI required. Limited casting validation
is performed at compile time, namely the check searches for
a path in the type hierarchy from the source to the target
type. Lacking any runtime verification, wrong casts (e.g., an
object of type Parent could be cast into Child) lead to
type confusion vulnerabilities. Casting a pointer from outside
the class hierarchy (e.g., char* or void*) into an object
of a specific class is permissible as well. Incorrect usage
of static_cast is the main culprit for type confusion in
C++ applications.

4) The reinterpret_cast operator reinterprets the
underlying memory area of the object as the target type.
Verification happens neither at compile time nor at runtime,
and the correctness is delegated to the programmer, thus
raising similar security issues to static_cast.

5) In C++, C-style casts are automatically replaced at com-
pilation time by following a priority schema: a const_cast
is preferred over a static_cast, which in turn is favored
over a reinterpret_cast. The first operator that satisfies
compilation is selected. Due to their definition in terms of
the other C++ casting operators, C-style casts inherit the
underlying potential for type confusion vulnerabilities.

C. Type confusion

Type confusion vulnerabilities fall into two categories,
namely down-to-cast and unrelated type (or void*) casting.
Down-to-cast are portrayed in the functions downToCast()
(line 28) while an unrelated type cast occurs in the
unrelatedType() function (line 34) in Listing 1.

Down-to-cast vulnerabilities happen when a base class is
cast into a subclass. In our example, the program treats an
instance of a class Execute as if it is an instance of the
Base class (line 42). Then, the base class is passed to the
function downToCast() (line 43) which finally casts it

Listing 1 Example of a C++ class hierarchy. The functions
downToCast and unrelatedType are examples of down-
to-cast and unrelated cast type confusion vulnerabilities, re-
spectively.

1 #include <iostream>
2

3 class Base { // Parent class
4 /* Other fields and functions */
5 };
6

7 class Execute : public Base { // Child of Base
8 public:
9 virtual void exec(const char *program) {

10 system(program);
11 }
12 };
13

14 class Greeter : public Base { // 2nd Child of Base
15 public:
16 virtual void sayHi(const char *str) {
17 std::cout << str << std::endl;
18 }
19 };
20

21 class UnrelatedGreeter { // Unrelated class
22 public:
23 virtual void sayHello(const char *msg) {
24 std::cout << "Hello: " << msg << std::endl;
25 }
26 };
27

28 void downToCast(Base* b, const char *msg) {
29 Greeter *g = static_cast<Greeter*>(b);
30 // exec() is invoked instead!
31 g->sayHi(msg);
32 };
33

34 void unrelatedType(void* p, const char *msg){
35 UnrelatedGreeter *g =

reinterpret_cast<UnrelatedGreeter*>(p);↪→

36 // exec() is invoked instead!
37 g->sayHello(msg);
38 };
39

40 int main(int argc, char *argv[]) {
41 const char *payload = "/bin/bash";
42 Base *b = new Execute();
43 downToCast(b, payload);
44 unrelatedType((void*)b, payload);
45 delete b;
46 return 0;
47 }

into a Greeter object (line 29). At this point, the program
erroneously considers the pointer g as a Greeter, however,
the entry in the vtable of g points to the function exec
that activates the payload (line 31) instead of the harmless
sayHi function.

Unrelated cast vulnerabilities, instead, exploit backward
compatibility for C programs that allows pointers to be
considered as a generic type void*. In our example, the
pointer b is an instance of class Execute (line 42). When
unrelatedType() takes b as input (line 44), the compiler
loses any type information of b. Therefore, the pointer can
be cast as UnrelatedGreeter (line 35). The wrong cast
allows an adversary to invoke exec() (line 37).

3

In the literature, there are two main approaches to mitigate
these issues. First, approaches based on disjoint metadata
structures trace and check the type of objects at runtime for
down-to-cast [8], [9], [17], [10]. However, these approaches
introduce considerable overhead and low precision. For in-
stance, incorrect tracking of the object lifecycle (e.g., due
to not propagating metadata during object copies) causes
stale metadata which might result in both false positives and
negatives. False positives arise when the allocator reuses the
space of a previously deallocated object without updating
the metadata, thus leading to a misalignment between the
actual object type and the stale metadata. False negatives,
instead, appear when an object’s metadata is unavailable and
the system cannot decide whether a type violation occurred.
Second, approaches may use existing (partial) type information
to implement (partial) runtime type checks, e.g., based on
pre-existing RTTI metadata and dynamic_cast in C++.
Unfortunately, C++ allocates RTTI metadata only for poly-
morphic objects, thus limiting the type check coverage. type++
overcomes the limitations of both approaches by defining a
new C++ dialect that allocates inline metadata for all objects
involved in downcasting, enforcing precise type checks, thus
prohibiting type confusion by design.

III. THREAT MODEL

As type++ can be deployed both as a sanitizer and as a
mitigation, our threat model encompasses both scenarios.

We assume an adversary with knowledge of an illegal
downcast, i.e., the adversary knows where in the source code
the downcast is and can construct an input to trigger a type
confusion through this downcast. Our work prevents such
type violations. More precisely, and in line with previous
work [9], [8], arbitrary writes are out of scope for our
mitigation. We assume that the attacker cannot modify the
type information embedded in objects. This assumption is
challenging to guarantee in practice but deploying mitigations
like DEP, stack canaries, ASLR, CFI, and safe allocators [18],
[19] approximates it. However, even with such mitigations,
all out-of-bounds writes may not be prevented. For example,
given a strcpy missing a length check and an array of
objects whose layout ends with a char* object, an out-of-
bound write may overwrite the next object vtable pointer.

Additionally, we assume a correct implementation of the
type++ compiler and of the underlying operating system.
Finally, as type++ does not rely on secrets, arbitrary reads do
not generally compromise type++’s guarantees [19]. Leaking
code pointers may allow an attacker to circumvent ASLR.
While there are already many code pointers (e.g., vtable
pointers) available as target, type++ will increase the number
of code pointers and, thereby, augment this attack surface.

IV. TYPE++ SPECIFICATION

C++ cannot enforce type safety due to the compatibility
requirements of C++ objects with C structs. Also, historically,
C++ compilers ran into performance and optimization con-
straints for type checks [16]. Yet, type violations are frequently

used as the initial bug in exploit chains. Enforcing type checks
as part of a safe C++ dialect mitigates these security risks.
Essentially, C++ strictly associates a type only to polymorphic
classes, all other structures and classes remain vulnerable to
type confusion bugs. For simplicity’s sake, we refer to classes
and structures interchangeably. Our proposal, type++, is a
novel C++ dialect that mitigates downcasting type confusion
by design. In particular, type++ assigns a type to all objects
of a program and enforces runtime checks for all down-to
casts. We call this concept Explicit Runtime Types, formally
described as:

Property 1 (Explicit Runtime Types.) Given all classes CS
of a program P , type++ associates a unique type T to each
class A ∈ CS at compile time. Embedding the type T into
each object of class A enables explicit type checks before each
downcast, ensuring their correctness.

In practical terms, Property 1 ensures that each instance
of a class A embeds a field that uniquely identifies its type.
In classic C++, instances of polymorphic classes embed a
vtable pointer for this purpose and a pointer in the RTTI
section encodes the type information. Our property generalizes
this requirement from polymorphic objects to all objects.
We enforce this property at compile time. The introduction
of this extra pointer allows a program to implement strict
downcasting protections, thus mitigating completely these type
confusion attacks. In our evaluation (§VI), we show that
adopting type++ provides strong protection at low performance
overhead. Our system can, therefore, be used both as an
effective sanitizer (helping developers discover and fix bugs)
and as a powerful mitigation (preventing exploitation of type
confusion vulnerabilities through early program termination).

Enforcing Property 1 protects all objects, thus achieving
strong type safety mitigation by design. In practice, how-
ever, type confusion attacks require the execution of a cast.
Thus, adversaries target only classes involved in these casts.
Therefore, without loss of generality or security, adding type
information only to classes involved in downcasting operations
achieves the same security guarantees as protecting all classes.
Furthermore, blindly embedding type information into all
classes might change assumptions in the code about a class,
thus possibly reducing the compatibility between type++ and
the C++ standard. In type++, we consider that a class is
involved in downcasting operations if anywhere in the program
an object of that class is either cast to a different type in
the same hierarchy or if a cast returns an object of this type.
Upon these considerations, we introduce a additional property,
called Explicit Runtime Types for Cast Objects, that specializes
Property 1 and assigns a runtime type only to those classes
at risk of down-to type confusion attacks. We formalize this
property as follows:

Property 2 (Explicit Runtime Types for Cast Objects.)
Given the classes CS of a program P , type++ associates a
unique type T to each class A ∈ CS if A is involved in a
downcasting operation.

4

To enforce Property 2, we infer, during a compile-time
analysis phase, which classes are involved in downcasting.
Then, we associate a unique type T only to those classes
involved in casting operations. In §VI, we measure the impact
of this optimization and show that enforcing Property 2 on
SPEC CPU required us to change only 314 LoC out of
2,040 kLoC (around 0.04%).

To further improve the compatibility between standard C++
and type++, a developer can restrict Property 2 only to a subset
of classes, manually annotated in the source code. This allows
developers to apply type++ only to some program components,
thus reducing the number of incompatibilities to address. This
feature is implemented as an additional property called Explicit
Runtime Types for Annotated Objects, formally described as:

Property 3 (Explicit Runtime Types for Ann. Objects.)
Given the classes CS of a program P , and a set of annotated
classes AC ⊆ CS, type++ associates a unique type T to
each class A ∈ AC.

The enforcement of Property 3 enables us to deploy type++
on complex programs, such as Chromium, by using lim-
ited resources (i.e., graduate students unfamiliar with the
Chromium code base) and protecting 94.6% of its classes.
Further information about this case study is provided in §VI-D.

In the rest of this section, we discuss the differences between
type++ and standard C++. Without loss of generality, we
mainly consider Property 1 as it has stricter assumptions, while
we switch to Property 2 or Property 3 only in clearly stated
specific cases.

