Single-Address-Space FaaS with Jord

Yuanlong Li
EcoCloud, EPFL
Lausanne, Switzerland
yuanlong.li@epfl.ch

Abhishek Bhattacharjee

Yale University
New Haven, USA
abhishek.bhattacharjee@yale.edu

Sanidhya Kashyap
EcoCloud, EPFL
Lausanne, Switzerland

sanidhya.kashyap@epfl.ch
Abstract

Function-as-a-Service (FaaS) has emerged as a popular cloud par-
adigm that simplifies software development and deployment by
providing scalable and event-driven function execution without
the burden of managing servers. FaaS was originally created with a
function as a function semantics to enable standalone microservices
with adequately short execution time to meet microsecond-scale
service-level objectives (SLOs). Unfortunately, today’s FaaS systems
fundamentally suffer from millisecond-level performance bottle-
necks that arise from isolating functions in separate address spaces
inside containers or microVMs. Prior work has focused on optimiz-
ing FaaS performance, but these systems still fall short of meeting
microsecond-level SLOs. In this paper, we present jord, a FaaS sys-
tem that revives the original function-as-a-function vision of FaaS.
Jord leverages hardware/software co-design to colocate functions
in a single address space with user-level in-process memory iso-
lation, extending the capability of traditional virtual memory. By
performing memory isolation and management in nanoseconds,
Jord enables zero-copy cross-function communication and scalable
function dispatch, thereby minimizing FaaS overheads. We demon-
strate that Jord can meet microsecond-level SLOs for microservice
workloads while performing within 16% of an idealized but insecure
baseline and delivering over 2x higher throughput compared to
enhanced state-of-the-art systems.

CCS Concepts

» Computer systems organization — Cloud computing; « Soft-
ware and its engineering — Virtual memory; « Security and
privacy — Hardware security implementation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’25, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/25/06

https://doi.org/10.1145/3695053.3731108

Atri Bhattacharyya
EcoCloud, EPFL
Lausanne, Switzerland
atrib.webmail@gmail.com

Yoav Etsion
Technion
Haifa, Israel
yetsion@technion.ac.il

Madhur Kumar
EcoCloud, EPFL
Lausanne, Switzerland
madhur.kumar@epfl.ch

Babak Falsafi
EcoCloud, EPFL
Lausanne, Switzerland
babak.falsafi@epfl.ch

Mathias Payer
EcoCloud, EPFL
Lausanne, Switzerland
mathias.payer@nebelwelt.net

Keywords

Function-as-a-Service, Single-Address-Space, Virtual Memory

ACM Reference Format:

Yuanlong Li, Atri Bhattacharyya, Madhur Kumar, Abhishek Bhattacharjee,
Yoav Etsion, Babak Falsafi, Sanidhya Kashyap, and Mathias Payer. 2025.
Single-Address-Space FaaS with Jord. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA °25), June 21-25,
2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3695053.3731108

1 Introduction

The rise of cloud computing has transformed how applications are
built and deployed, with Function-as-a-Service (FaaS) [3, 5, 53, 57,
75, 76] emerging as a particularly compelling cloud paradigm. FaaS
abstracts away infrastructure management and provides users a
pay-as-you-go billing model [4]. With such benefits, developers can
focus purely on business logic implemented as single-purpose and
short-running functions [25] without worrying about the details of
deployment and autoscaling [2].

The original vision of FaaS was to enable running a function as a
function [41] without managing servers. With this vision, program-
mers build standalone microservices with adequately short-running
functions and run them on Faa$S systems in the hope of meeting
microsecond-level SLOs [35, 74]. Unfortunately, today’s Faa$S sys-
tems fall short of realizing this vision, because cloud providers favor
security over performance when building Faa$ as a public cloud
service that must enforce strong isolation among functions coming
from various third parties [67, 82].

The multi-address-space design adopted by today’s FaaS systems
for security and isolation—i.e., wrapping each function into its own
sandbox, such as a container [77] or microVM [1]—fundamentally
hinders performance. First, to invoke a function, a FaaS system
must perform mediated communication [5, 53] to schedule the exe-
cution of the sandbox, which involves multiple messages passed
through the address-space boundary of multiple FaaS processes,
adding control-flow overheads to the invocation. Second, to share
data with another function, a function must rely on indirect and
slow communication channels [3, 5, 10, 38, 50, 55, 76], which incurs

https://orcid.org/0009-0007-2632-2576
https://orcid.org/0009-0008-9686-0852
https://orcid.org/0009-0008-2634-1184
https://orcid.org/0000-0003-2742-2679
https://orcid.org/0009-0000-5543-7136
https://orcid.org/0000-0001-5916-8068
https://orcid.org/0000-0002-9534-8565
https://orcid.org/0000-0001-5054-7547
https://doi.org/10.1145/3695053.3731108
https://doi.org/10.1145/3695053.3731108
https://doi.org/10.1145/3695053.3731108

ISCA 25, June 21-25, 2025, Tokyo, Japan

Worker Server

Sandbox

Executor
Orchestrator <:>

Figure 1: A worker server in a traditional FaaS system.

data-flow overheads. Finally, sandbox initialization can consume a
substantial amount of time [40], adding extra latencies to each func-
tion invocation. These millisecond-level overheads effectively ren-
der today’s FaaS systems completely unusable for latency-critical
microservices running in microseconds [25].

Prior work has focused on mitigating these bottlenecks. Solu-
tions based on shared memory optimize intra-server data trans-
fer [35, 40, 45, 50, 56, 60, 68] but often sacrifice isolation guarantees
or introduce OS-level inter-process communication overhead. So-
phisticated cold start mitigations [9, 21, 39, 44, 51, 63, 64, 67, 82, 88]
largely reduce the sandbox startup latency, yet the resulting sand-
box initialization still requires milliseconds to finish—an unavoid-
able consequence of address-space-based isolation. In essence, opti-
mizing software alone is not sufficient to realize FaaS’s vision at
the microsecond timescale.

The insufficiency of software-only solutions prompts us to re-
think how to build FaaS systems from the perspective of hardware-
software co-design. On one hand, while FaaS systems must provide
scalability and isolation, achieving these goals does not inherently
demand separate processes or sandboxes. On the other hand, when
security is not a concern, traditional monolithic applications can
achieve high performance with direct function calls and pointer-
based data sharing. These two observations lead us to consider a
new way of combining the operational benefits of FaaS with the
performance benefits of monolithic applications. In such a system,
functions can easily invoke other functions and share data with
them without crossing address space boundaries. In contrast, each
function is treated as a standalone schedulable entity that can be
autoscaled transparently. The key to achieving this combination
is efficient in-process memory isolation—a new hardware mech-
anism that exceeds the capability of traditional virtual memory
systems and forgoes syscalls, page table manipulation, and TLB
shootdown [7, 8, 47, 71, 90] that take tens to even thousands of
microseconds to complete.

In this paper, we present jord, a novel single-address-space FaaS
system that revives the original vision of FaaS—running a function
as a function without managing servers. Rather than relying on
separate address spaces, Jord enforces strong isolation among func-
tions using in-process protection domains [16, 85] with hardware-
software co-design. Jord follows the trend of implementing virtual
memory areas (VMASs) [13, 28], the software abstraction modern
OSes use to manage virtual memory, in hardware, thereby extend-
ing the capability of traditional page-based translation. By virtue of
the co-design, Jord operates entirely at the user level while perform-
ing memory isolation and management in nanoseconds. As such,
Jord enables zero-copy cross-function communication and scal-
able function dispatch for FaaS, fully leveraging the performance
benefits of a single-address-space design.

Y. Li et al.

Executor, Virtual Address Space Executor; Virtual Address Space

r N7 Y7 3
Code, Heap, Stack,
R-X RW- RW-

” 3 ” N7
Code, Heap, Stack,
R-X RW- RW-

Figure 2: Isolated virtual address spaces and virtual memory
areas (VMAs) in a traditional FaaS system.

We implement Jord on both QFlex, a family of full-system simu-
lators [59], and OpenXiangShan [86], a configurable RISC-V out-of-
order core on FPGA as an RTL-level proof of concept. Our results
indicate that Jord can meet microsecond-level SLOs for microser-
vice workloads. Furthermore, it performs within 16% of a baseline
single-address-space system with no isolation, while outperforming
enhanced state-of-the-art FaaS systems by over 2x.

We make the following contributions in this paper:

e We introduce Jord, a novel single-address-space FaaS sys-
tem that revives the original vision of FaaS. Jord achieves
microsecond-scale function execution enabled by zero-copy
communication through shared memory and scalable func-
tion dispatch.

e We develop a hardware-software co-designed in-process
memory isolation mechanism that provides nanosecond-
scale memory and protection domain management.

e We demonstrate Jord’s performance and scalability with the
RISC-V ISA on a full-system simulator and FPGA running
Linux and microservice workloads.

2 Background

This section first examines the architectural decisions and limi-
tations of traditional multi-address-space FaaS systems. It then
presents the challenges and opportunities of building a FaaS system
using a single address space.

