2o
%

- hive

type++:
Prohibiting Type Confusion
With Inline Type Information

Nicolas Badoux, Flavio Toffalini, Yuseok Jeon & Mathias Payer

“P=L & IMiST

Motivation: Derived Type Confusion in C++

Inheritance allows to use a Child object as a Parent (upcast)

What about the inverse?

class Parent

-

class Child : public Parent

Allocated)

Parent

memory
Sh

class Sibling : public Parent

Child

Motivation: Derived Type Confusion in C++

Inheritance allows to use a Child object as a Parent (upcast)

What about the inverse?
Allocated)

memory

class Parent

ﬁ Sh‘ :

class Child : public Parent class Sibling : public Parent

Possible with cast operators BUT not gquaranteed correct.

May lead to memory corruption

Still common today, e.g., (!. @

sizeof(sibling)

type++: A C++ Dialect Free of Derived Type Confusion

Goal: Enforce runtime checks for all casts

How: Adding inline type information to all objects involved in derived cast

“foo” Augmented “foo”

- L RTTI

Implications:

e Polymorphic types already have Runtime Type Information (RTTI)
e Changes in object layout

e All the other classes/structs require initialization

Automatic Type Information Initialization

Setup RTTI through constructor calls

e Transparently defines a default constructor for all the classes
new

malloc & co

e Explicit call to the default constructor
e Careful handling of calloc/realloc

Allow-list for custom memory allocators (e.g., pool allocator, ASan)

Object Layout: Required Adaptations

[Since type++ imposes inlined RTTI for all derived cast classes }

[Change in layout is incompatible with the C++ ABI }

-

_

Automatic wrappers/macros

e External libraries
® Headers shared with C/C++

~

)

-

Warnings for incompatible code

-

~

J

/

-

Limited code adaptations:
® <0.04% of LoCin SPEC CPU

~

J

C++ vs type++: Example of Incompatible Idioms

Comparison between sizeof:

(X) == 16

Implicit placement new:

<Y*> (&%) ;

Evaluation: Porting Effort

We observed 179 warnings across 16 programs in SPEC CPU2006 & CPU2017
We modified 314 LoC (out of 2M LoC, < 0.04%)

Case study: Blender

Undefined behavior due to tagged pointers (an old-school hack)

#define

#define

& = We cannot find RTTI at the unaligned address!

Evaluation: Security & Performance

type++ protects 16x more casts than the HexType sanitizer

HexType LLVM-CFI type++
derived | unrelated | derived | unrelated | derived | unrelated
SPEC CPU2006 5.6B 0 2.1B 0 31B 1.5B
SPEC CPU2017 - - 1.7B 0 52B 5.5B

Average overhead: 0.94%, in line with the LLVM-CFI mitigation

HexType LLVM-CFI type++
average max average max average max
SPEC CPU2006 8.27% 29.21% 0.49% 3.43% 1.19% 4.11%
SPEC CPU2017 - - 0.33% 3.22% 0.82% 4.58%

Case study: Chromium

We support 92% of Chromium’s required classes

® Class support breakdown:

1,102 1,928 171
polymorphic ported to type++ unsupp.

e 3,339 warnings for 230 LoC changes
e One minor adaptation to protoc

JetStream?2: 1.42% overhead

89.7% of derived casts protected, double those of LLVM-CFI

type++: Prohibiting Type Confusion With Inline Type Information

ﬁ- Runtime type information for all classes involved in derived casts
ABI change resulting in 314 patched LoC (out of 2MLoC)
(J All derived casts are verified at runtime

4’ Less than 1% overhead for 90B casts protected (23x > SotA)

Artifact
Evaluated

ANDss
7 type B3 B3 paper: hexhive.epfl.ch/ Available

Functional

}({ 14 new type confusions identified

Reproduced

@ .
&% hexhive

& Artifact: github.com/HexHive/typepp

https://hexhive.epfl.ch/publications/files/25NDSS.pdf
http://github.com/HexHive/typepp

Security Impact

122 type confusions identified

® 14 new bugs

All have been fixed in more recent software versions

® Useof dynamic cast
e Use of a proper type hierarchy

-typedef struct InstanceRayObject {
= RayObject rayobij;

+typedef struct InstanceRayObject : RayObject {

RayObject *target;

12