A. Affected programming patterns

type++ relies on Property 1 to ensure strong typing. How-
ever, this protection also introduces new assumptions not
considered in the C++ standard and that lead to different
programming patterns. Here we discuss the new patterns
introduced by type++ and how to adapt legacy C++ code to
our dialect. Since porting consumes precious developer time,
we measure the impact of such efforts in §VI. Our evaluation
shows that the trade-off between adopting type++ and the new
security guarantees is acceptable.
Phantom casting. Listing 2 shows an example of phantom
casting. A phantom class is a parent-child relationship where
the child’s data layout is equivalent to the parent’s data
layout [9] (lines 3 and 5). Even though this corresponds to an
illegal downcast in principle, in practice, current C++ imple-
mentations ignore phantom casting to maintain interoperability
between C and C++ code.
Solution and Impact: Even though this practice may be ex-
ploited for de-facto type confusion [20], type++ allows their
usage for backward compatibility. However, since this may
cause issues in later development, we implement a static
analysis to find active cases. In our evaluation, we report no
such type confusion when applying Property 2 (§VI-A).
sizeof()/offsetof() usage. C++ offers the
sizeof() and offsetof() operators. The former checks
the size of classes or structures. The latter, instead, returns

Listing 2 Example of phantom casting.
1 #include <stdio.h>
2

3 class BaseType { /* other fields */ };
4

5 class PhantomType : BaseType {};
6

7 void checkCast() {
8 BaseType *ptr = new BaseType();
9 // The following cast results in Undefined

10 // Behavior in standard C++ but is commonly
11 // tolerated as both classes have the same layout.
12 if (dynamic_cast<PhantomType*>(ptr) == NULL)
13 printf("error!\n");
14 }

the offset of a field with respect to a class or structure. In
Listing 3, we show an example as part of a Substitution
Failure Is Not An Error (SFINAE) expression [21].
Adopting type++ introduces an extra RTTI pointer in the
classes yes and no (lines 8 and 12), altering their expected
size and the results of val (line 28).
Solution and Impact: sizeof and offsetof return the
correct values when taking the extra type field into considera-
tion, which is the expected behavior for most use cases (e.g.,
malloc(sizeof(T))). However, issues may arise when
comparing the results with a scalar or with another value
returned by these operators. Comparison with a scalar (e.g.,
sizeof(no) == 2) is already discouraged in standard C++
as the type size might be implementation-dependent. With
type++’s extra type field, the expected scalar will differ. To
mitigate the misuse of these features, we design two strategies.
First, one can enforce Property 2 to reduce the number of
instrumented classes, thus improving the cross-compatibility
between standard C++ and type++. Second, we designed a
static analysis to emit a warning whenever an instrumented
class is used as a parameter of sizeof() or offsetof().
Our evaluation shows high usage of this pattern, specifically
957 occurrences for Property 1 and 129 occurrences for the
relaxed Property 2 in SPEC CPU benchmarks. In practical
terms, a single pattern (e.g., a SFINAE template) required a
trivial source code adaptation. This high compatibility is due
to the small number of scenarios where sizeof() misbehave
(i.e., when comparing to a scalar or when padding is involved
as in Listing 3). The code adaptations are also usually simple
(e.g., increasing the size of no to over 16 bytes, line 12). We
discuss these cases in more detail in §VI-A.
Implicit placement new. Listing 4 shows an example of
implicit placement new. The class Y is used to allocate
memory for X in a similar fashion to the placement new
C++ operator. Without type++, the objects instantiated by
classes X and Y have the same size (line 11) and may be
used interchangeably—as long as the developer accepts the
underlying type confusion. However, in type++, due to the
Property 1, class X and class Y contain an RTTI pointer
which increases the class size. Therefore, the resulting size
of class Y exceeds the one of class X as it includes space for
two vtable pointers, its own mandated by RTTI and the one

5

Listing 3 Code example of sizeof() in SFINAE. The issue
arises because sizeof(yes) and sizeof(no) now have
the same size due to extra padding when using type++.

1 #include <iostream>
2

3 struct foo {
4 typedef float X;
5 };
6

7 struct yes { // type++: sizeof(yes) == 16
8 char c[1]; // due to struct padding matching
9 }; // the alignment of the RTTI pointer.

10

11 struct no { // type++: sizeof(no) == 16
12 char c[2]; // due to struct padding matching
13 }; // the alignment of the RTTI pointer.
14

15 template <typename T>
16 struct has_typedef_X {
17

18 template <typename C>
19 static yes& test(typename C::X*);
20 template <typename>
21 static no& test(...);
22

23 static const bool val =
sizeof(test<T>(nullptr)) == sizeof(yes);↪→

24 };
25

26 int main(int argc, char *argv[]) {
27 std::cout << std::boolalpha;
28 std::cout << has_typedef_X<int>::val << std::endl;

// standard C++: false, type++: true↪→

29 std::cout << has_typedef_X<foo>::val << std::endl;
// true for both standard C++ and type++↪→

30 return 0;
31 }

contained in __blob_ (line 4) for the vtable pointer of X .
type++ reports the type confusion between class X and class
Y but might produce an error at runtime as the cast at line 9
leads to out-of-bound accesses.
Solution and Impact: As classes X and Y are not related,
type++ alerts the developer of the type confusion. The valid
fix would be to replace this pattern with the C++ placement
new operator. In type++, this pattern cannot be handled auto-
matically and requires a fix for valid execution. While current
C++ compilers accept this pattern, it relies on Undefined
Behavior as the translation between X and Y is not well-
defined. In our evaluation, we found 131 (for Property 1) and
3 (for Property 2) instances of this pattern in the 2,040 kLoC of
the SPEC CPU benchmarks. However, none of them resulted
in a runtime error nor produced unexpected behaviors (i.e., the
benchmarks’ output was correct). In addition to reporting the
type confusion, type++’s analysis identifies this code pattern
and warns the developer that a fix is necessary.

V. TYPE++ TECHNICAL DETAILS

A. Default constructors

To enforce the above properties, type++ requires a default
constructor for each instrumented class to set the vtable pointer
of an object correctly. We use the default constructors for

Listing 4 Code example of implicit placement new.
1 class X { /* other fields */ };
2

3 class Y {
4 char __blob_[sizeof(X)];
5 };
6

7 int main(int argc, char *argv[]) {
8 X* x;
9 Y* y = reinterpret_cast<Y*>(x);

10 X* z = reinterpret_cast<X*>(y);
11 static_assert(sizeof(X) == sizeof(Y), "error");
12 // The above assert is true in standard C++ but
13 // false in type++.
14 return 0;
15 }

handling heap allocators (§V-C) and union (§V-D) initializa-
tion. However, naively synthesizing default constructors might
break either the C++ semantic or the original program logic.
For instance, a class might be purposely designed without a
default constructor to be a POD (Plain Old Data) type or a non-
clonable object (i.e., classes without copy constructor [16]).

To automatically inject dummy default constructors without
breaking either the C++ standard nor the developer intention,
type++ uses a two-step compilation approach. The first step
verifies that the program is C/C++ compliant without consid-
ering the type++ specifications, i.e., ensuring that the program
adheres to the C/C++ semantic and is free of compilation
errors. In the second step, we override the C++ semantics and
forcibly inject the default constructors. Note that, if the first
step fails, the compilation does not proceed. This allows us to
keep the original C/C++ language semantic along with help-
ful compiler warnings or error messages while synthesizing
default constructors for the vtable pointer initialization.

B. Uninitialized variables

Uninitialized variables lead to undefined behavior [22]. An
uninitialized object does not call a constructor and therefore
does not initialize the vtable pointer. This might cause crashes
during dynamic_cast as well as crashes during type++
checks. We detect the use of uninitialized variables by en-
abling the Clang flag -Wuninitialized during the initial
compilation and report the warnings to the developer.

C. Allocation through C-style allocators

When an object is created using an allocator from the C-
style malloc family (e.g., malloc, realloc, or calloc),
the system only reserves space for the object without ini-
tializing it, thus not setting the vtable pointer. To enforce
Property 1, our static analysis automatically identifies the
use of C-style allocators for instrumented classes. Then, it
explicitly sets the vtable pointer right after the allocation
using a default constructor. Spurious use of calloc in-
stead of malloc may allocate more memory than required
for a single object. We mitigate this behavior by retrieving
the size of the block of memory effectively allocated via
malloc_usable_size() and loop through the allocated
memory, calling the constructor for as many objects that

6

fit in the block. This transformation allows us to correctly
handle vtable pointer initialization through realloc by only
setting the vtable pointer on newly allocated memory. In-
deed, calling the constructor on previously allocated memory
could result in data being overwritten. Therefore, when faced
with an allocator from the realloc family, type++ first
retrieves the size of the previously allocated memory. This
allows us to compute the range of newly allocated mem-
ory and only initialize the vtable pointer there. We process
std::allocator_traits [16] likewise: For each class
implementing the trait, we identify the memory allocation
and inject the vtable pointer initialization, accordingly. While
our prototype implementation relies on libc to retrieve
the actual allocated size, extending support to other systems
is straightforward (e.g., via _msize on Windows [23] or
malloc_size on Mac OS X [24]).

Besides the standard system allocators, we encountered
many custom allocators built on top of the malloc primitives.
Many of them injected a custom header in front of the allo-
cated object to store metadata or debug information. Having
an extra header obscures the object’s location, thus hindering
the pointer arithmetic and causing unpredictable crashes. To
automatically handle these cases, type++ contains an allow-list
with the custom allocator functions and their respective header
size. The compiler takes this number into account to locate
the future objects in memory and then invokes the constructor
accordingly. The allow-list is externally configurable. We use
this technique to correctly handle POV-Ray (SPEC CPU2006
and CPU2017), Xalan-C++, and Blender, which otherwise
would generate non-protected objects (i.e., missing vtable
pointer during type checks). While our technique handles
the benchmarks correctly, we recommend a rewrite of these
allocator patterns, following a modern programming style [25].

D. Polymorphic union members

In type++, a union, like any object, must have a type
attached according to Property 1. By design, it is unknown
which type a union will hold at compilation time. type++
cannot, therefore, know which constructor to call when the
union is first declared. This issue also prevented C++, before
the C++11 standard, from having polymorphic objects as union
members. To highlight the issue, let us suppose we have a
union with two polymorphic classes and an int variable.
When we create an object, we cannot predict which member’s
constructor to call as we do not know which member of
the union will be activated later. Explicit constructors (e.g.,
placement_new) are generally needed when the type is
changed through a union [26]. To automatically address this,
our compiler inserts a constructor call every time a union
switches from or to an instrumented type.

E. Initialization of const variable

const variables have to be completely initialized during
their declaration [27]. In type++, the object initialization
is done in two steps: first, we set the vtable pointer, and
second, we invoke the actual object constructor. Therefore,

naively applying this transformation would break the const
constraint. In our compiler, we solve this case by relaxing the
const property for classes instrumented and allowing exactly
two initialization steps. First, forcibly inserting an additional
constructor exclusively sets the vtable pointer. Then relying on
the native constructor to instantiate the object. The language
semantics are preserved as program correctness is verified in
the first compilation step described in §V-A. As an alternative,
we could predict the initialization of the const variable and
initialize it in a single step, however, this requires a complex
error-prone analysis.

F. Interaction with other C++ libraries

Programs sharing classes with external libraries must agree
on a common per-object memory layout. For instance, a
program P might use a class C to communicate with a library
L. Compiling P for type++ adds an extra vtable pointer to C
and modifies its memory layout (due to Property 1). Therefore,
if L is not aware of the new layout of C, the program will
execute incorrectly.

To solve this issue, we simultaneously build P and L with
our type++ compiler and impose Property 1 to both. This
approach ensures P and L follow the same data layout. For
Property 2, we instrument the set of classes involved in casts
in either P or L. However, this approach requires each library
L to be specialized for each program P . In case L is closed-
source, one can tune Property 3 and select only those classes
that do not interact between P and L. This reduces the security
guarantees as all the objects of the excluded classes will not
be checked at runtime but improves the compatibility with
closed-source libraries. When possible, we highly recommend
specializing the library to avoid any risk of type confusion.

G. Interaction with the kernel and non-C++ code

Similar to uninstrumented C++ libraries, interacting with the
operating system and other native code via modified objects
may create compatibility issues. Considering the burden of
rebuilding the kernel, we propose a wrapper function for
system calls in libc to remove the vtable pointer before
sending modified objects to the kernel. Once the system call
returns, the wrapper then adds back the vtable pointer for
further handling by the compiled program.