2.1 Traditional FaaS Systems

Figure 1 illustrates the basic anatomy of a worker server in a tra-
ditional FaaS system [3, 22, 53, 57, 75, 76]. The worker server runs
an orchestrator that coordinates the execution of multiple sand-
boxes—i.e., isolated execution environments such as containers [77]
and microVMs [1]. Inside each sandbox, an executor initializes the
runtime environment for a function and executes that function. For
each function invocation request, the orchestrator performs func-
tion dispatch to select a sandbox and relay the request to it. In this
design, each orchestrator and executor runs in a separate virtual
address space, and each virtual address space is further split by the
OS into large contiguous regions representing various logical sec-
tions (e.g., code, heap, and stack) as virtual memory areas (VMAs),
as shown in Figure 2. While this design enforces security through
strong isolation among address spaces, it introduces substantial
function invocation overhead, manifested in both the control and
data flows, further compounded with sandbox initialization.

The primary source of control-flow overhead in traditional FaaS
systems is function dispatch. Each function dispatch triggers multi-
ple control messages among orchestrator processes to schedule the
sandbox execution, while each message needs to traverse through
multiple address space boundaries to finish. For example, both
AWS Step Functions [5] and Azure Logic Apps [53] require each

Single-Address-Space Faa$S with Jord

function to return control to the orchestrator before starting the
subsequent function in the workflow. This orchestrator-mediated
dispatch incurs multiple IPC roundtrips, usually taking more than
10 ms [46, 89, 91] per invocation.

In contrast, data-flow overhead in traditional FaaS systems is
mainly incurred while copying data between two sandboxes. Tra-
ditional FaaS systems rely on indirect communication channels
such as platform-specific messaging primitives [5, 49, 76], stan-
dalone message queues [10, 55], remote storage [3, 38, 46, 48, 50],
or RESTful APIs [3]. These mechanisms require data serializa-
tion/deserialization [49], memory copying, and often network stack
traversal, adding tens or even hundreds of milliseconds of addi-
tional latency and accounting for up to 70% of the total function
execution time [40, 46, 48, 50].

There is much prior work focusing on optimizing communication
by leveraging shared memory for intra-server communications [35,
40, 45, 50, 56, 60, 68], adopting data-centric workflows [46, 89],
using fast network transports (e.g., RDMA) [49], or offloading data
transfer to DPUs [48]. Unfortunately, shared memory techniques
either compromise isolation or incur OS-level overheads of memory
copying and process synchronization. Likewise, network-based
techniques also suffer from memory copying and still incur several
microseconds of latency at best with hardware acceleration.

Apart from communication, to start executing a function, the
FaaS system must also pull the sandbox disk image from the reg-
istry, configure the sandbox, fork multiple processes to boot the
sandbox, and launch the executor for language or library-level ini-
tialization. The entire startup sequence easily takes tens or even
hundreds of milliseconds to finish, increasing overall function exe-
cution time by up to 95% [40]. There is a myriad of work dedicated
to addressing the so-called cold start problem, including avoiding
sandbox images from being swapped out [23, 64, 67], compress-
ing [63, 82], fragmenting [15, 88], fusing [44, 51, 65], or checkpoint-
ing [9, 21, 39, 69]. While these optimizations dramatically decrease
the sandbox startup latency, they still fall short of reducing the
initialization overhead from milliseconds to microseconds.

Overall, the function execution overhead in traditional FaaS
systems amounts to tens of milliseconds, essentially rendering these
traditional FaaS systems completely unusable for latency-critical
workloads, such as microservices [25], that heavily rely on nested
function invocations with microsecond-level execution time.

2.2 The Case for Single-Address-Space FaaS

The order-of-magnitude disparity between microsecond-level func-
tion execution time and millisecond-level system overhead calls for
rethinking of the design space for a FaaS system. In essence, from a
pure functionality perspective, what users expect from the system
is only the ability to execute their functions while managing the
deployment and scaling automatically. Moreover, as a public cloud
service, a FaaS system should also provide isolation during function
execution for data confidentiality and integrity. Most notably, these
bare minimum system requirements do not mandate the use of
containers or microVMs.

This observation inspires us to consider an alternative system
architecture: a FaaS system with a single address space as the run-
time environment. In such a design, a function can invoke another

ISCA 25, June 21-25, 2025, Tokyo, Japan

function through direct function calls without address space man-
agement overhead incurred by the OS. Data sharing among func-
tions also becomes drastically simpler as zero-copy pointer-based
memory sharing [14, 41].

Adopting a single-address-space design, however, does not mean
reverting to a monolith software architecture. Users can still write
loosely coupled functions with clearly defined interfaces without ex-
plicitly chaining them with function calls. The FaaS system regards
functions as standalone entities and scales them independently [26].

The primary challenge in realizing a practical single-address-
space FaaS$ is enforcing memory isolation among functions. As each
function can hold different permissions for various VMAs in the ad-
dress space, the system must change VMA permissions accordingly
when switching from one function to another. Unfortunately, updat-
ing VMA permissions by changing page permissions in page-based
virtual memory is prohibitively slow because it involves multiple
syscalls, traversal and modification of the page table, and TLB shoot-
downs, each of which can take tens to thousands of microseconds
to complete [7, 8, 47, 71, 90]. The same overhead is also incurred
when a function allocates or deallocates memory. Such overhead is
hard to mitigate as only the OS can access the page table, which is
inherently not scalable.

Memory protection key (MPK)-based approaches [58, 66, 78] or
HFI [54] create another layer of protection on top of virtual memory.
However, MPK-based approaches are not scalable as protection
keys must be embedded into page table entries using reserved bits,
which are highly limited in number (especially with the adoption of
five-level paging [32]). Moreover, for both MPK-based approaches
and HFI, this extra layer of protection only applies to a single
core. They must rely on extra software modules to ensure the
protection is consistent among all cores. Furthermore, they do not
help in memory allocation/deallocation, as those operations are
still provided by the page-based virtual memory.

Rather than relying on hardware, in-process memory isolation
can also be provided at the language level through software fault
isolation (SFI) [24, 68] or a single-address-space OS [16, 30, 31].
Unfortunately, SFI restricts the choice of language for software
construction and can incur up to 40% runtime overhead due to fre-
quent instrumentation and boundary checks [34]. Similarly, single-
address-space OSes either assume software construction with safe
languages or rely on virtual memory for memory isolation.

We argue that with a secure and fast memory isolation mecha-
nism, a single-address-space Faa$S can enjoy the best of both worlds:
it can not only perform function invocation and zero-copy com-
munication without involving the OS, but also allow the system to
autoscale and functions to be deployed seamlessly as if they were
written for a traditional FaaS system. Such a system can also be built
with minimal modification to a CPU and OS without functional
interference with existing workloads.

3 Jord’s System Architecture

Jord follows four design principles to minimize function invoca-
tion overhead: 1) leveraging a single address space to enable zero-
copy communication and scalable function dispatch, 2) maintaining
strong isolation among functions through user-level in-process

ISCA 25, June 21-25, 2025, Tokyo, Japan

Worker Server

Single Address Space

,* | Protection Domain
Code ArgBufl -
Stack ArgBufO >
Heap |[ArgBufq>

Orchestrator Executor

(Prviib] [Prviib]

TT=F=-${10

<

Figure 3: A worker server in Jord.

protection domains, 3) implementing isolation through nanosecond-
scale VMA operations with hardware-software co-design, and 4)
extending instead of replacing the traditional virtual memory to
minimize the impact to existing hardware and software.

The key innovation in Jord lies in its in-process memory isola-
tion [13, 85]. Rather than relying on multiple address spaces, Jord
introduces in-process protection domains (PDs) [16] to provide each
function with an isolated execution environment while maintaining
performance benefits of a single address space—i.e., sharing data
through memory and calling functions directly. In contrast to uti-
lizing the OS for memory management, Jord manages memory and
isolation by a trusted user-level privileged library (PrivLib) [66, 70]
and leverages VMAs to achieve scalable address translation and
permission check with nanosecond-level overhead.

Figure 3 depicts the anatomy of a worker server in Jord, with
orchestrator and executor threads ! running inside a single address
space with zero-copy communication. A worker server runs one or
more orchestrators that receive function invocation requests and
distribute them to multiple executors with load balancing. Each
executor, in turn, executes functions in isolated PDs. Function invo-
cation requests are passed among an orchestrator and the executors
it manages in argument buffers (ArgBufs). Each ArgBuf uses an
individual VMA for address translation and access control.

Figure 4 illustrates a simplified flow of a function invocation
request in Jord. When a request arrives, it enters an orchestra-
tor’s request queue and is dispatched to an executor based on a
load-balancing policy. The executor then creates a new PD with a
private stack and heap, makes the function code VMA accessible,
and transfers the ArgBuf permissions to the PD. Next, the executor
enters into the PD to execute the function. After it finishes, the
executor transfers back the ArgBuf permissions, revokes the code
VMA access, destroys the PD, dequeues the request, and notifies
the orchestrator of the completion. Throughout the flow, the two
key overheads are the dispatch overhead incurred by the orches-
trator dispatching the request and the memory isolation overhead
incurred by the executor managing PDs and VMAs.

3.1 Programming and Threat Models

Jord provides users with a sequential programming model similar
to those in traditional Faa$S systems. Listing 1 presents a synthetic
function demonstrating function invocations, zero-copy commu-
nication, and VMA management in Jord. In this example, SrcFunc
has an input ArgBuf pointer req as the only argument to retrieve
inputs and drive outputs. To invoke other functions, in our case
Tgt1 and Tgt2, SrcFunc first creates two output ArgBufs with the

IFor brevity, we refer to these threads as orchestrators and executors.