Due to Property 2, we did not encounter any such case
in our evaluation. All type++ programs interacted with libc
without requiring any wrapper. While this is not a guarantee,
the large amount of benchmarks we executed indicates that this
is not a problem in practice. Without Property 2, each C struct,
including those passed to the kernel, would be instrumented,
requiring rebuilding the kernel or inserting multiple wrappers
to adjust the objects’ layout and remove vtable pointers. This
highlights the benefits of our optimization over the coarse-
grained approach of Property 1.

In general, if such translated structs are passed to non-
type++ code, a compiler pass can detect it and warn the
programmer that a translation function may be required.

7

H. Prototype implementation
Our type++ compiler prototype is based on the LLVM

infrastructure (version 13.0.0, the latest release at project
instantiation). The implementation consists of 3.1 kLoC added
to Clang and LLVM passes. In particular, we modify Clang/L-
LVM to (i) detect and warn in case of incompatible code
patterns, and (ii) change the data layout in non-polymorphic
objects. We implement typecasting verification by extending
the security properties of LLVM-CFI [6]. Natively, LLVM-
CFI performs type checks only over polymorphic objects, thus
leaving a wide attack surface for all non-polymorphic object
types. In type++, we augmented all classes with RTTI, thus
extending the coverage of LLVM-CFI.

As part of the evaluation, we create a microbenchmark
to compare the overhead of different typecasting verification
approaches. As described in §VI-C, the workload tries to
mimic the typecasting behavior of OMNeT++ which is part
of the SPEC CPU2006 benchmark.

VI. EVALUATION

Our evaluation of type++ explores four research questions:
(RQ1) What is the compatibility between C++ programs and

the type++ dialect (§VI-A)?
(RQ2) What are the new type++ security guarantees (§VI-B)?
(RQ3) What is the overhead introduced by type++ (§VI-C)?
(RQ4) What is the porting effort of type++ for a major C++

project (§VI-D)?
Experimental setup. Our experiments are performed in a

Docker container based on Ubuntu 20.04 running on a server
with two Intel Xeon E5-2680 v4 @ 2.4GHz CPUs with 256GB
of RAM in total.

Target programs. We evaluate type++ on two popular
benchmarks: SPEC CPU2006 [14] and CPU2017 [15]. For
each benchmark, we select all included C++ programs, re-
sulting in seven targets from SPEC CPU2006 and nine from
SPEC CPU2017. We additionally target Chromium 90, the
most recent version compatible with LLVM 13 that is avail-
able on Debian. We measure Chromium runtime performance
through JetStream2 [28], an aggregation of JavaScript and
WebAssembly benchmark.

State-of-the-art. We compare type++ against four recent
state-of-the-art projects: TypeSan [8], HexType [9], Effec-
tiveSan [13], and LLVM-CFI [6]. Note that LLVM-CFI pro-
vides typecasting verification but limits it to polymorphic
objects only. Since TypeSan, HexType, and EffectiveSan are
seven and six years old, respectively, we managed to compile
them only against the seven targets from SPEC CPU2006,
while we built all the 16 targets with LLVM-CFI. We run all
the related work experiments with the experimental setting of
type++. As a common baseline, we use LLVM 13 and opti-
mization level O2 with Link Time Optimization enabled as it is
required by LLVM-CFI. LLVM-CFI and type++ are both built
on top of LLVM 13. The relative numbers of both of them refer
to native execution on LLVM 13. Likewise, we used LLVM 3.9
for TypeSan and HexType and LLVM 4.0 for EffectiveSan
since they were developed for these platforms, respectively.

A. Compatibility analysis

We perform a compatibility analysis and count lines of
code (LoC) that match the programming patterns described
in §IV-A. For detecting implicit placement new and
sizeof()/offsetof(), we employ a conservative static
analysis over the AST to avoid true negatives, as done in
previous works [29]. For phantom casts, we extract the class
hierarchy and infer the classes’ data layout through LLVM.
Since we rely on static analysis, the final numbers are a
generous over-approximation. We implement these analyses
as a plugin for Clang. Additionally, we count the number of
uninitialized objects that are undefined behavior in standard
C++. These issues are orthogonal to the type++ porting
efforts and may result in miscompilation even in standard
C++. To identify uninitialized objects, we enable the flag
-Wuninitialized during the vanilla compilation [30]. We
measure the number of affected code patterns for Property 1
and Property 2, respectively.

Table I shows the result of our analysis. Overall, compiling
the SPEC benchmarks with Property 2 produces 179 warnings
compared to 1480 warnings for Property 1, i.e., the optimiza-
tion of only instrumenting cast-related classes reduce the num-
ber of warnings by almost 90%. When applying Property 1,
we encounter a few incompatibilities with the sizeof()
operator as part of SFINAE expressions in the Boost library
(similar to the example in Listing 3). As the classes involved
are never cast, the issues disappear when using Property 2.
Generally, most of the programs work without any modifica-
tions and only a fraction of them require manual source code
adaptations. Well-behaved programs written in modern C++
generally do not require any modifications. More specifically,
we modify deal.II, Blender, and POV-Ray (in both SPEC
CPU2006 and CPU2017). They require changing 314 LoC in
total (around 0.04%). Besides deal.II, whose modification was
trivial, we discuss Blender porting efforts below and the ones
of POV-Ray and Xalan-C++ in Appendices §A-B and §A-C.

Focusing on the detected warnings, implicit placement
new warnings require to inspect at maximum 131 LoC
when considering Property 1 and only 3 LoC in the case
of Property 2. For phantom casting, our analysis highlights
129 LoC for Property 1 but none when Property 2 is used.
sizeof()/offsetof() warnings concern at most 957
LoC with Property 1 and only 129 LoC otherwise. In this
case, the only real incompatibility observed with sizeof()
resides in SFINAE expressions in the Boost library. The
other warnings for sizeof() are tied to memory allocation
routines, thus not causing any trouble as the size is correctly
adjusted during compilation. We do not observe any runtime
errors/misbehavior related to warnings from offsetof().
We also encounter a very limited number of uninitialized
objects, 21 for Property 1 and 6 for Property 2, respectively.
Upon further investigation, we conclude that the warnings
were false positives due to the over-approximation of Clang’s
default analysis and do not introduce runtime issues, such as
object initialization behind opaque conditions.

8

Table I: Number of warnings in SPEC CPU2006 and CPU2017. For each cell, we indicate the number of possibly incompatible
LoC in the format (# LoC w/ Property 1) / (# LoC w/ Property 2). The numbers show that most of the programs do not require
modification, while the smallest patch modifies only 2 LoC (deal.II) and the biggest only 131 LoC (POV-Ray). This evaluation
confirms the low impact of porting C++ projects to type++ dialect. The last three columns indicate if the program uses a
custom allocator (i.e., C), the number of unique program locations that introduce type confusions, and the compilation duration
overhead, respectively.

Use Case Total LoC Implicit
plac. new

Phantom
Casting

sizeof()
offsetof()

Uninit.
Objects

LoC Changed Custom
Allocator

T. C.
Errors

Compilation
Overheadadd (+) del (-)

SP
E

C
C

PU
20

06

NAMD 3,887 0 / 0 0 / 0 1 / 0 0 / 0 - - - - 106%
deal.II 94,832 1 / 0 3 / 0 51 / 0 0 / 0 2 - C - 94%
SoPlex 28,277 15 / 12 0 / 0 3 / 0 0 / 0 - - - - 103%
POV-Ray 78,679 0 / 0 0 / 0 223 / 61 9 / 3 79 44 C 56 106%
OMNeT++ 26,647 0 / 0 14 / 1 7 / 1 0 / 0 - - C - 93%
Astar 4,280 0 / 0 0 / 0 9 / 0 0 / 0 - - - - 112%
Xalan-C++ 264,389 5 / 0 129 / 0 13 / 0 1 / 0 - - C 4 107%

SP
E

C
C

PU
20

17

CactuBSSN 63,307 0 / 0 0 / 0 1 / 0 0 / 0 - - - - 108%
NAMD 6,396 0 / 0 0 / 0 6 / 0 0 / 0 - - - - 110%
Parest 359,012 72 / 20 7 / 0 101 / 3 0 / 0 - - - 1 108%
POV-Ray 80,079 0 / 0 0 / 0 223 / 61 9 / 3 87 44 C 53 109%
Blender 615,895 14 / 0 0 / 0 15 / 9 0 / 0 47 11 C 1 103%
OMNeT++ 85,732 0 / 0 102 / 0 35 / 1 2 / 0 - - C 2 111%
Xalan-C++ 291,160 24 / 3 125 / 0 259 / 1 0 / 0 - - C 5 109%
Deep Sjeng 7,284 0 / 0 0 / 0 7 / 0 0 / 0 - - - - 117%
Leela 30,524 0 / 0 0 / 0 3 / 0 0 / 0 - - - - 84%

Total 2,040,380 131 / 35 380 / 1 957 / 137 21 / 6 215 99 - 122 106%

Finally, regarding custom allocators, we address them by
using an allow-list of functions. During our evaluation, we
find 16 custom allocators across 6 programs (deal.II, Blender,
SoPlex, Xalan-C++, and both versions of POV-Ray). type++
gracefully handles allocators with and without custom headers
within the same program, for example, MEM_mallocN and
BLI_memarena_alloc in Blender.

Use case: Blender. We encounter three different sources
of incompatibility when porting Blender. The first problem
involves shared structures (defined in .h files) between C and
C++ code (§V-G). Due to Property 1, the structs in C++
now contain an additional vptr field, that remains absent
in the C code. This results in having two different memory
layouts for the structs in C and type++ code, leading to
unpredictable crashes. We fix this issue by adding a field of the
same size as the vptr pointer at the beginning of the structure
in the C code, the field is activated only when compiling as
C source code, thus adjusting the memory layout between the
two languages. Our second issue is that Blender relies on fat
pointers to store metadata information (e.g., using the LSB as
object type reference). The Blender developers employ bit-
mask operations before pointer dereferencing. type++ flags
these locations as type confusion as it cannot locate the vtable
pointer due to the address offset. Upon closer inspection, we
observe the vtable pointer is correctly set but the memory
address is not pointing to the beginning of the object. We
manually patch the code by adding a bit-mask before cast
operations to adjust the pointer operations. If fat pointer
casting is used at multiple locations, applying the unmasking
operation automatically at cast verification time could be
implemented as an optional feature. As overloading pointers is

not common, we argue in favor of manually fixing a few cases.
Blender casts fat pointers only at two locations, we address this
issue with 20 LoC modified. Finally, Blender uses custom heap
allocators that wrap the standard malloc family functions.
In this case, we add the malloc-like functions in type++’s
custom allocator list without source code modification (§V-C).
Overall, we modify only 58 LoC out of more than 600K (less
than 0.1%) while the program logic stays untouched.

Takeaway. This evaluation shows the high compatibility
between C++ and type++. In particular, applying Property 2
requires limited effort to port C++ projects, i.e., we modified
123 and 131 LoC for both POV-Ray (0.16%) and 58 LoC for
Blender (< 0.1%) while it protects every cast operation. Refer
to §VII for specifics that could limit type++ adoption.

B. Security evaluation

To evaluate the security guarantees of type++, we measure
the number of downcasts checked at runtime. Specifically,
we run the 16 use cases of the SPEC benchmarks against
type++, TypeSan, HexType, and LLVM-CFI whose results are
in Table II (LLVM-CFI) and Table III (TypeSan and HexType).

Table II shows the result of our experiments in regards
to coverage of type casts with type++ compared to LLVM-
CFI. Due to the introduction of Property 1, type++ allows
all previously undetected objects to emerge and be properly
verified. This is particularly evident for SoPlex, POV-Ray, and
Leela, in which type++ alters normal classes into polymorphic
ones. type++ can check the integrity of all downcasts, resulting
in an additional 13B and 51B runtime cast for POV-Ray 2006
and 2017, respectively. Similarly for Leela, where type++ can
now monitor the integrity of 21M down-to-casts that otherwise
would remain unchecked.

9

Table II: Overhead and coverage evaluation of type++ and LLVM-CFI deployed over SPEC CPU2006 and CPU2017. For each
program, we indicate the average overhead measured (i.e., %), the number of down-to casts, and unrelated casts observed in
our experiments. In the right-most part of the table, we compare LLVM-CFI and type++: the delta columns (∆) show the
difference in terms of casts protected, while the last two columns indicate type++ memory overhead.

Use Case
LLVM-CFI type++ ∆ memory (%)

(%) down-to unrelated (%) down-to unrelated down-to unrelated avg. max.

SP
E

C
C

PU
20

06

NAMD -0.52 0 0 -0.82 0 0 0 0 0.58 0.59
deal.II 1.50 0 0 2.02 17,462M 122M 17,462M 122M -0.18 0.20
SoPlex -0.22 0 0 1.15 209K 28M 209K 28M 1.94 2.98
POV-Ray 0.55 0 1K 4.11 11,477M 1,342M 11,477M 1,342M 0.44 0.43
OMNeT++ 3.43 1,897M 3 4.07 2,521M 270K 624M 270K 0.35 0.16
Astar -1.16 0 0 -0.15 0 0 0 0 0.27 -0.09
Xalan-C++ -0.12 282M 4K 0.09 284M 5K 2M 612 0.32 -0.01

SP
E

C
C

PU
20

17

CactuBSSN -2.54 30 0 -0.87 80K 100 80K 100 0.12 0.11
NAMD -0.47 0 0 -0.42 0 0 0 0 0.17 0.17
Parest -0.26 11M 18K -0.11 2,462M 85M 2,451M 85M -0.83 -0.58
POV-Ray 0.66 0 573 3.04 45,861M 5,370M 45,861M 5,370M 3.82 3.82
Blender 0.25 0 0 4.58 0 7M 0 7M 1.39 1.37
OMNeT++ 3.22 1,428M 6M 2.59 2,786M 6M 1,358M 829K 1.21 1.10
Xalan-C++ -0.28 227M 4K -0.81 227M 198M 0 198M 1.52 1.20
Deep Sjeng 0.12 0 0 -0.41 0 0 0 0 0.00 0.00
Leela 0.57 0 0 0.43 21M 1K 21M 1K 0.12 0.16

Table III: Performance comparison of type++ against TypeSan, HexType, and
EffectiveSan. Since TypeSan and HexType only mitigate down-to-casts, we do
not report unrelated casts for type++. EffectiveSan has a different definition of
cast checking which does not allow a direct comparison. We, therefore, omit the
numbers and include a discussion in §VI-C.

Use Case TypeSan HexType Eff.San type++
(%) # cast (%) # cast (%) (%) # cast

SP
E

C
C

PU
20

06

NAMD 0.00 0 0.17 0 588 -0.82 0
deal.II 74.25 3,379M 6.13 3,380M 1,212 2.02 17,462M
SoPlex 0.00 0 0.00 209K 497 1.15 209K
POV-Ray 23.52 0 -2.39 0 667 4.11 11,477M
OMNeT++ 44.32 2,014M 29.21 2,014M 229 4.07 2,521M
Astar 1.70 0 1.05 0 310 -0.15 0
Xalan-C++ 35.46 283M 17.96 283M 1,593 0.09 284M

Table IV: Type confusions found by Hex-
Type, EffectiveSan, and type++ in SPEC
CPU. In SPEC CPU2006, type++ finds a
superset of the errors found by previous
works while incurring lower overhead.

Use Case HexType Eff.San type++

20
06 POV-Ray 0 56* 56

Xalan-C++ 2 2* 4

20
17

Parest - - 1
POV-Ray - - 53
Blender - - 1
OMNeT++ - - 2
Xalan-C++ - - 5

* Numbers from the paper that we could not reproduce.

Using inline cast information, combined with a complete list
of custom allocators (§V-C), allows type++ to overcome the
coverage issues affecting disjoint metadata approaches [9]. As
shown in Table III, type++ does not miss any cast and indeed
protects every object passing through a downcast. Similarly
to LLVM-CFI, type++ has an option to additionally protect
unrelated casts (i.e., cast over void*) whose classes are
polymorphic or instrumented. This feature allows type++ to
stretch its protection beyond the disjointed approaches without
any further porting cost. As a consequence, type++ protects
a vast number of runtime casts that, so far, were unprotected,
e.g., for SoPlex and POV-Ray 2017 (28M and 5B casts
respectively).

There are limited actions to bypass type++, e.g., a possible
issue could emerge if custom allocators are not properly
allow-listed by the developer. Another possibility is to use
a flawed type check logic. We assume the logic is sound
(§III), moreover, our prototype relies on the standard type
checks in LLVM, which has been widely tested and optimized
by the community. Finally, another cause of type confusion

could come from undefined behavior or other memory safety
violations, which we considered out of scope (§III).

From our evaluation, we observe a total of 122 type con-
fusions in SPEC CPU2006 and CPU2017, among them, 14
bugs are newly discovered by type++. Table IV compares the
type confusions found by type++, HexType, and EffectiveSan.
type++ can mitigate all the bugs discovered by either Effec-
tiveSan or HexHype, demonstrating that our dialect protects an
attack surface covering both state-of-the-art tools. We discuss
how we tackle type confusions in POV-Ray (Appendix §A-B)
and Xalan-C++ (Appendix §A-C). We attach detailed technical
reports describing the type confusions in our open-source
documentation. These type confusions have been fixed in more
recent versions of the benchmark code. The patches are in line
with type++’s properties (e.g., using a proper class hierarchy
and dynamic cast).

Takeaway. Our evaluation shows that type++ validates
every downcast: it covers up to 109 more casts compared to
the previous state-of-the-art, e.g., deal.II and POV-Ray have
17B and 45B more runtime checks than with LLVM-CFI.

10

C. Performance overhead

We assess the performance overhead of type++ over the
two benchmark sets previously introduced, SPEC CPU2006
and CPU2017. For the two SPEC benchmarks, we recompiled
each use case in vanilla (i.e., using the unmodified Clang
as the compiler) and with alternative protection/mitigation
techniques, specifically, TypeSan, HexType, EffectiveSan, and
LLVM-CFI. We repeated each run five times and considered
the average execution time (we observed a negligible standard
deviation). For type++, we rely on Property 2 as it offers the
same security guarantee as Property 1 while instrumenting
fewer objects, reducing performance overhead. We do not
evaluate Property 1 overhead as it would require analyzing a
vastly superior number of warnings as highlighted in §VI-A to
obtain a worse runtime performance and no additional security
guarantees. We summarize the evaluation of type++ against
LLVM-CFI in Table II, while the results against TypeSan and
HexType are in Table III. In both tables, we show the runtime
overhead against their baseline (i.e., %) and count the number
of casts protected at runtime. The latter is further split between
the down-to cast in the scope of type++ and the unrelated
cast that LLVM-CFI and type++ additionally support. We
consider only down-to-cast for TypeSan and HexType since
they do not cover unrelated casts. For EffectiveSan, we omit
the number of casts since their definition is incompatible
with ours. Additionally, we compare the memory overhead of
type++ against LLVM-CFI in the last two columns of Table II.
We also investigated the impact of patches on the program’s
performance. For this, we compile both original and patched
programs against vanilla Clang and measure the overhead.
Finally, we break down the cost of each operation of the
different type-checking approaches. This shows that disjoint
metadata approaches suffer from heavy lookup costs and
cannot achieve performance on par with inlined approaches.

The overhead introduced by type++ (Table II) ranges from
−0.87% (CactuBSSN) to 4.58% (Blender), while the LLVM-
CFI overhead stays between −1.16% (Astar) and 3.22% (OM-
NeT++ 2017). The type++ overhead loosely correlates with the
number of additional casts protected. For instance, OMNeT++
2006 shows a performance overhead of 4.07% while protecting
around 800M more casts than LLVM-CFI when considering
down-to-cast and unrelated casts together (around 2.5B casts
in total for type++ against 1.9B casts for LLVM-CFI, i.e., 30%
more). Similarly, for POV-Ray 2006, LLVM-CFI introduces an
overhead of 0.55% for protecting only 1K casts, while type++
introduces a 4.11% overhead by covering more than 12B casts
in total (down-to and unrelated casts together). This is due to
our core property that ensures that every object possesses type
information queryable at runtime, allowing type++ to stretch
inline protections already tested and optimized to every cast,
including many that remained unchecked by previous works.

In comparison with disjoint metadata structure approaches,
such as HexType and TypeSan, the benefits of type++ are
even more noticeable (Table III). While HexType exhibits a
maximum overhead ranging up to 29.21% (OMNeT++) and

TypeSan 74% (deal.II), type++’s overhead is limited to 4.58%
and 4.11% for Blender and POV-Ray 2006, respectively.
Nonetheless, type++ is capable of protecting more casts than
previous approaches, i.e., type++ covers 25% more casts than
HexType for OMNeT++. Furthermore, Property 1 allows us
to protect every cast, resulting in 14B casts from deal.II 2006
protected, that are covered by neither HexType nor TypeSan.
The performance improvement is mainly driven by type++ not
requiring heavy cast tracking nor disjoint metadata structures
operations that introduce a notable overhead.

EffectiveSan uses Low-fat pointers [31] to store type infor-
mation. This work shares a different threat model compared to
type++ since they trace any type of cast regardless of security
implications. The result is an impactful overhead that ranges
from ∼230% to ∼1600%. This exemplifies how Property 2
limits the overhead by focusing on real cast operations. Ad-
ditionally, we observe a few false positives when deploying
EffectiveSan over deal.II. Specifically, EffectiveSan wrongly
reports as type confusion some template variables that it infers
belong to different types. Conversely, type++ did not show any
false positives in our evaluation.

In terms of memory, type++ introduces a negligible over-
head compared to LLVM-CFI that stays below 1.20% on aver-
age and 1.52% at maximum. The only exception is POV-Ray
2017 with an overhead of 3.82% (average and maximum). We
deem this (limited) discrepancy to be caused by the additional
casts protected compared to LLVM-CFI. Since we protect
more objects, we introduce more RTTI in memory. However,
we consider the observed overhead acceptable in practice.