Y. Li et al.

desired types (line 3, 4) and populates them (line 6, 7). Then, the
function hands ArgBufs along with target function IDs to Jord by
calling call or async for synchronous (line 13) or asynchronous
invocation (line 9) respectively. The synchronous invocation only
returns when the target function finishes, while the asynchronous
invocation immediately returns a cookie that the function can wait
on (line 16). The function can also call POSIX-compatible PrivLib
APIs to allocate and deallocate VMAs (line 19, 21) dynamically.
Behind the scenes, Jord handles function invocation and enforces
memory isolation transparently without user intervention.

Jord’s threat model is centered around memory isolation among
PDs. The system allows attackers to forge arbitrary memory ad-
dresses and access them through load/store instructions or code
execution. The attackers can also arbitrarily call PrivLib. Jord en-
forces isolation by generating a hardware fault whenever untrusted
code reads, writes, or executes a memory address that is either
not mapped by a VMA or whose VMA does not have appropriate
access permissions in the PD where the code executes. Much like
traditional FaaS systems, Jord’s sphere of protection is limited to
memory isolation. More specifically, Jord cannot protect functions
from corrupting their own data or defend against data corruption
attacks through the syscall interface [18].

3.2 Memory Isolation

Jord achieves in-process memory isolation through PDs with the
following security and functionality requirements. To enforce iso-
lation, any untrusted code executing inside a PD can only access
memory for which the PD has the appropriate permissions. To
avoid PDs from being bypassed or destroyed by untrusted code,
PDs themselves must be protected with special privileges. Further-
more, to support concurrent function execution, PDs should be able
to be switched from one to another during runtime.

To meet these requirements, Jord introduces PrivLib to manage
both PDs and their underlying VMAs with a set of OS-agnostic APIs
as shown in Table 1. At the lower level, PrivLib leverages VMAs
with per-PD permissions to create the abstraction of isolated PDs
through VMA management APIs. On top of that, PrivLib addition-
ally supports PD scheduling through PD management APIs. Even
though the PrivLib APIs can be implemented with other in-process
memory isolation approaches [13, 47, 66, 70, 85], Jord’s PrivLib
fully leverages the underlying hardware to make these APIs work
on the nanosecond scale, minimizing their performance impact on
functions with microsecond-level execution time.

PrivLib implements POSIX-compatible VMA operations to min-
imize programming complexity. The user code can call mmap to
allocate a new VMA of a given size and permission into the current
PD. It can further call munmap or mprotect to deallocate/resize or
change the permission of an existing VMA. PrivLib also provides
pmove and pcopy to atomically transfer or duplicate VMA permis-
sions between the current PD and another PD. To maintain the
integrity of PD configurations, PrivLib stores them within a special
VMA that only PrivLib itself can access.

PrivLib manages the lifecycle and scheduling of PDs. PrivLib
provides cget and cput to allocate and destroy them. The executor
can call ccall to switch into one PD. When a function suspends
itself due to a nested function invocation, it calls cexit to save

1

Single-Address-Space Faa$S with Jord

ISCA 25, June 21-25, 2025, Tokyo, Japan

Dispatch
Enqueue into | || Orchestrator ||| Enqueue into s . Y Dequeue from Orchestrator
Orchestrator Dispatch " Executor || Initialize PD [Execute in PD Destroy PD >, ceutor [7] Sends Resp.
______ - 1 N Pas RS -
_________ T ! Memory Isolation _--~ Tt
Allocate Copy Code Transfer Transfer Revoke Code Deallocate
Allocate PD [Stack/Heap Perm. ArgBuf Perm. ArgBuf Perm. Perm. Stack/Heap [%| Deallocate PD

Figure 4: A simplified flow of how Jord handles a function invocation request.

int SrcFunc(SrcReq *req) {
// each argBuf uses its own VMA
jord::argBuf<Tgti1Reg> ri;
jord::argBuf<Tgt2Reg> r2;
// read inputs and populate argBufs
ri->in = pre(req->in1);
r2->in = pre(req->in2);
// async call returns a cookie
int ¢ = jord::async(Tgtl, r1));
// return value
int r = 0;
// sync call returns non-zero on failure
if ((r = jord::call(Tgt2, r2)))
return r;
// wait on the cookie, return non-zero on failure
if ((r = jord::wait(c)))
return r;
// allocate a new VMA
void *buf = mmap(@, 0x1000, PROT_RW, @, @, 0);
// generate the output
req->out = post(buf, ri->out, r2->out);
// deallocate the VMA
munmap (buf, 0x1000);
// no errors
return 0;

Listing 1: A synthetic function in Jord.

its current state and switch back to the executor, which later calls
center to resume the suspended PD.

The security and integrity of PrivLib is crucial to Jord. PrivLib
enforces mandatory security policy checks on all APIs to prevent
illegal or malicious calls. These checks are enforced through control-
flow integrity (CFI) on top of the underlying hardware mechanisms.

3.3 Orchestrator

An orchestrator thread in Jord is conceptually similar to an or-
chestrator process in a traditional FaaS system. It receives external
function requests through the network and dispatches them to ex-
ecutors. In Jord, orchestrators save these requests into ArgBufs to
leverage the zero-copy communication inside the single address
space. Orchestrators are pinned on separate CPU cores to avoid OS
scheduling overhead.

Table 1: PrivLib APIs.

API function

mmap(addr, len, prot, flags,
fildes, off)
munmap (addr, len)

Description

Allocate a new VMA

Deallocate a VMA
Change the permission
of a VMA

Move the permission of
a VMA to another PD
Copy the permission of
a VMA to another PD

mprotect(addr, len, prot)

pmove(addr, cid, prot)

pcopy(addr, cid, prot)

cget() Create a new PD
cput(cid) Destroy a PD

. Call into (and return
ccall(cid, func, args) from) a PD
center(cid) Resume a PD
cexit() Suspend a PD

Orchestrators require a dispatch policy to balance the load among
executors while minimizing overhead. In this paper, without loss of
generality, we use the Join-Bounded-Shortest-Queue (JBSQ) policy
for load balancing inspired by state-of-the-art key-value stores [20,
33, 36]. This push-based policy requires each orchestrator to iterate
over all executors it manages and push the request to the one with
the fewest requests in its request queue. The dispatch overhead
scales with the number of executors an orchestrator manages and
varies with system size (i.e., the number of cores in a coherence
domain and their organization in chips/chiplets). As such, a worker
server employs multiple orchestrators, each managing a group of
executors in proximity to limit dispatch overhead. We evaluate the
impact of system size on dispatch overhead, but a further evaluation
of dispatch policies is beyond the scope of this paper.

To support nested function invocation, each orchestrator also
handles internal invocation requests generated from executing func-
tions. These internal requests require special handling to prevent
deadlocks, as external requests can fill the executor queues and
block internal requests from executing. To ensure forward progress,
the orchestrator maintains two separate request queues for internal
and external requests and dispatches external requests only when
the internal queue is empty. For internal requests that cannot be
served on the current worker server, the orchestrator sends them
through the network to find another worker server for execution.

ISCA 25, June 21-25, 2025, Tokyo, Japan

3.4 Executor

An executor thread in Jord is also conceptually similar to an ex-
ecutor process in a traditional FaaS system. In Jord, however, an
executor thread can place multiple functions inside their own PDs
and execute them in parallel as functions generate nested invoca-
tions and wait for them to finish. The executor regards each function
as a continuation with private register states, stack, and heap inside
the isolated PD, allowing each function to be suspended or resumed
independently, similar to cooperative user-level threads [81]. As
with an orchestrator, each executor is also pinned on a separate
CPU core to avoid OS scheduling overhead.

After retrieving a function request from the request queue, an
executor initializes the continuation and PD with a private stack
and heap. It then calls ccall in PrivLib to perform a user-level
context switch into the continuation. During the context switch,
the current register states are saved into the executor’s stack, while
new register states are loaded from the function’s private stack.
Consequently, the function only sees the ArgBuf pointer, the private
stack pointer, and a return address (inside ccall) from the register
values. As such, no extra information is leaked to the function.

The control flow automatically switches back to the executor
when the function finishes, at which point the executor destroys
the continuation and PD, dequeues the request, and continues to
poll and execute new requests from the request queue. If the func-
tion suspends itself by calling cexit while waiting for a nested
invocation to finish, the executor’s context is also switched back,
and the current state of the function is saved into the continuation.
After the target invocation finishes, the executor can resume the
suspended continuation by switching to it again using center.

4 Implementing Jord

Jord employs hardware-software co-design for nanosecond-scale in-
process memory isolation without interfering with the traditional
page-based virtual memory. In software, Jord manages virtual and
physical address space regions reserved by the OS. Likewise, in hard-
ware, Jord requires minimum microarchitectural modifications to
provide a separate path for address translation as illustrated in Fig-
ure 5. In addition to the traditional TLB hierarchy, Jord introduces
instruction and data virtual lookaside buffers (I/D-VLB), similar to
those used in systems with intermediate address spaces [28, 29] to
cache translations managed by Jord. A virtual table walker (VITW)
handles I/D-VLB misses by traversing the translation table. Jord
introduces a virtual translation directory (VID) to track the sharing
of translations among VLBs integrated together with the LLC.