The impact introduced by our patches is less than 3% in the
worst case—1.46% (deal.II), 1.43% (POV-Ray 2006), 2.83%
(POV-Ray 2017), 2.11% (Blender). Therefore, we argue that
the patches, while modernizing the program code, do not harm
performance nor reduce type++ overhead.

Finally, Astar, Deep Sjeng, and NAMD are examples of
programs without any casting operations. In these cases,
type++ did not meaningfully affect their performance since
we do not introduce any cast-checking nor modify any object.

Performance on a microbenchmark. To more precisely
understand the causes of the performance overhead for each
type confusion protection, we design a microbenchmark that
separates the cost of each operation. In particular, we analyze
HexType as an example of the disjoint metadata approach.
HexType can be decomposed into four major operations:
metadata insertion, metadata deletion, metadata lookup, and
type checking. We compare these operations with the ones of
both LLVM-CFI and type++ as they are identical. As the type
information is directly stored in the object the lookup cost is
minimal, we, therefore, concentrate our effort on evaluating
the cost of the LLVM-CFI type check. Despite investing large
efforts, we were unable to isolate the different costs of the
EffectiveSan prototype implementation. The prototype injects
extra optimization flags into the compilation pipeline which
activates vector optimizations as part of its LLVM integration.
These extra optimizations disturb the results compared to the
baseline. We were unable to disable these extra optimizations.

11

Table V: Breakdown of the cost [ns] of each operation for
disjoint and inlined metadata type checking. For HexType,
verification (Verif.) is the sum of a Type check and a Lookup
operation. A cast verification is 7.7× faster in type++.

HexType LLVM-CFI/type++

Insert Delete Lookup Type check Verif. Verification

19.17 3.21 2.25 2.88 5.13 0.66

Our microbenchmark mimics the OMNeT++ workload from
SPEC CPU2006: it creates 480M objects, 45% of which are
involved in cast operations, and executes 2.5B cast operations
in total. Per our analysis, 99% of the casts in OMNeT++ are
caused by five unique code locations that we replicate in our
microbenchmark. We also approximate the cast distribution
and the class hierarchies. The most complex cast has a five-
level hierarchy between the instantiated object and its base
class. We measure the execution order of the 900M cast
operations by looping through the five cast operations. The
code is written to minimize caching effects and assess the
actual cost of each operation. The benchmark is compiled with
O2 as optimization level and evaluated on the same machine
as the rest of type++ evaluation.

For LLVM-CFI, we measure the duration of the validation
of a static cast that type++/LLVM-CFI instrument. For Hex-
Type, instead, we isolate and measure the four main operations
of disjointed metadata approaches: insert, lookup, delete, and
type check. Table V summarizes the results. HexType has
additional costs to handle the metadata lifetime (Insert and
Delete), which is a single write for type++. Cast verification
is a lookup and a type check for disjoint metadata approaches,
while it is only a RTTI verification for type++. The figures
highlight the heavy cost of the lookup operation of disjoint
metadata approaches, which is more than three times slower
than the type check itself of inlined metadata. This result
shows that the key limitation of disjoint metadata approaches
cannot be resolved by faster type checks alone. In disjointed
metadata approaches, the bottleneck is caused by the query
time to retrieve the data structures containing the type infor-
mation necessary for the check. It has already been optimized
across the different previous works. Currently, type checks are
seven times slower in HexType than in type++. In addition,
current disjoint data structure implementations are not thread-
safe, enforcing thread-safety would likely introduce higher
overhead. This leads us to conclude that type++ is the only
reasonable approach to mitigate type confusion bugs while
maintaining reasonable performances, as also shown by our
experiments in Chromium (§VI-D). Further improvements on
the performance of dynamic_cast are possible as shown
in [32], [33], increasing, even more, the performance advan-
tage of type++ over disjoint metadata approaches.

Takeaway. type++ largely outperforms state-of-the-art ap-
proaches in terms of overhead, while it extends inline-
optimized protections to cast locations that would not be
covered otherwise.

1,102 (34.4%)
LLVM-CFI

1,928 (60.2%)
ported to type++

171 (5.4%)
to support

Total: 3,201 classes involved in downcasting

3,030 (94.6%) current type++

2,099 (65.6%) in scope of type++

Figure 1: Chromium contains 3,201 classes involved in down-
casting, among which 2,099 are in necessary for type++ to
achieve Property 2. LLVM-CFI already protects 1,102 classes
(34.4%). type++ currently supports 1,928 additional classes in
Property 3 (60.2%, 91.8% in respect to “in scope for type++”).
171 classes (5.4%) are yet to be ported. Figure not to scale.

D. Use case: Chromium

In this section, we showcase the porting of Chromium to
type++. We choose this project as an example of an established
legacy codebase, analyze the challenges, and compare our
findings with state-of-the-art solutions. Chromium is the open-
source project underlying Google Chrome, the most popular
browser. Chromium frequently faces type confusion vulner-
abilities (e.g., CVE-2019-5757, CVE-2020-6464, CVE-2022-
3315). With over 35 MLoC written in C++, it is one of the
biggest active open-source C++ projects and, therefore, an
ideal target for type++. We choose Chromium version 90,
which is distributed with Debian 10. For performance reasons,
Chromium developers never use dynamic_cast, resorting
to the unsafe static_cast in release builds. However,
this performance trade-off comes at a security cost. Applying
type++ to Chromium improves the browser security and serves
as a benchmark for type++’s real-world applicability.

In the rest of this section, we detail the result of our
compatibility analysis and discuss our deployment strategy.
Then, we describe the patches applied, measure the overhead,
and compare our approach to other mitigations.

Compatibility analysis. To assess the compatibility of
Chromium with type++, we execute our analysis with Prop-
erty 2, which reports 3,339 warnings (§VI-A). 54.1% of these
warnings were linked to the implicit placement new issue,
but none required a code change. The warnings, however,
correctly point to code segments where improvements were
sensible. While our analysis did not report any phantom class,
it highlights 1,530 locations where sizeof was used.

Another source of potential incompatibilities comes from
Protobuf [34], Google’s data format for serialized structured
data. protoc, the Protobuf compiler, generates C++ code
from specifications. type++ analysis reported code patterns in
generated code which required a minor adaptation to protoc
to ensure that no infringing code is generated.

type++ deployment strategy. Figure 1 illustrates the
Chromium classes involved in downcasting operations and
which fractions type++ and LLVM-CFI each protect. Enforc-
ing Property 2 over Chromium requires instrumenting 2,099
classes and manually addressing 3,339 warnings generated by

12

our compatibility analysis (§VI-A). 1,102 classes already have
RTTI and do not need modification since already protected by
LLVM-CFI. Coping with all the issues at once is impractica-
ble. Therefore, we adopt Property 3 to incrementally include
compatible classes. For example, the team in charge of V8 [35]
could apply type++ to Chromium instrumenting classes used
in V8 only. This leaves the remaining classes unmodified by
type++ and allows for a gradual deployment of type++ while
reducing the risk of type confusion.

We develop a semi-automatic “delta-debugging” system
that iteratively includes classes to Property 3, compiles, and
validates Chromium. We additionally include a caching system
to speed up Chromium compilation from 18 down to 6 hours
on average, which remains the main bottleneck. Despite a lack
of familiarity with the codebase, in roughly eight months,
we manage to compile and run 1,928 of the 2,099 classes
(91.8%) required by Property 2. These classes are linked to
2,428 warnings, leaving 911 warnings of Property 2 (27.3%)
to further manual analysis. By considering all the classes
already equipped with RTTI (34.4%) and those included with
type++ (60.2%), we observe that type++ protects 1,928 classes
(94.6%) involved in downcast operations in Chromium.

Chromium patching. From the compatibility analysis, we
only modify 229 LoC out of 35 MLoC of Chromium C++ code
base to support the above-mentioned 1,928 classes. Most of
the changes involved assertions violated at compile time, e.g.,
strict sizeof comparison with a scalar. Our patches disable
these assertions. We plan to extend type++ with a special
built-in macro which would make these assertions correct for
standard C++ and type++ concomitantly. The modifications
regarding protoc were succinct and involved only three files
for 28 insertions and 19 deletions in total.

Chromium performance evaluation. Our evaluation uses
the average of 10 runs of JetStream2 [28], testing three
Chromium configurations: baseline, LLVM-CFI, and type++
with support of 1,928 classes (94.6% of the total). Table VI
shows the final results. JetStream2 reported a score of 96.14
for baseline Chromium while LLVM-CFI suffers a 0.43%
score reduction (95.73). type++ shows a slightly worse score
of 94.80, indicating a 1.42% reduction of performance com-
pared to the baseline. These results suggest that no major
degradation of performance is caused by type++. These results
are in line with the ones reported by the Chromium developers
who observed that LLVM-CFI incurs less than 1% overhead
when compared to the baseline [36]. The measured overhead
does not affect the final user experience. type++ performance
is on par with LLVM-CFI, and the additional 0.98% score
reduction is caused by type++ protecting more than four times
as many cast operations compared to LLVM-CFI (Table VI).
Considering the severity of past type confusion vulnerabilities
in Chromium, we argue that this extra overhead is reasonable.
We are also confident that instrumenting the rest of the classes
will not result in a vastly different performance since type++
already pays the cost by performing a failing type check for
non-instrumented classes.

Comparison with other mitigations. The deployment of
different type confusion protections has variable impacts in
terms of compatibility and security guarantees. Here, we study
the differences when applying type++, HexType, and LLVM-
CFI—the current state-of-the-art. For HexType, we study its
deployment over Firefox, which approximates the complexity
of Chromium, thus comparing its reported results. LLVM-CFI
is deployable on Chromium as part of the build system.

After porting 1,928 classes, type++ handles 741M down-
to casts (out of 830M–89.7%). From code inspection, we
conclude that the high coverage is caused by a narrow set
of classes responsible for the majority of casts. HexType on
Firefox protects a maximum of only 60% of the down-to casts.
Similar to what was observed with SPEC CPU benchmarks,
by protecting downcasting operations, we also stretch the
protection of type++ over 69M unrelated casts, a form of cast
that HexType cannot support. While the two browsers are not
directly comparable, HexType in general protects fewer down-
to casts and misses all unrelated casts compared to type++.
The HexType authors mention that increasing their ratio of
protected casts is impracticable as it would require complex
code modification to Firefox or non-trivial adaptations of
allocator tracking in HexType ([9]–Sec 5.1). In comparison,
type++ already handles similar pool allocators natively (e.g.,
Blender in SPEC CPU2017). On Chromium, type++ only
misses casts of some classes due to the required engineering
efforts to handle a project of this size. We further observe
that HexType’s implementation suffers from false positives,
i.e., type confusion that do not link to real bugs [37]. We
reached out to the authors, who confirmed our observation.
In certain cases, HexType suffers from stale metadata when
the heap object lifecycle is not correctly handled (see §II-C
for details), thus leading to false positive type confusions.
The authors confirm that they do not delete old metadata to
reduce runtime overhead. Conversely, for type++, every object
embeds RTTI inline, thus carrying correct metadata throughout
the object’s lifecycle, and eradicating false positives by design.
When evaluating LLVM-CFI on Chromium, we observe it
detects only 347M (41.8% of the total) down-to casts. These
numbers are in line with HexType when deployed on Firefox,
and show the large attack surface left by previous works.

Attack surface. Figure 1 describes the attack surface
when considering baseline, LLVM-CFI, and type++. From our
analysis, there are 3,201 classes involved in down-to casts,
1,102 of them are already polymorphic, and 2,099 are non-
polymorphic (POD). In the baseline, no classes are protected.
Using LLVM-CFI cast protection, all the polymorphic classes
become protected, i.e., 34.4% of the total. The introduction
of type++ pushes the tally to 94.6% of the total, almost three
times more than LLVM-CFI.

Takeaway. Compared to LLVM-CFI, type++ manages to
protect almost twice the amount of casts. Moreover, type++
reports no false positives and covers 69M unrelated casts,
which would not be verified by HexType. After porting 1,928
classes, type++ already provides higher security guarantees
than LLVM-CFI and HexType with minimal overhead.

13

Table VI: We compare Chromium baseline against LLVM-CFI
and type++ with support of 94.6% of the necessary classes for
Property 2, using the JetStream2 benchmark. A higher score
is better. The third column is the number of casts protected.
The last column is the percentage of all classes with RTTI,
i.e., including the polymorphic classes from the baseline.

Chromium Perf. Score (%) Cast Classes

baseline 96.14 - - 34.4%
LLVM-CFI 95.73 0.43% 427M 34.4%
type++ 94.80 1.42% 811M 94.6%

VII. DISCUSSION

We discuss some potential challenges when porting source
code to the type++ dialect.

Threats to type++ adoption. Previous dialects like
CCured [38] and Ironclad [29], while pushing C and C++
in the right direction, failed to gain traction as a drop-in
replacement. type++ proposes less drastic changes that are
easier to adopt. Nonetheless, changing the language/dialect of
a project may encounter resistance. We hope and will push for
the inclusion of type++ into the main C++ compilers, initially
as an alternative dialect, to ease accessibility to type++ and
ensure future support beyond the effort of its original authors.
Another likely source of opposition is the necessary integration
into a wider software ecosystem, in particular with shared
libraries. We advise developers to favor Property 3 to ease
adoption. However, this implies maintenance of the allow-list
whenever dependencies change.

Following our experiments, we identified three patterns
whose occurrence in a project make the adoption of type++
challenging. First, if a large subset of classes is shared between
C and C++ code, the effort to synchronize the data layout is
substantial (§VII). Second, instability might arise if the project
relies on undefined behavior (e.g., fiddling with the LSB of
pointers). Finally, the type field in objects should be protected
against arbitrary writes, as laid out in our threat model (§III).
This requirement is not trivial and likely comes with additional
performance and memory overhead. Nonetheless, we consider
these additional security guarantees a worthy trade-off between
performance and security.

type++ aims to remain close to C++. New features are
unlikely to cause new incompatibilities as the language moves
towards type and memory safety as advocated by type++.
From our experience, the effort of porting a codebase to
type++ correlates negatively with how modern the codebase
is. Codebases that expanded from C projects with little mod-
ernization take longer to port. As time passes, we argue that
new projects will naturally follow type++ properties.

Interaction with C code. Projects may combine C and C++
code (e.g., Blender, OMNeT++, Chromium). When compiling
C code, the compiler must consider that some structures
contain RTTI metadata, otherwise, the C code might misuse
objects coming from C++ functions. To solve this problem,
we have to synchronize the data layout across C and C++

modules. We envision three approaches: (i) generate new
headers containing structures with an additional vptr only for
C modules, (ii) modify the structures’ data layout definition in
LLVM, or (iii) add a Clang plugin that manipulates the C AST
generation and adds a vptr to the instrumented classes. As
cross-language interactions are rare, we opted to modify the
structures’ data layouts, i.e., option (i). Note that the compiler
can either change these types automatically or emit a warning
for the developer.

Legacy code libraries. When interacting with legacy pre-
compiled libraries, we cannot assume that their code is aware
of the class modification. Here, we have two options: (i) we
automatically infer the shared structures between legacy and
type++ code and apply Property 3, ensuring equal data layouts
for them in both code sections; (ii) we rewrite the legacy
binary to adjust the field offsets. Neither option is perfect.
As a fallback, we allow the programmer to manually specify
classes shared with legacy code for Property 3.

Esoteric memory allocations. Some programs allocate
contiguous memory regions that contain many objects in
sequence. Our compiler automatically infers which objects the
program is allocating and adds their constructors accordingly
(see §V-C). To automatically locate unconventional allocators,
an analysis can identify allocators that (i) cast to a specific
known class, and (ii) the allocated size does not match the
class size; e.g., A* a != (A*)malloc(sizeof(A) +
len). As a sanity check, type++ separately reports any cast
checks where the vtable pointer was uninitialized, highlighting
the presence of unhandled allocators.

Functionality guarantee. It is key to maintain functionality
when porting code from C++ to type++. If the changes
mandated by type++ are not enforced, under specific condi-
tions, the execution may deviate from the intended one. For
example, in Listing 3, the comparison at Line 28 switches from
false to true, changing the program’s control flow. From
our experience, patterns resulting in functionality difference
remain rare; they are caused by unhandled C/C++ interactions
as detailed above. To prevent such issues, the developer
should investigate warnings reported by type++. Having a
comprehensive test suite adds extra confidence but does not
replace a proper investigation of the conflicting patterns.

Usage as a mitigation. Due to its low runtime overhead,
type++ can be deployed as a mitigation in production to
detect and protect against type confusion attacks. To this end,
developers should ensure that the latest mitigations against
memory safety vulnerabilities (e.g., CFI) are deployed. This
reduces the risk of attacks outside our threat model (§III)
from modifying the type expected in the check or from
skipping the type check completely. Additionally, type++ must
be configured so that the program aborts when type++ detects
a type confusion.

Supporting unrelated casts. Since Property 1 requires all
classes to contain RTTI, type++ could enable type checks
on all unrelated casts. This would guarantee full type safety
in regards to all possible type confusions. This has a higher
impact on performance as more type checks are performed due

14

to the ubiquity of unrelated casts. Additionally, the porting
effort increases as more classes need to be instrumented
for Property 2. Finally, these classes are more likely to
exhibit code smell since they already rely on the ill-advised
reinterpret_cast operator [4]. We leave supporting
unrelated casts for classes not involved in any downcast as
future work.

Type confusions in non-C++ code. With Property 1,
type++ guarantees the absence of downcasting type confusion
in C++ code but cannot protect code in another language.
Type confusion errors may still occur in non-C++ code,
particularly C. Additionally, in the case of JavaScript en-
gines, multiple type confusion vulnerabilities were reported in
JavaScript JIT-generated code due to incorrect type tracking.
We consider these issues orthogonal to type++ efforts.

VIII. RELATED WORK

type++ is a dialect that mitigates type confusion during type-
casting operations. The literature already has C/C++ dialects
addressing such problems, e.g., Cyclone [39] is a type-safe
dialect for C extending standard C with a set of protections
that inspired other programming languages such as Rust [40]
and Project Verona [41]. Likewise, Necula & al. introduced
CCured [38], another C type-safe dialect that is similarly
incompatible with the C++ specification. On the contrary,
type++ is explicitly designed to overcome C++ typecasting
limitations. DeLozier et al. introduced Ironclad C++ [29],
which enforces type safety in C++ programs. However, Iron-
clad C++ relies on the developers to manually adapt all
classes to make them compatible with dynamic_cast.
More recently, UNCONTAINED [42] looked for incorrect
casts of C structure embeddings in the Linux kernel. Another
approach for type safety relies on checkers to validate RTTI
information at runtime. For instance, LLVM-CFI [6] and
UBSan [43] perform type checks at runtime for polymorphic
objects involved in unsafe casts. However, both tools only deal
with polymorphic classes while ignoring Plain Old Data ob-
jects. Conversely, type++ validates both non-polymorphic and
polymorphic classes. Moreover, UBSan requires heavy code
modifications hindering deployment. Alternative approaches
against type confusion use checks based on disjoint metadata
structures [8], [9], [17], [10]. This introduces a large overhead
and suffers from a high rate of false positive. On the contrary,
type++ blocks unsafe casting efficiently and effectively by
design, as evaluated in §VI-B. Concurrent work [44] has
looked at reducing the overhead by not adding type checks if
the developer already implemented their own. This approach is
orthogonal to type++ and hints at further possible performance
improvements. Orthogonal efforts have looked at reducing the
cost of the dynamic_cast type verification [32]. As type++
reuse this type verification implementation, these improve-
ments would show an even greater performance benefit once
deployed on top of type++.

IX. CONCLUSION

We introduced type++, a new C++ dialect that explicitly
assigns RTTI to all classes in a program. type++ allows fast
runtime type checks thus overcoming runtime overhead, low
coverage, and imprecision of previous works.

Our study on the effort to port standard C++ programs to
type++ shows that our dialect requires changing only 0.16% of
a program LoC in the worst case. Over SPEC CPU2006 and
CPU2017, type++ incurs a negligible performance overhead
(i.e., 0.94%—two orders of magnitude faster than HexType)
while protecting all the down-to cast operations (unlike pre-
vious works that are limited to only a subset). We find 122
type confusion errors in SPEC CPU2006 and CPU2017, 14
of them otherwise unobserved. Finally, evaluating type++ on
Chromium results in an acceptable overhead (1.42%). All our
findings, code, the material to replicate our experiments, and
technical reports describing the type confusions found are
publicly released.

ACKNOWLEDGEMENT

We thank the anonymous paper and artifact reviewers,
and our shepherd for their feedback as well as Bhargav
Kommireddy for his help during his internship. This work
was supported, in part, by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 850868), SNSF
PCEGP2 186974, Fondation Botnar, and a gift from Intel
corporation.

REFERENCES

[1] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in 2015 IEEE
Symposium on Security and Privacy, 2015, pp. 745–762.

[2] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block Oriented
Programming: Automating Data-Only Attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1868–1882. [Online]. Available:
https://doi.org/10.1145/3243734.3243739

[3] N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada
Letters, vol. 34, no. 3, pp. 103–104, 2014.

[4] H. Sutter, B. Stroustrup, and other contributors, “C++ Core
Guidelines,” https://github.com/isocpp/CppCoreGuidelines/commit/
6156e957827599f2fcaa5401ebb1668ae9edcdc8, 2015.

[5] H. Sutter, “C++ safety, in context,” https://herbsutter.com/2024/03/11/
safety-in-context/, 2024.

[6] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and
C. Eckert, “Analyzing control flow integrity with LLVM-CFI,” in
Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 584–597. [Online]. Available:
https://doi.org/10.1145/3359789.3359806

[7] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing Use-after-free with Dangling Pointers Nullification,” in 22th
Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8 - 11, 2015, 2015.

[8] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “TypeSan: Practical type confusion detection,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 517–528.

[9] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “HexType: Efficient
Detection of Type Confusion Errors for C++,” in CCS, 2017.

15

https://doi.org/10.1145/3243734.3243739
https://github.com/isocpp/CppCoreGuidelines/commit/6156e957827599f2fcaa5401ebb1668ae9edcdc8
https://github.com/isocpp/CppCoreGuidelines/commit/6156e957827599f2fcaa5401ebb1668ae9edcdc8
https://herbsutter.com/2024/03/11/safety-in-context/
https://herbsutter.com/2024/03/11/safety-in-context/
https://doi.org/10.1145/3359789.3359806

[10] C. Pang, Y. Du, B. Mao, and S. Guo, “Mapping to bits: Efficiently
detecting type confusion errors,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 518–528.