In the following subsections, we present a Jord implementation
with RISC-V [61] as the baseline ISA and describe its VMA manage-
ment, VLB coherence, and PD management for nanosecond-scale
in-process memory isolation.

4.1 VMA Management

The latency of VMA operations is critical to Jord’s performance,
as each function invocation requires multiple VMA allocations,
deallocations, and permission transfers. Inspired by segregated list-
based user-level heap allocators [43], we introduce size classes for
VMA management without relying on complex data structures
to manage free memory. Each size class represents a definite size

Y. Li et al.

Core |
T ||D—\:LB D-TILBl
! il

| L2TLB
[viw [pTw
| I
LI | | LID |

LLC HNoC

Figure 5: Microarchitectural modifications in Jord.

range to categorize VMA allocation requests, backed by a free
list of memory chunks of that size. When allocating a new VMA,
the allocator first calculates the size class of the allocation and
then resorts to the corresponding free list to obtain a free memory
chunk. Each VMA has the requested size, while the trailing part of
the allocated memory chunk is reserved for future resizing. Each
application can define its size classes. In our current implementation,
we choose the size classes as all the power-of-two values between
128 bytes and 4 GB, as 99% of the VMAs in our target workloads
are smaller than 1 KB [35, 42].

To achieve optimal VMA lookup performance in the translation
table, hereafter referred to as the VMA table, without additional
memory accesses, we encode the size class of a VMA into its base
address [17, 29]. This encoding scheme results in a static partition-
ing of the virtual address space among size classes, as shown in
Figure 6. Consequently, it also allows VMAs to be organized in
the VMA table as a plain list, with definite positions determined
by each VMA'’s size class and its index within the size class. More
specifically, for a given VMA, the address of the VMA table entry
(VTE) that stores the VMA metadata can be simply calculated as

AVTE = ABase + f (SCyma, Indexypia)

where Ap,se is the base address of the VMA table, SCyyma and
Indexya are the size class and index of the VMA, and f is a simple
two-input injective function that can be easily implemented in both
software and hardware. Our current implementation uses a simple
f that evenly interleaves VMAs of various size classes. Because of
its simple structure, the plain list obviates the need to maintain
two separate data structures for translations, as both software and
hardware can use the same plain list concurrently.

We introduce two new user-level control and status registers
(CSRs) into the RISC-V ISA, namely uatp (User Address Translation
and Protection) and uatc (User Address Translation Configuration).
uatp specifies the base address of the VMA table and whether the
plain list-based address translation is enabled, while uatc defines
the exact format of the VA encoding scheme as in Figure 6, such as
the range of size classes, the position of size class bits, the value of
Top bits, and the VMA table size.

Jord manages virtual and physical memory regions reserved by
the OS. For virtual memory, when PrivLib is initializing, it asks the
OS to reserve all VAs with the given Top bits according to the VA
encoding scheme. Jord performs address translation for a VA only

Single-Address-Space Faa$S with Jord

VA Encoding
sCo [Top Jo] Index | ofs |
scp | Top [1] Index | ofs |
sC; | Tp J2] Index | o |

sco [T L T TT1

SC; [vma,]]]]

SCy [vma, I] I]

'

Physical Address Space N
Figure 6: Size class-embedded VA encoding and partitioning
of the virtual address space among size classes.

if the process runs at the user level, the plain list-based translation
is enabled in uatp, and the VA has the same Top bits as specified in
uatc. The traditional page-based virtual memory still serves other
VAs through the OS-managed page table.

Jord also relies on the OS to provide physical memory chunks
to back VMAs. These chunks can be non-contiguous with various
sizes, as shown in Figure 6. Instead of using a huge and contigu-
ous physical memory for all VMAs, Jord only requires that each
allocated VMA of size class S is backed by a contiguous physical
memory chunk of at least S in size. For VMAs smaller than a page,
Jord maps them into non-overlapping portions of a single physical
page. To avoid interference with the traditional virtual memory,
the OS must ensure that all physical memory chunks reserved for
Jord are private to Jord and cannot be swapped out. The OS can
either pin those physical memory chunks, or it only manages part
of the physical memory, leaving the remaining to Jord.

At the microarchitectural level, we add instruction and data
virtual lookaside buffers (I/D-VLBs) to cache recently used VMAs
and a VMA table walker (VITW) to perform plain list traversal. The
VLBs are range-based TLBs as in [12, 28], while the VITW is a simple
finite state machine that calculates the address of the corresponding
VTE and fetches it from the cache hierarchy.

This design introduces two main trade-offs. First, the plain list
should be preallocated and overprovisioned to cover all VMAs in the
process. However, given the moderate total number of VMAs [52],
this overhead is acceptable, as a 64 MB VMA table can accommodate
one million VMAs. Second, encoding the size class into VAs reduces
the bits available for address space layout randomization (ASLR). In
our implementation with 26 size classes, Jord only causes a modest
5-bit entropy reduction for ASLR, leaving 29 bits for randomization
for the smallest 128-byte size class.

4.2 VLB Coherence

Jord frequently allocates, deallocates, and manipulates the permis-
sion of VMAs to maintain isolation among PDs. As one VMA can be

ISCA 25, June 21-25, 2025, Tokyo, Japan

Core, Core,
(D VLB VLB
L1D vma | tag L1D :
i 5 i
@ Coherence Interconnect
\ 4 LLC

VTD

o
Nos I

Directory

Figure 7: Hardware-based VLB shootdown in Jord.

shared by multiple functions running on multiple cores, Jord should
also perform VLB shootdowns to invalidate stale translations from
VLBs for coherence.

To match the frequency of VMA operations while minimizing
silicon cost [62, 87] and modification to the existing cache coherence
protocol and memory consistency model [6, 11], we implement VLB
coherence in hardware managed by a virtual translation directory
(VTD) [80]. VID is a set-associative structure, co-located with the
coherence directory inside each LLC slice. VID tracks the sharing
of VMAs using VTE addresses as a proxy, enabled by the one-to-one
correspondence between VMAs and VTEs in the plain list design.
As such, each VTD entry contains a tag from the corresponding
VTE address and a sharer list for the translation.

We reuse the cache coherence protocol to piggyback VMA access
information with a single-bit Translation (T) sideband signal. More
specifically, both accesses to VMAs and the invalidation of VLB en-
tries are performed through coherence messages with the T bit set.
Similar to existing hardware TLB coherence approaches [62, 87],
each VLB entry is extended with an extra tag from the correspond-
ing VTE address to match against these coherence messages.

The core initiates VTE accesses through normal load/store in-
structions and VTW traversals. With the plain list design, the L1D
can identify VTE accesses using the base address and size of the
VMA table from the uatp and uatc registers and thus set the T bit
for all coherence messages corresponding to VTE accesses. Figure 7
illustrates how coherence messages propagate among VID and
VLBs to implement VLB coherence. When a VTE read or write
misses in the L1D (D), the L1D generates a new coherence message
with the T bit set and sends it to the LLC and VTD through the
coherence interconnect). For VTE reads, the VTD registers the
translation by adding the initiator VLB into the sharer list of the
tag-matched entry (3). For VTE writes, the VTD reads out the sharer
list @ from the tag-matched entry and generates invalidation mes-
sages with the T bit set to all sharer cores (5). Upon receiving these
invalidation messages, the L1D forwards them to the VLB (§), which
then performs a normal lookup and invalidates entries whose tag
matches the address of the invalidation message. For a VTE write
that hits in the L1D, a local VLB invalidation is generated without
triggering any coherence traffic.

As the cache hierarchy, VLBs, and VTD evict cache blocks or
translations independently, a corner case can occur when a VTE is
in L1D, but the translation is absent in any VLB or VTD. In this case,
the core can easily reinstall the translation into its VLB without

ISCA 25, June 21-25, 2025, Tokyo, Japan

informing VTD to track it. To fix this issue, when the VTID receives
a coherence message, it retrieves the sharer list from the coherence
directory and pessimistically regards all VTE sharers as translation
sharers. Moreover, when the coherence directory evicts a cache
block, it also pessimistically regards all VTE sharers as translation
sharers if VTD does not track the corresponding translation. As
such, the coherence directory behaves as a victim cache for the
VTD, effectively increasing the VID capacity.

4.3 PD Management

Jord allows multiple functions to execute in parallel inside multiple
PDs. To manage this parallelism, we introduce a new user-level
CSR ucid (User Continuation ID) to specify the currently executing
continuation/PD. When the executor performs context switches
among functions, it uses PrivLib to update ucid accordingly to
assign each function the correct views to the shared memory.

To enable multiple PDs sharing the same VMA with different
permissions, we extend each VTE with a sub-array of PD IDs and
corresponding permissions, as shown in Figure 8. Each VTE spans
an entire cache block to avoid false sharing. If the Global (G) bit
in the attr fields is not set, the VTW considers the VTE as valid
only when it finds a valid sub-array entry whose PD ID matches
ucid. The VMA permission also comes from this entry rather than
the attr field. In our implementation, the sub-array contains 20
entries to handle the common case of VMAs with up to 20 sharers.
For rare cases with more sharers, the VTE contains an extra ptr
field pointing to a complete list of PD IDs and permissions.