[11] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps, “Debugging via
run-time type checking,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2001, pp. 217–232.

[12] LLVM Developers, “TySan: A type sanitizer,” https://lists.llvm.org/
pipermail/llvm-dev/2017-April/111766.html.

[13] G. J. Duck and R. H. Yap, “EffectiveSan: type and memory error
detection using dynamically typed C/C++,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2018.

[14] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[15] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[16] M. Stevanovic, Advanced C and C++ Compiling, 1st ed. USA: Apress,
2014.

[17] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stop-
ping an emerging attack vector,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 81–96.

[18] D. J. Bernstein and F. Denis, “Libsodium secure memory,” https:
//libsodium.gitbook.io/doc/memory management, 2014.

[19] P. Mao, E. V. Boschung, M. Busch, and M. Payer, “Exploiting Android’s
Hardened Memory Allocator,” in Proceeding of the 18th USENIX WOOT
Conference on Offensive Technologies, 2024.

[20] LLVM Developers, “LLVM-CFI: cast checking strictness,” https://clang.
llvm.org/docs/ControlFlowIntegrity.html#cfi-strictness.

[21] J. Järvi, J. Willcock, and A. Lumsdaine, “Concept-controlled polymor-
phism,” in Generative Programming and Component Engineering: Sec-
ond International Conference, GPCE 2003, Erfurt, Germany, September
22-25, 2003. Proceedings 2. Springer, 2003, pp. 228–244.

[22] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, “To-
wards optimization-safe systems: Analyzing the impact of undefined
behavior,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, 2013, pp. 260–275.

[23] Windows Developers, “ msize,” https://learn.microsoft.com/en-us/cpp/
c-runtime-library/reference/msize?view=msvc-170, 2023.

[24] Apple Developers, “MALLOC SIZE,” https://developer.apple.
com/library/archive/documentation/System/Conceptual/ManPages
iPhoneOS/man3/malloc size.3.html, 2006.

[25] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[26] cppreference.com, “C++ Union,” https://en.cppreference.com/w/cpp/
language/union.

[27] B. Stroustrup, “How do I define an in-class constant,” https://www.
stroustrup.com/bs faq2.html#in-class.

[28] S. Barati and M. Saboff, “Introducing the Jetstream 2 bench-
mark suite,” https://webkit.org/blog/8685/introducing-the-jetstream-2-
benchmark-suite, 2019.

[29] C. DeLozier, R. Eisenberg, S. Nagarakatte, P.-M. Osera, M. M. Martin,
and S. Zdancewic, “Ironclad C++ a library-augmented type-safe subset
of C++,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 287–304, 2013.

[30] Clang Developers, “Clang 19 documentation,” https://clang.llvm.org/
docs/DiagnosticsReference.html#wuninitialized.

[31] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and A. DeHon, “Low-
fat pointers: compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 721–732.

[32] M. Gibbs and B. Stroustrup, “Fast dynamic casting,” Software: Practice
and Experience, vol. 36, no. 2, pp. 139–156, 2006.

[33] S. Macintyre-Randall, “Enforcing C++ type integrity with fast dynamic
casting, member function protections and an exploration of C++ beneath
the surface,” Ph.D. dissertation, University of Kent, 2023.

[34] Google, “Protocol Buffers,” https://developers.google.com/protocol-
buffers/.

[35] ——, “What is V8?” https://v8.dev/.
[36] Chromium Developers, “Control Flow Integrity - The Chromium

Projects,” https://www.chromium.org/developers/testing/control-flow-
integrity/.

[37] M. Payer, “Type Confusion: Discovery, Abuse, Protection,” https://
hexhive.epfl.ch/publications/files/18SyScan360-presentation.pdf, Singa-
pore, 2017.

[38] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477–526, 2005.

[39] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: a safe dialect of C,” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275–288.

[40] S. Klabnik and C. Nichols, The Rust Programming Language (Covers
Rust 2018). No Starch Press, 2019.

[41] Microsoft, “Project Verona,” https://github.com/microsoft/verona.
[42] J. Koschel, P. Borrello, D. C. D’Elia, H. Bos, and C. Giuffrida,

“Uncontained: Uncovering Container Confusion in the Linux
Kernel,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
5055–5072. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/koschel

[43] Clang Developers, “UBSan,” https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html#available-checks.

[44] Y. Zhai, Z. Qian, C. Song, M. Sridharan, T. Jaeger, P. Yu, and S. V.
Krishnamurthy, “Don’t Waste My Efforts: Pruning Redundant Sanitizer
Checks of Developer-Implemented Type Checks,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[45] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “FUZZILLI:
Fuzzing for JavaScript JIT Compiler Vulnerabilities,” in 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet
Society, 2023. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/fuzzilli-fuzzing-for-javascript-jit-compiler-vulnerabilities/

[46] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” 2012.

[47] T. Plachetka, “POV Ray: persistence of vision parallel raytracer,” in
Proc. of Spring Conf. on Computer Graphics, Budmerice, Slovakia, vol.
123, 1998, p. 129.

[48] Apache Software Foundation, “Xalan-C++ version 1.10,” https://xml.
apache.org/xalan-c/.

APPENDIX A
MANUSCRIPT APPENDIX

We present interesting use cases and an experiment demon-
strating the capabilities of type++ as a sanitizer during fuzzing.

A. type++ as sanitizer

We conduct a preliminary analysis to evaluate type++ as
a lightweight sanitizer in a fuzzing campaign. For this ex-
periment, we test V8 [35] version 9.0.257.29, the Chromium
JavaScript engine. We compile V8 in two configurations:
one applying Property 3 and protecting a random set of 32
classes (named typepp), and a second one with the default
V8 fuzzing configuration (named vanilla). Fuzzilli [45], a
mature JavaScript fuzzing tool compatible with V8 (version
0.9.3) serves as our fuzzer. The experiments were executed
on an Intel machine with an i7-8700 @ 3.20GHz CPU and
64GB of RAM. The fuzzing campaign lasted for 12h, starting
with an empty corpus. The vanilla configuration reaches 15%
of branches as coverage, while the typepp one 8% of the
branches. The difference in coverage is caused by new type
confusion bugs detected by type++ that block the exploration
of some V8 components. These bugs were not found by
ASan [46] (the default sanitizer in the vanilla configuration),
which cannot identify type confusion anomalies. ASan would
only crash if a type confusion results in a later memory
safety violation. We are triaging these issues together with the

16

https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://libsodium.gitbook.io/doc/memory_management
https://libsodium.gitbook.io/doc/memory_management
https://clang.llvm.org/docs/ControlFlowIntegrity.html#cfi-strictness
https://clang.llvm.org/docs/ControlFlowIntegrity.html#cfi-strictness
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/msize?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/msize?view=msvc-170
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/malloc_size.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/malloc_size.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/malloc_size.3.html
https://en.cppreference.com/w/cpp/language/union
https://en.cppreference.com/w/cpp/language/union
https://www.stroustrup.com/bs_faq2.html#in-class
https://www.stroustrup.com/bs_faq2.html#in-class
https://webkit.org/blog/8685/introducing-the-jetstream-2-benchmark-suite
https://webkit.org/blog/8685/introducing-the-jetstream-2-benchmark-suite
https://clang.llvm.org/docs/DiagnosticsReference.html#wuninitialized
https://clang.llvm.org/docs/DiagnosticsReference.html#wuninitialized
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://v8.dev/
https://www.chromium.org/developers/testing/control-flow-integrity/
https://www.chromium.org/developers/testing/control-flow-integrity/
https://hexhive.epfl.ch/publications/files/18SyScan360-presentation.pdf
https://hexhive.epfl.ch/publications/files/18SyScan360-presentation.pdf
https://github.com/microsoft/verona
https://www.usenix.org/conference/usenixsecurity23/presentation/koschel
https://www.usenix.org/conference/usenixsecurity23/presentation/koschel
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
https://www.ndss-symposium.org/ndss-paper/fuzzilli-fuzzing-for-javascript-jit-compiler-vulnerabilities/
https://www.ndss-symposium.org/ndss-paper/fuzzilli-fuzzing-for-javascript-jit-compiler-vulnerabilities/
https://xml.apache.org/xalan-c/
https://xml.apache.org/xalan-c/

Listing 5 A (simplified) type confusion example in Xalan-
C++ from SPEC CPU2006.

1 class DOMTextImpl: public DOMNode {
2 DOMNodeImpl fNode;
3 ...
4 };
5

6 class DOMElementImpl: public DOMNode {
7 public:
8 DOMNodeImpl fNode;
9 ...

10 };
11

12 // DOMTextImpl at runtime
13 DOMNodeImpl *castToNodeImpl(const DOMNode *p) {
14 DOMElementImpl *pE = (DOMElementImpl *)p;
15 // works because the first
16 // element is fNode
17 return &(pE->fNode);
18 }

Chromium team. This experiment demonstrates that type++
can be used in a fuzzing campaign as an alternative sanitizer
in combination with other tools such as ASan.

B. Use case: POV-Ray

POV-Ray [47] is a ray-tracing program that generates im-
ages from a text-based scene description. For POV-Ray, in both
SPEC CPU2006 and CPU2017, we found improper use of C-
style structs to simulate parent-child relationships. Specif-
ically, POV-Ray contained a set of structs implemented as
unrelated types (i.e., they did not declare a parent class) but
that were used as parent-child classes. The program casts those
classes in a C-style fashion assuming that the memory layout
of the two classes overlaps. Blindly casting two structures
is undefined behavior since the compiler might apply an
optimization over one struct layout. Therefore, we consider
these C-style casts as bugs. When running, type++ immedi-
ately identified and reported the type confusion occurrences,
we thus identified 113 program locations for SPEC CPU2006
and 99 program locations for SPEC CPU2017 that triggered a
type confusion bug. We then used the information from type++
to infer the correct class hierarchy and modify the source
code accordingly. In POV-Ray, we edited 123 LoC in SPEC
CPU2006 and 131 LoC in SPEC CPU2017, corresponding to
around of their codebase. All the modifications concerned the
correction of 19 classes in which we included the proper parent
class in the header files, while the program logic remained
unchanged. These changes were necessary as the LLVM cast
checks were crashing due to non-existent RTTI, highlighting
the type confusion. Modifications to allow the cast check from
LLVM to recover are left as future work.

C. Use case: Xalan-C++

Xalan-C++ is an XSLT processor originally developed by
IBM [48]. The program is written in complex C++ and
heavily overloads the class hierarchy to represent the DOM
of an XML document. Moreover, Xalan-C++ implements a
sophisticated memory allocation strategy based on new()

primitives and operator::new() overloads to optimize the
allocated memory. This section focuses on the SPEC CPU2006
version, but the same reasoning applies to SPEC CPU2017.
We managed to compile Xalan-C++ with type++ and run
the benchmark, type++ (as well as LLVM-CFI) reported
around 9, 000 type confusion errors at seven unique locations.
The type confusions were generated because Xalan-C++ was
attempting to cast unrelated objects that shared part of their
layout (similar to Blender and POV-Ray). Listing 5 contains an
example of type confusion detected: castToNodeImpl()
gets a DINNode object as an input and tries to cast it into
a DOMElementImpl type. At runtime, the function receives
a DOMTextImpl object, which is semantically correct since
it is a child of DOMNode. However, even though the classes
share the same parent, they belong to different branches in the
class hierarchy, thus creating type confusion. Nonetheless, the
code works because the two objects have fNode as a common
first field.