To protect the VMA table from being modified by untrusted
code, we implement two complementary protection mechanisms.
First, we introduce a Privilege (P) bit for each VMA to designate it
as privileged. When the executing code attempts to access a privi-
leged VMA through explicit load/store instructions, the hardware
checks if the code itself is covered by a privileged VMA, similar to
CODOMs [79]. The access proceeds normally only if the condition
is met. Otherwise, the hardware generates a translation fault. This
P bit protection also extends to the custom CSRs in Jord, effectively
restricting privileged resource accesses to privileged code.

Second, to enforce control-flow integrity when entering PrivLib,
we add a new uatg (User Address Translation Gate) instruction as
a special call gate of privileged code. The hardware requires the
first instruction when the control flow jumps from a non-privileged
VMA to a privileged VMA to be uatg. Otherwise, the hardware
generates an invalid instruction fault. Therefore, combining these
mechanisms, the VMA table and PrivLib are protected by privileged
VMAs, while untrusted code can only enter into PrivLib through
pre-defined uatg call gates.

At the microarchitectural level, these protection mechanisms are
implemented across multiple components. Each VLB entry caches
the P bit obtained from the VITW. The I-VLB further attaches the
P bit to each instruction, propagating through the pipeline to the
decoder, load/store units, and finally to the reorder buffer. When the
decoder determines that the current instruction is a CSR instruction
that accesses uatp, uatc, or ucid, it allows the instruction to pro-
ceed only if it has the P bit set. Otherwise, the decoder marks the
instruction as illegal. Similarly, when the D-VLB sees a load/store
instruction targeting an address covered by a privileged VMA, it

Y. Liet al.
511 192 191 128127 64 63 0
| sub-array | ptr | offs |a| bound |
| R AN
1 Seol e ~el
o o] - (o] [(BEEREY

Figure 8: Structure of the VMA table entry.

also requires the instruction to have the P bit set. Otherwise, the
D-VLB generates a translation fault to the instruction.

For control flow integrity, when the decoder sees a zero-to-one
transition of the P bit in the instruction stream, it checks whether
the first instruction with the P bit set is uatg. If not, the decoder
marks this instruction as illegal. The P bits are also saved in the
reorder buffer to allow P bits of executed instructions to be correctly
restored when a branch misprediction happens. However, when an
exception occurs, the P bit does not need to be backed up, as it will
be refetched correctly when the user code executes again.

4.4 Software

PrivLib is the only user-level trusted software with privileges to
access the VMA table and protected CSRs. Its code, stack, and heap
are all protected with privileged VMAs, and its API entry points are
all protected by uatg instructions, followed by mandatory security
policy checks.

PrivLib manages all protected resources using free lists. During
initialization, it populates the PD free list with all possible PD IDs
and prepares VMA free lists with free memory chunks partitioned
from the reserved memory according to the size class configuration.
Resource allocation and deallocation (for both PDs and VMAs) are
implemented through atomic pop and push operations on these free
lists. For simplicity, these free lists are shared among all threads.

We introduce a new syscall uat_config that allows PrivLib
to communicate with the OS. During initialization, the OS loads
PrivLib code, initializes the VMA table, creates initial privileged
VMAs, reserves the virtual memory region, and allocates a reserved
physical memory chunk to PrivLib. Such bootstrapping is indispens-
able as PrivLib cannot load itself or create privileged VMAs before
it is initialized. When the physical memory chunk is used up or the
application is allocating huge VMAs, PrivLib calls uat_config to
ask for more reserved physical memory from the OS to refill VMA
free lists. Additionally, the OS treats uatp, uatc, and ucid regis-
ters as part of the process’s context, which are saved and restored
during OS context switches.

5 Methodology

We implement Jord’s software stack in C++ with Linux 6.10 for
the OS support, as described in §4.4. We implement Jord’s hard-
ware on QFlex [59], a family of full-system simulators built on
top of QEMU, supporting both trace-driven (for functional warm-
ing [84]) and cycle-accurate simulation. We model a 32-core CPU
running at 4 GHz clock frequency. The detailed parameters for the
simulation are shown in Table 2. To study Jord’s scalability with
increasing core counts and the commensurate impact on latencies
for dispatch, cross-function communication, and memory isolation,
we also model single-socket systems with up to 256 cores and a

Single-Address-Space Faa$S with Jord

Table 2: System parameters for simulation.

Component ‘ Configuration

32-core, 4 GHz, 4-way 000,
128-entry ROB, 32-entry SB

I/D: 48-entry, fully associative

L2: 1024-entry, 4-way

VLBs I/D: 16-entry, fully associative

I/D: 32 KB, 8-way, 2-cycle latency
Cache Hierarchy | LLC: 2 MB/tile, 16-way, 6-cycle latency,
non-inclusive

Coherence Directory-based MESI

NoC 8x4 2D mesh, 16 B links, 3 cycles/hop
DRAM 4 MCs, 8 GB per MC

Core

TLB Hierarchy

dual-socket system with 128 cores per socket along with a 260 ns
inter-socket latency following AMD Zen5 Turin [19].

We mainly use cycle-accurate simulation to explore Jord’s design
space. In addition, as a proof of concept for full-system function-
ality, performance, and design feasibility at the RTL level, we also
prototype Jord on OpenXiangShan [86] with a similar configura-
tion as the simulator and deploy it on an FPGA board with Xilinx
XCVU19P. The capacity constraints of the FPGA only allow us to
instantiate two OpenXiangShan cores.

We use three microservice applications, Social, Media, and Ho-
tel, from DeathStarBench [25] and OnlineBoutique (Hipster) from
Google [27] as the target workloads. We port these workloads to
Jord by rewriting them into functions following Jord’s paradigm,
as described in §3.1. We select two functions with non-trivial func-
tionalities from each workload to study the breakdown of service
time in more detail, as shown in Table 3. Function invocation re-
quests are generated using a load generator similar to wrk2 [25]
with configurable loads and a Poisson arrival process [25, 67, 72].
We instrument the workloads to obtain latencies in clock cycles
for each function invocation, PrivLib operation, and orchestrator
dispatch. The latencies are then converted into nanoseconds by
dividing the measured clock cycles by the 4 GHz clock frequency.

We use NightCore [35] as the baseline FaaS system to compare
with Jord. NightCore uses provisioned containers for concurrency
and isolation while optimizing intra-server communication through
OS pipes and SystemV shared memory. To assess the upper bound
for the performance potential of NightCore, we optimize NightCore
by running launchers and workers as normal threads in a single
address space [92], with thread pinning and JBSQ dispatch in the
same way as Jord. As such, the performance of this optimized
version of NightCore is primarily limited by OS pipes.

We consider three variants of Jord to study memory isolation
overhead in detail. The baseline Jord uses the PrivLib for isolation
and plain list as the VMA table data structure. Jordny uses PrivLib to
manage VMAs, but all isolation operations are bypassed. This con-
figuration represents the upper bound of Jord’s performance with
no memory isolation. We also evaluate Jordgt with B-tree [28, 37]
as the VMA table data structure. In this case, the PrivLib performs
B-tree (instead of plain list) operations for VMAs.

ISCA 25, June 21-25, 2025, Tokyo, Japan

Table 3: Functions selected for service time breakdown.

Workload | Function Abbreviation
Hipster GetCart GC
pste PlaceOrder PO
SearchNearby SN
Hotel MakeReservation MR
. UploadUniqueld uu
Media ReadPage RP
Social Follow F
oca ComposePost CP

Following the methodology in [35, 89], we evaluate each work-
load in isolation on a dedicated worker server, where the single
Jord/NightCore process provides the single-address-space runtime
environment. We use throughput under 99-percentile latency as the
main performance metric, with SLO set to 10X the minimal-load
service time on Jordyy, as is common in the literature [72, 73]. The
measurement of a request’s latency starts when an orchestrator re-
ceives it and ends when the orchestrator is informed by an executor
that the request is finished.

6 Evaluation

In this section, we evaluate Jord across three dimensions to demon-
strate its performance advantages as a single-address-space FaaS
system. First, we compare Jord’s performance against state-of-the-
art systems to validate its efficiency. Next, we analyze Jord’s over-
heads and their impact on the overall performance. Finally, we
investigate the latencies of various operations in Jord over system
size to understand its scalability.

6.1 Performance Comparison

Figure 9 compares the 99-percentile latency of Jordyy, Jord and
NightCore across various loads for our four workloads. The figure
demonstrates, for almost all workloads, that Jord’s single-address-
space design successfully achieves its goal of minimizing overhead
while maintaining SLO. Jord performs within 16% of Jordyny, achiev-
ing throughput of 12, 7, and 0.9 MRPS under SLO for Hipster, Hotel,
and Social, respectively. Media represents the only exception, where
Jord achieves 70% of Jordny’s performance. The difference stems
from Media’s distinct behavior, where each function invokes an av-
erage of 12 nested functions, compared to three in other workloads.

Jord demonstrates consistently superior performance when com-
pared to NightCore, achieving over 2X better throughput under
SLO on average by eliminating the OS memory copying and sched-
uling overheads of pipes. The advantage becomes particularly pro-
nounced in workloads with frequent cross-function communication,
such as Hipster and Media, where NightCore fails to meet the SLO
even under minimum load.

6.2 Memory Isolation

Jord’s hardware-software co-design enables efficient memory isola-
tion operations. As shown in Table 4, ? all PD and VMA operations

The latencies on FPGA are overly estimated compared to a real chip as the DRAM
runs at a relatively higher frequency than cores.

ISCA 25, June 21-25, 2025, Tokyo, Japan

—&— NightCore

40
@
2
=
Q
g
R e S N & SLO_
(=N
& p e > x
n Hipster
0 2 4 6 8 10 12 14 16
Load (MRPS)
")
< 4001
>
Q
=
s
S 200 o e e e SLO_
[
N
A .
Social
0 ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 14

Load (MRPS)

Y. Li et al.

—%— Jord —4*— Jordyg

i ~
T L

P99 Latency (us)
Do
(8]

Load (MRPS)

100+

P99 Latency (us)

Load (MRPS)

Figure 9: Performance of Jord compared to Jordny and NightCore.

Table 4: VMA and PD operation latencies.

Operation [Simulator (ns) [FPGA (ns) ‘
VMA lookup 2 2
VMA update 16 33
VMA insertion 16 37
VMA deletion 27 39
PD creation 11 25
PD deletion 14 30
PD switching 12 22

complete in 30 ns on the simulator, with total isolation overhead
below 120 ns per function invocation. In contrast, NightCore takes
0.8 ms to prepare a worker process to execute a function [35]. Over-
all, raw hardware latencies (e.g., VMA lookup) are identical between
the simulator model and the RTL model running on the FPGA. Sim-
ilarly, SRAM structures are sized identically and incur identical
latencies when accessed in the two models. However, operations in-
volving instruction execution exhibit a lower IPC in the RTL model
because our cycle-accurate simulator models a more aggressive
pipeline with fewer control-flow and structural hazards than the
RTL model. Nevertheless, both models show that VMA and PD
operations can be performed in tens of nanoseconds.

Jord’s performance benefits come from its ability to minimize
Faa$ overhead in the function service time. To illustrate this point,
we show the function service time distribution of our four work-
loads in Figure 10. Across our workloads, 75% of function service
times fall below ~5 us, though Media and Social exhibit long tails,
with Social having one function requiring ~75 ps to execute.

Jord’s average overhead for dispatch and memory isolation is
~360 ns per request, representing only 8%, 4%, and 3% of the service

—e— Hipster —%— Hotel —*— Social —%— Media

17 7——1
0.757

0.51

CDF

0.257

0 5 10 15 76
Service Time (us)

Figure 10: Cumulative distribution function (CDF) of func-
tion service time in Jord.

time in Hipster, Hotel, and Social, respectively. While for Media, Jord
incurs a higher overhead of ~30% due to excessive nested function
invocations, which is still far less than the ~80% overhead incurred
when memory isolation and cross-function communication were
performed through OS pipes as in NightCore.

We further break down the service time of the eight selected
functions into function execution time and various overheads for
both Jord and NightCore in Figure 11. On average, Jord achieves
48% less service time than NightCore. Except for RP with excessive
nested function invocations (more than 100), Jord’s dispatch and
memory isolation overheads only constitute ~11% of the service
time on average. In contrast, NightCore’s overhead exceeds function
execution time in most cases. For RP, the overhead even reaches
3% the execution time.

Jord incorporates instruction and data VLBs to cache recently
used VMAs. Unlike traditional workloads that typically require a
dozen active VMAs [28], FaaS workloads need fewer VMAs due

Single-Address-Space Faa$S with Jord

B Execjoq W 1solationy,,a SN Dispatchyorg
- ExecNightCOre KRS PipeNightCore
Hipster Hotel Media Social
1007
@ e
2
=1 50
L NightCore [
S Jordl ::::1
R
0 : P _ - - .
GC PO SN MR UU RP F CP

Selected Functions

Figure 11: Breakdown of service time into execution time
and overheads in Jord and NightCore for selected functions.

—®— l-entry —¥— 2-entry —*— 4-entry —®— l6-entry

'S
<

P99 Latency (us)
[y}
(=]

Hipster (I-VLB)
0 ‘ ‘ ‘ ‘ ‘ ,

0 2 4 6 8 1‘0 12 14 16
Load (MRPS)

200

2
>
Q
=
% 100+
T S S S AN SLO_
(=N
&
Media (D-VLB)
0 ; ; ; ; ; ;
0 1 2 3 4 5 6 7
Load (MRPS)

Figure 12: Sensitivity of performance on the number of I-VLB
and D-VLB entries.

to their simple functionalities and minimal execution times. We
therefore expect FaaS workloads to impose minimal requirements
on VLBs, also considering the drastically low VLB miss penalty—
2 ns in the common case when the traversal hits L1D. Figure 12
verifies our hypothesis for Hipster and Media, the two workloads
with the most VLB-size sensitivity. For I-VLB, even two entries are
sufficient to achieve 99% throughput under SLO as they essentially
cover the instruction VMAs of the function itself and PrivLib. When
the control flow switches to the executor or to another function, at
most two I-VLB misses can occur and are then quickly served by
the plain list, introducing minimal performance overhead.

The situation for D-VLB is similar. In Jord, each function only
requires few standalone data VMAs for its private stack, heap, and
ArgBufs. As the example workload with frequent cross-function
communication, Hipster only requires four D-VLB entries for the

ISCA 25, June 21-25, 2025, Tokyo, Japan

—o— Jordgr —¥— Jord

'S
S
n

SLO

P99 Latency (us)
Do
(=}

Hipster

0 ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16

Load (MRPS)

Figure 13: Performance comparison of Jordgt and Jord.

—8— Serv. Time —¥— VLB Shootdown —*— Dispatch

6

s

Avg. Latency (us)
»

16—Core 64—Core 128—C0re 256—C0re 2—Sdcket

Figure 14: Sensitivity of average function service time, VLB
shootdown latency, and dispatch latency on the system scale.

best performance. Even for Media as the extreme case, eight entries
are still sufficient. We anticipate that more D-VLB entries are re-
quired only when functions allocate and heavily use more VMAs
than the functions in the workloads we study.

Apart from the plain list, Jord can also work with B-tree [28, 37]
as the VMA table data structure, denoted as Jordgt. As demon-
strated with Hotel in Figure 13 (other workloads show similar re-
sults), JordgT achieves ~60% of Jord’s performance due to increased
VMA lookup and modification costs. More specifically, the average
function service time increases by 43% due to the much higher
VLB miss penalty (2 ns vs. 20 ns). While at the same time, PrivLib
spends 167% more time managing VMAs than in the case of plain
lists because of the frequent B-tree rebalancing. Despite these costs,
Jordgr still outperforms NightCore, achieving 8 MKPS throughput
under SLO, while NightCore fails to meet the SLO.

6.3 Scalability

In Jord, three access patterns dominate the coherence traffic among
cores. The first pattern is the access to ArgBufs. As the source
and target functions can be dispatched to different cores, ArgBufs
accesses can trigger multiple point-to-point coherence messages,
impacting the service time. The second pattern is the executor’s
VLB shootdown, which, in the worst case, triggers a global cache in-
validation on all executor cores. The third pattern is the orchestrator
dispatch, which, in the worst case, generates one coherence message
to each executor it manages for retrieving the queue lengths.
Figure 14 illustrates how system size affects the latencies of these
access patterns. The average function service time shows modest

ISCA 25, June 21-25, 2025, Tokyo, Japan

scaling with the core count, as data transferred through ArgBufs
spans only ~15 cache blocks per request on average, independent
of the system’s scale. The VLB shootdown latency exhibits a similar
sublinear growth with the core count, as the hardware can paral-
lelize the invalidation to each core so that the shootdown latency
only depends on the response time of the furthest core. However,
the dispatch latency presents a significant scalability challenge.
Even with memory-level parallelism that allows loads to multiple
cores to be performed simultaneously, the software is still exposed
to multiple cross-socket latencies, resulting in each dispatch taking
~12 ps to finish in a dual-socket system with 256 cores.

This scalability analysis reveals a critical design implication for
multi-socket systems: the dispatch latency can exceed average func-
tion execution time, causing a single orchestrator to become the
performance bottleneck when managing executors across the en-
tire system. To mitigate such inefficiency, the orchestrators should
be per-socket, performing affinity-based scheduling and dispatch-
ing requests to executors only within the same socket. The poten-
tial performance loss due to increased load imbalance in such a
multi-orchestrator deployment should not be a concern, as prior
work [20] has shown that load imbalance is virtually identical in a
multi-queue system and in a single-queue system as the number of
cores assigned to each queue exceeds a certain threshold. The same
consideration also applies to chiplet-based systems, as cross-chiplet
latencies are in the same order as cross-socket latencies on current
commodity CPUs [19].

7 Related Work

Recent research has explored novel approaches to constructing
cloud applications. ServiceWeaver [26] introduces a programming
model that allows developers to write distributed applications as
monolithic programs as single binaries, with the runtime system
managing communication, deployment, and monitoring. While this
approach simplifies development, it lacks specialized support for
microsecond-scale workloads. Dandelion [41] employs CHERI [83]
capabilities for memory isolation among functions in the same
address space, but it faces performance issues due to expensive
capability management, especially revocation. Faasm [68] lever-
ages WebAssembly to create lightweight sandboxes within a single
address space, but it requires all code to be compiled to WebAssem-
bly, imposing a significant practical limitation. Boucher et al. [14]
propose running functions inside dedicated Rust worker processes
to reduce code startup latencies. However, relying on Rust’s type
system for language-level isolation limits its applicability.