Our proposed solution would use multiple inheritances,
in particular, castToNodeImpl() should accept a new
type, e.g., DOMConverted, that is added as an additional
parent to DOMTextImpl and DOMElementImpl. More-
over, DOMConverted should implement a virtual function,
e.g., getNode(), that is implemented in the subclasses
(i.e., DOMTextImpl and DOMElementImpl) and returns
the field fNode without relying on brittle memory layout
assumptions. Adopting this technique would allow Xalan-C++
to avoid type confusions. Since the modification requires deep
code modification (due to the intertwined relationship with the
custom allocators), we leave patching these issues for future
work. In this case, if the code base is too old, it is possible
to have a trade-off between security and usability by leaving
only 7 locations as possible attacker-surface and exempting
those from runtime checking.

APPENDIX B
ARTIFACT APPENDIX

In this appendix, we provide the requirements, instructions,
and further details necessary to reproduce the experiments
from our paper (DOI: 10.14722/ndss.2025.230053).

A. Description and requirements

The artifact contains the material to reproduce the results:
Compatibility analysis (§VI-A – Table I), Performance Over-
head & Security evaluation (§VI-B & §VI-C – Table II &
Table V), Use case: Chromium (§VI-D – Table VI). This
material is released under the Apache License 2.0, in line with
the LLVM project type++ builds upon.

1) Accessing the artifact: We release the
artifact on a public GitHub repository
https://github.com/HexHive/typepp. While
the typepp branch contains the latest version of the
code, the ndss-25-artifacts tag contains the exact
version of the code that was submitted for review in the
artifact evaluation. Additionally, the code is available on
Zenodo with the DOI:10.5281/zenodo.13687049.

17

https://dx.doi.org/10.14722/ndss.2025.230053
https://github.com/HexHive/typepp
https://github.com/HexHive/typepp
https://github.com/HexHive/typepp/tree/ndss-25-artifacts
https://zenodo.org/records/13687049
https://doi.org/10.5281/zenodo.13687049

2) Hardware dependencies: The artifact requires a machine
with at least 128GB of RAM and a 1TB disk. 16GB of
RAM is sufficient to run the SPEC CPU evaluations.

3) Software dependencies: The artifact was tested on Ubuntu
20.04 and require the ability to run Docker contain-
ers. An active internet connection is also necessary for
the Chromium evaluation. Additionally, curl, git,
docker, and pip should also be installed.

4) Benchmarks: The artifact requires a copy of the SPEC
CPU 2006 & 2017 benchmarks.2

B. Artifact installation

The initial step is to clone the repository and build
the Docker image. As the artifact is provided on top
of a fork of the LLVM project, we recommend to only
proceed to a shallow clone of the last 100 commits. This
can be achieved by running the following bash command:
git clone $REPO --single-branch --branch
typepp --depth 100 LLVM-typepp. Additionally,
please run pip install -r requirements.txt from
inside the repo to install dependencies.

Each experiment is encapsulated in one or multiple Docker
container. The Dockerfile is available at the root of the
artifact repository. We do not provide support for running the
experiments locally.

C. Experiment workflow

Our artifact aims at reproducing the results from three exper-
iments presented in the paper. The first aims at evaluating the
compatibility of type++ with existing software and quantifies
the number of LoC changes necessary to port a C++ project.
The second experiment evaluates the performance overhead
of type++ over standard C++ with the help of the SPEC
CPU 2006 and 2017 benchmarks as well as quantifies the
added security guarantees provided by type++. Lastly, the third
experiment demonstrate the performance and security benefits
of type++ after a partial support of the Chromium browser.

We propose to run this experiments sequentially as they
are presented in the paper. The artifact provides scripts to run
the experiments and collect the results. The scripts will also
generate tables similar to the ones presented in the paper.

More complete and detailed instructions, as well a minimal
example, are available in the README file of the repository.
We highly recommend following the instructions there as
copying and pasting the commands from this document might
introduce errors.

D. Major claims

• (C1) Compatibility: type++ is compatible with existing
C++ codebases with a few minor changes. This is show-
cased in experiment E1 which runs our compatibility
analysis on the SPEC CPU benchmarks. These results
are presented in Table I in the paper.

• (C2) Performance Overhead & Security Guarantees:
type++ incurs a negligible performance while protecting

2https://www.spec.org/cpu2006/ and https://www.spec.org/cpu2017/

a vast amount of additional casts. Our experiment E2
highlights this trend on the SPEC CPU benchmarks.
In the paper, the results are available in Table II. The
overhead numbers can slightly differ from the ones in
the paper due to the different hardware configurations,
but we expect the global trend across the benchmark to
remain consistent.
Due to time constraints, we do not provide automatic
scripts to run and extract the data from our competitors
(i.e., HexType, TypeSan, and EffectiveSan) that would be
necessary for Table III. We, however, provide instructions
on how to run these experiments.3

• (C3) Type checking cost breakdown: To better assess the
cost of the different type checking methods, we designed
a micro-benchmark. The results are presented in Table V
and can be reproduced through the experiment E3.

• (C4) Use case: Chromium: type++ can be used to protect
large code bases. As a proof of concept, we partially
protect the Chromium browser. The results are presented
in Table VI and can be reproduced through the experiment
E4.

E. Evaluation

In this section, we provide the detailed steps to run the
experiments and process the results to get the tables presented
in the paper. Overall, this process requires around two to
three days of computation time on a powerful server. These
instructions are also available in the README file of the
artifact repository.

Experiment 1 (E1) - Claim (C1): Compatibility Analysis:
[2 humans minutes + 2 compute-hours] The experiment

evaluates the porting effort necessary for SPEC CPU 2006
and 2017 benchmarks and quantify the benefits of Property
2 over Property 1. The experiment consists of compiling
the benchmarks with type++ to first collect the classes to
instrument for Property 2 and then run the analysis to collect
the warnings emitted for both properties.

[Preparation] Ensure that the two SPEC CPU benchmarks
.iso are available at the root of the cloned repository.

[Execution] Run the commands:
Build the docker images and then run two

analysis (Property 1 and Property 2) on
the SPEC CPU benchmarks (around 2hours).

↪→

↪→

Expected output: Different logs highlighting
first the Docker builds and then the
benchmarks compilation and analysis.
Finally, a table similar to Table I will
be printed.

↪→

↪→

↪→

↪→

./table1.sh

[Results] Upon completion, the script will
generate a table identical to Table I. The file
analysis_result_test.tex contains the results.

Experiment 2 (E2) - Claim (C2): Performance Overhead
& Security Guarantees: [2 humans minutes + 15 compute-
hours] This experiment runs the SPEC CPU benchmarks

3https://github.com/HexHive/typepp/blob/typepp/COMPETITORS.md

18

https://github.com/HexHive/typepp/blob/typepp/README.md
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://github.com/HexHive/typepp/blob/typepp/README.md
https://github.com/HexHive/typepp/blob/typepp/COMPETITORS.md

with different flavors of cast checking. First, a baseline is
established by running the benchmarks with no cast checking.
Then, the benchmarks are run with type++ and LLVM-CFI to
measure the overhead. Lastly, an extra run for both type++
and LLVM-CFI is performed to measure the number of cast
protected.

[Preparation] Again, ensure that the two SPEC CPU bench-
marks ‘.iso‘ are available at the root of the cloned repository.

[Execution] In a shell, run the following command:
Build the docker images and then run all the

benchmarks variation (around 15hours).↪→

Expected output: Different logs highlighting
first the Docker builds and then the
benchmarks compilation and execution.
Finally, a table similar to Table II will
be printed.

↪→

↪→

↪→

↪→

./table2.sh

[Results] Upon completion, the script will generate a table
similar to Table I. There might be variations up to 10%
in the performance and memory overhead numbers due to
the different underlying machine. In particular, in a shared
environment, the overhead might show inconsistencies. The
number of casts protected should remain identical to the one
presented in the paper.

Experiment 3 (E3) - Claim (C3): Type checking cost
breakdown: [2 humans minutes + 20 compute-minutes] This
experiment evaluates the cost of the different operations in the
type checking process of HexType and type++.

[Preparation] No specific preparation is required.
[Execution] In a shell, run the following command:

Build the docker images and then run the
micro-benchmark (around 20minutes).↪→

Expected output: Different logs highlighting
first the Docker build and then the cost
of the different operations.

↪→

↪→

./table5.sh

[Results] Upon completion, the script will generate a table
similar to Table V. The numbers presented should exhibit
similar ratios to the ones in the paper.

Experiment 4 (E4) - Claim (C4): Use case: Chromium:
[2 humans minutes + 36 compute-hours] This experiment
evaluates the performance of Chromium with partial protection
by type++ and LLVM-CFI. It also outputs the number of casts
protected by both tools. This experiment will build Chromium
first with no protection, then with LLVM-CFI, and finally
with type++. Then, it will run the JetStream benchmark and,
therefore, require a working internet connection. As building
and linking Chromium is a time-consuming and resource-
intensive task, we recommend running this experiment on a
machine with plenty of RAM and in tmux or screen session
to avoid interruptions.

[Preparation] Please run the following script:
Fetch the Chromium source code and the

modifications we applied to it.↪→

./table6_requirements.sh

[Execution] In a shell, run the following command:

Build the docker images, inlcuding fetching
the dependencies of Chromium, and then
build Chromium itself. Lastly, run the
JetStream benchmark (around 36hours).

↪→

↪→

↪→

Expected output: Different logs highlighting
first the Docker builds, the fetching of
depencies and then the Chromium
compilation and execution. Finally, a
table similar to Table VI will be printed.

↪→

↪→

↪→

↪→

./table6.sh

[Results] Upon completion, the script will generate a table
similar to Table VI. The benchmark scores presented should
exhibit similar ratios to the ones in the paper. The number of
casts protected is expected to be different as the Chromium
execution is not deterministic but should remain in the same
magnitude.

19

	Introduction
	Background
	Classes hierarchies and polymorphism
	Casting in C++
	Type confusion

	Threat Model
	type++ specification
	Affected programming patterns

	type++ technical details
	Default constructors
	Uninitialized variables
	Allocation through C-style allocators
	Polymorphic union members
	Initialization of const variable
	Interaction with other C++ libraries
	Interaction with the kernel and non-C++ code
	Prototype implementation

	Evaluation
	Compatibility analysis
	Security evaluation
	Performance overhead
	Use case: Chromium

	Discussion
	Related work
	Conclusion
	References
	Appendix A: Manuscript Appendix
	type++ as sanitizer
	Use case: POV-Ray
	Use case: Xalan-C++

	Appendix B: Artifact Appendix
	Description and requirements
	Artifact installation
	Experiment workflow
	Major claims
	Evaluation