Many in-process memory isolation mechanisms have been pro-
posed for isolating untrusted software components. MPK-based
approaches [58, 66, 78] add domain specifiers to each page table
entry and allow applications to restrict domain permission through
the user-accessible permission register. However, due to the limited
security model, these approaches must employ expensive measures
for control-flow integrity and exclude self-modifying code to pre-
vent unauthorized permission register writes. Mondrian [85] and
SecureCells [13] employ segment-based address translation with
separate permission tables. They provide mechanisms to accelerate
protection domain switches and even permission transfers using
special instructions. While these systems enable sub-microsecond

Y. Li et al.

domain switches, they still rely on the OS for segment management.
HFI [54] introduces region registers to add segment-based permis-
sion checks on top of virtual memory. However, the limited number
of registers requires manual management and careful allocation.
Notably, none of these proposals adequately address TLB coherence
among multiple cores.

Sentry [70] adds permission checks to each cache block on the L1
cache miss paths to form another layer of memory protection above
the traditional paged virtual memory. Similar to Jord, a user-level
supervisor manages these permissions in a per-core permission
cache, while the hardware utilizes the existing coherence fabric to
maintain coherence among multiple permission caches. However,
Sentry leverages software to manage the permission cache and
manipulate cache block permissions, resulting in a much higher
performance overhead than Jord. Furthermore, as with other in-
process memory isolation approaches, Sentry does not optimize
the latency of memory allocation and deallocation.

8 Conclusion

We presented Jord, a single-address-space FaaS system that achieves
microsecond-level SLOs with strong memory isolation. With a
hardware-software co-designed in-process memory isolation mech-
anism that works on the nanosecond scale, Jord enables zero-copy
cross-function communication and scalable function dispatch inside
a single address space. Our evaluation shows that Jord performs
within 16% of an idealized but insecure baseline system and deliv-
ers over 2X higher throughput under SLO compared to enhanced
state-of-the-art systems. Jord demonstrates that efficient isolation
need not compromise FaaS performance, opening new possibilities
for building microsecond-scale Faa$ systems.

Acknowledgments

We thank Haibo Chen, Dimitrios Skarlatos, Thomas Bourgeat, Boris
Grot, Shanqing Lin, Sidharth Sundar, Ahmet Emre Eser, Leo Loch,
and anonymous reviewers for their feedback and support. This
work was partially supported by FNS projects "Hardware/Software
Co-Design for In Memory Services" (200020B_188696), two Intel
research donations (Midgard and CHIMP), National Science Foun-
dation (award 2118851), and the European Research Countil (H2020
StG award 850868).

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications.. In Proceedings of the 17th Symposium
on Networked Systems Design and Implementation (NSDI). 419-434.

Amazon Web Services, Inc. 2024. Auto Scaling Documentation. https://docs.aws.
amazon.com/autoscaling/.

Amazon Web Services, Inc. 2024. Serverless Computing - AWS Lambda. https:
//aws.amazon.com/lambda/.

Amazon Web Services, Inc. 2024. Serverless Computing - AWS Lambda Pricing.
https://aws.amazon.com/lambda/pricing/.

Amazon Web Services, Inc. 2024. Workflow Orchestration - AWS Step Functions.
https://aws.amazon.com/step-functions/.

[6] AMD. 2024. AMDG64 Architecture Programmer’s Manual. https:
//www.amd.com/content/dam/amd/en/documents/processor-tech-
docs/programmer-references/40332.pdf.

Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking.. In Proceedings of the 2017 USENIX Annual Technical Conference (ATC).
27-39.

[2

B3

[4

—
&

3

https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/autoscaling/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf

Single-Address-Space Faa$S with Jord

(8]

[9

=

[10]
[11]

[12

[13]

[14]

[15]

[16]

[17]

(18

[19]

[20]

[21]

[22

[23]

[24]

[25]

[26

[27

S
&

[29

[30]

Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t shoot down TLB shoot-
downs!. In Proceedings of the 2020 EuroSys Conference. 35:1-35:14.

Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap: FaaS made
fast using snapshot-based VMs.. In Proceedings of the 2022 EuroSys Conference.
730-746.

Apache Software Fundation. 2024. Apache Kafka. https://kafka.apache.org/.
Arm. 2024. Arm Architecture Reference Manual for A-profile architecture. https:
//developer.arm.com/documentation/ddi0487/latest/.

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient virtual memory for big memory servers.. In Proceedings of
the 40th International Symposium on Computer Architecture (ISCA). 237-248.
Atri Bhattacharyya, Florian Hofhammer, Yuanlong Li, Siddharth Gupta, Andrés
Sanchez, Babak Falsafi, and Mathias Payer. 2023. SecureCells: A Secure Compart-
mentalized Architecture.. In Proceedings of the 44th IEEE Symposium on Security
and Privacy (S&P). 2921-2939.

Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2018. Putting
the "Micro" Back in Microservice.. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC). 645-650.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make serverless fast..
In Proceedings of the 2020 EuroSys Conference. 32:1-32:15.

Jeffrey S. Chase, Miche Baker-Harvey, Henry M. Levy, and Edward D. Lazowska.
1992. Opal: A Single Address Space System for 64-Bit Architectures (Abstract).
ACM SIGOPS Oper. Syst. Rev. 26, 2 (1992), 9.

Dongwei Chen, Dong Tong, Chun Yang, Jiangfang Yi, and Xu Cheng. 2022.
FlexPointer: Fast Address Translation Based on Range TLB and Tagged Pointers..
In Proceedings of the 31st International Conference on Parallel Architecture and
Compilation Techniques (PACT). 532-533.

R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems.. In Proceedings
of the 29th USENIX Security Symposium. 1409-1426.

George Cozma. 2024. AMD’s Turin: 5th Gen EPYC Launched.
chipsandcheese.com/p/amds- turin- 5th-gen-epyc-launched.
Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-
Driven Tail-Aware Balancing of ps-Scale RPCs.. In Proceedings of the 24th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIV). 35-48.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for
Serverless Computing with Initialization-less Booting.. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXV). 467-481.

fn. 2024. Fn Project - The Container Native Serverless Framework. https://
fnproject.io/.

Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping serverless
computing alive with greedy-dual caching.. In Proceedings of the 26th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXVI). 386-400.

Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and
Gabriel Parmer. 2020. Sledge: a Serverless-first, Light-weight Wasm Runtime
for the Edge.. In Proceedings of the 2020 International Middleware Conference.
265-279.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems.. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXIV). 3—
18.

Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker, Parveen
Patel, Ivan Posva, and Amin Vahdat. 2023. Towards Modern Development of
Cloud Applications.. In Proceedings of The 19th Workshop on Hot Topics in Operat-
ing Systems (HotOS-XIX). 110-117.

Github. 2024. GoogleCloudPlatform/microservice-demo. https://github.com/
GoogleCloudPlatform/microservices-demo.

Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Abhishek Bhattacharjee, Babak
Falsafi, and Mathias Payer. 2021. Rebooting Virtual Memory with Midgard.. In
Proceedings of the 48th International Symposium on Computer Architecture (ISCA).
512-525.

Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos,
Saugata Ghose, Rachata Ausavarungnirun, Geraldo F. Oliveira, Jonathan Appavoo,
Vivek Seshadri, and Onur Mutlu. 2020. The Virtual Block Interface: A Flexible
Alternative to the Conventional Virtual Memory Framework.. In Proceedings of
the 47th International Symposium on Computer Architecture (ISCA). 1050-1063.
Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen
Liedtke. 1998. The Mungi Single-Address-Space Operating System. Softw. Pract.

https://

[31

[32

[33

&
=)

[35

[36

[37

[39

[40

[41

[42

[43

[44

[45

[46

[47]

[48

N
)

[50

[51

ISCA 25, June 21-25, 2025, Tokyo, Japan

Exp. 28, 9 (1998), 901-928.

Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the software
stack. ACM SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37-49.

Intel. 2018. 5-level Paging and 5-level EPT White Paper. https:
//www.intel.com/content/www/us/en/content-details/671442/5-level-paging-
and-5-level-ept-white-paper.html.

Rishabh R. Iyer, Musa Unal, Marios Kogias, and George Candea. 2023. Achieving
Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Schedul-
ing.. In Proceedings of the 29th ACM Symposium on Operating Systems Principles
(SOSP). 466-481.

Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not So
Fast: Analyzing the Performance of WebAssembly vs. Native Code.. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC). 107-120.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices.. In Proceedings of the
26th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVI). 152-166.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
iéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for usecond-
scale Tail Latency.. In Proceedings of the 16th Symposium on Networked Systems
Design and Implementation (NSDI). 345-360.

Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrian Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal.
2015. Redundant memory mappings for fast access to large memories.. In Pro-
ceedings of the 42nd International Symposium on Computer Architecture (ISCA).
66-78.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics.. In Proceedings of the 13th Symposium on Operating System Design and
Implementation (OSDI). 427-444.

Sumer Kohli, Shreyas Kharbanda, Rodrigo Bruno, Jodo Carreira, and Pedro Fon-
seca. 2024. Pronghorn: Effective Checkpoint Orchestration for Serverless Hot-
Starts.. In Proceedings of the 2024 EuroSys Conference. 298-316.

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-
lane: Accelerating Function-as-a-Service Workflows.. In Proceedings of the 2021
USENIX Annual Technical Conference (ATC). 805-820.

Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Func-
tion as a Function.. In Proceedings of the 2023 ACM Symposium on Cloud Computing
(SOCC). 81-92.

Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina Delimitrou.
2020. Dagger: Towards Efficient RPCs in Cloud Microservices With Near-Memory
Reconfigurable NICs. IEEE Comput. Archit. Lett. 19, 2 (2020), 134-138.

Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc: Free List
Sharding in Action.. In Proceedings of the 17th Asian Symposium on Programming
Languages and Systems, (APLAS). 244-265.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022. Help Rather Than Re-
cycle: Alleviating Cold Startup in Serverless Computing Through Inter-Function
Container Sharing.. In Proceedings of the 2022 USENIX Annual Technical Confer-
ence (ATC). 69-84.

Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. 2022. FaaSFlow: enable efficient workflow execution for function-
as-a-service.. In Proceedings of the 27th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVII).
782-796.

Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi Guo. 2023.
DataFlower: Exploiting the Data-flow Paradigm for Serverless Workflow Or-
chestration.. In Proceedings of the 28th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVIII).
57-72.

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Ab-
straction for Safety and Performance.. In Proceedings of the 12th Symposium on
Operating System Design and Implementation (OSDI). 49-64.

Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen, Yitao Hu,
Zhiyuan Su, and Wenyu Qu. 2024. FUYAO: DPU-enabled Direct Data Transfer
for Serverless Computing.. In Proceedings of the 29th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XXIX). 431-447.

Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Mingyu Wu, and Haibo
Chen. 2024. Serialization/Deserialization-free State Transfer in Serverless Work-
flows.. In Proceedings of the 2024 EuroSys Conference. 132-147.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications.. In Proceedings of the 2021 USENIX Annual Technical
Conference (ATC). 285-301.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-
mali Chaterji, and Saurabh Bagchi. 2022. ORION and the Three Rights: Sizing,

https://kafka.apache.org/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched
https://fnproject.io/
https://fnproject.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html

ISCA 25, June 21-25, 2025, Tokyo, Japan

[52]

[53]

[54

[55

[56]

[57

[58]

[59

[60]

[61]

[62

[63]

[65]

[66

[67

[68

[69

[70]

(71

[72]

[73]

Bundling, and Prewarming for Serverless DAGs.. In Proceedings of the 16th Sym-
posium on Operating System Design and Implementation (OSDI). 303-320.
Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation.. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1023-1036.

Microsoft. 2024. Azure Functions. https://learn.microsoft.com/en-us/azure/logic-
apps/logic-apps-overview.

Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey Rudek, Daniel
Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-Oberwagner, Michael
LeMay, Ravi Sahita, Dean M. Tullsen, and Deian Stefan. 2023. Going beyond the
Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with
HFL.. In Proceedings of the 28th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXVIII). 266-281.
NATS Authors. 2024. NATS.io - Cloud Native, Open Source, High-performance
Messaging. https://nats.io/.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers.. In Proceedings of the 2018 USENIX
Annual Technical Conference (ATC). 57-70.

OpenFaa$S Ltd. 2024. OpenFaa$S - Serverless Functions Made Simple. https:
//www.openfaas.com/.

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK).. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC). 241-254.
QFlex. 2024. Quick & Flexible Computer Architecture Simulation. https://qflex.
epfl.ch/.

Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-Chin Wang, and K. K. Ramakrish-
nan. 2022. SPRIGHT: extracting the server from serverless computing! high-
performance eBPF-based event-driven, shared-memory processing.. In Proceed-
ings of the ACM SIGCOMM 2022 Conference. 780-794.

RISC-V International. 2022. Specifications. https://riscv.org/technical/
specifications/.

Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy. 2010.
UNified Instruction/Translation/Data (UNITD) coherence: One protocol to rule
them all.. In Proceedings of the 16th IEEE Symposium on High-Performance Com-
puter Architecture (HPCA). 1-12.

Rohan Basu Roy, Tirthak Patel, Rohan Garg, and Devesh Tiwari. 2024. Code-
Crunch: Improving Serverless Performance via Function Compression and Cost-
Aware Warmup Location Optimization.. In Proceedings of the 29th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXIX). 85-101.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming
serverless functions better with heterogeneity.. In Proceedings of the 27th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXVII). 753-767.

Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya Akella. 2022.
Memory deduplication for serverless computing with Medes.. In Proceedings of
the 2022 EuroSys Conference. 714-729.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys - Efficient
In-Process Isolation for RISC-V and x86.. In Proceedings of the 29th USENIX
Security Symposium. 1677-1694.

Mohammad Shahrad, Rodrigo Fonseca, Iiiigo Goiri, Gohar Irfan Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider.. In Proceedings of the 2020
USENIX Annual Technical Conference (ATC). 205-218.

Simon Shillaker and Peter R. Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing.. In Proceedings of the 2020 USENIX Annual
Technical Conference (ATC). 419-433.

Wonseok Shin, Wook-Hee Kim, and Changwoo Min. 2022. Fireworks: a fast,
efficient, and safe serverless framework using VM-level post-JIT snapshot.. In
Proceedings of the 2022 EuroSys Conference. 663-677.

Arrvindh Shriraman and Sandhya Dwarkadas. 2010. Sentry: light-weight auxil-
iary memory access control. In Proceedings of the 37th International Symposium
on Computer Architecture (ISCA). 407-418.

Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Schedul-
ing with Exception-Less System Calls.. In Proceedings of the 9th Symposium on
Operating System Design and Implementation (OSDI). 33-46.

Mark Sutherland, Babak Falsafi, and Alexandros Daglis. 2023. Cooperative Con-
currency Control for Write-Intensive Key-Value Workloads.. In Proceedings of the
28th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVIII). 30-46.

Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra J. Marathe, Dion-
isios N. Pnevmatikatos, and Alexandros Daglis. 2020. The NEBULA RPC-
Optimized Architecture.. In Proceedings of the 47th International Symposium
on Computer Architecture (ISCA). 199-212.

=<
=t

[80

(81

[82

%
&

(84

[85

(87]

[88

[89

[90]

[91

[92

Y. Li et al.

Ariel Szekely, Adam Belay, Robert Morris, and M. Frans Kaashoek. 2024. Unifying
serverless and microservice workloads with SigmaOS.. In Proceedings of the 30th
ACM Symposium on Operating Systems Principles (SOSP). 385-402.

The Apache Software Foundation. 2024. Apache OpenWhisk. https://openwhisk.
apache.org/.

The Knative Authors. 2024. Knative. https://knative.dev/docs/.

The Kubernetes Authors. 2024. Kubernetes. https://kubernetes.io/.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK).. In Proceedings of the 28th USENIX Security
Symposium. 1221-1238.

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOM:s: Protecting software with Code-centric memory Domains.. In
Proceedings of the 41st International Symposium on Computer Architecture (ISCA).
469-480.

Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez,
Avi Mendelson, Nacho Navarro, Adrian Cristal, and Osman S. Unsal. 2011. DiDi:
Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Di-
rectory.. In Proceedings of the 20th International Conference on Parallel Architecture
and Compilation Techniques (PACT). 340-349.

Jérome Vouillon. 2008. Lwt: a cooperative thread library.. In Proceedings of the
2008 ACM SIGPLAN workshop on ML (ML). 3-12.

Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of
Custom Serverless Container Runtimes at Alibaba Cloud Function Compute.. In
Proceedings of the 2021 USENIX Annual Technical Conference (ATC). 443-457.
Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert M. Norton, Michael Roe, Stacey D. Son,
and Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization.. In IEEE Symposium on Security and
Privacy. 20-37.

Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Aila-
maki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical Sampling of
Computer System Simulation. IEEE Micro 26, 4 (2006), 18-31.

Emmett Witchel, Josh Cates, and Krste Asanovic. 2002. Mondrian memory
protection.. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-X). 304-316.
Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu, Jiazhan Tan,
Huagiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang Zhang,
Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui
Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan
Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang Bao. 2022.
Towards Developing High Performance RISC-V Processors Using Agile Method-
ology.. In Proceedings of the 55th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1178-1199.

Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee. 2017. Hard-
ware Translation Coherence for Virtualized Systems.. In Proceedings of the 44th
International Symposium on Computer Architecture (ISCA). 430-443.

Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian Li, Hong
Zhang, Hao Wang, and Seung-Jong Park. 2024. RainbowCake: Mitigating Cold-
starts in Serverless with Layer-wise Container Caching and Sharing.. In Proceed-
ings of the 29th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXIX). 335-350.

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Following
the Data, Not the Function: Rethinking Function Orchestration in Serverless
Computing.. In Proceedings of the 20th Symposium on Networked Systems Design
and Implementation (NSDI). 1489-1504.

Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou, and Zhou Li. 2023.
Userspace Bypass: Accelerating Syscall-intensive Applications.. In Proceedings
of the 17th Symposium on Operating System Design and Implementation (OSDI).
33-49.

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2023. AQUATOPE:
QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless
Workflows.. In Proceedings of the 28th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVIII).
1-14.

Danyang Zhuo, Kaiyuan Zhang, Zhuohan Li, Siyuan Zhuang, Stephanie Wang,
Ang Chen, and Ion Stoica. 2021. Rearchitecting In-Memory Object Stores for
Low Latency. Proc. VLDB Endow. 15, 3 (2021), 555-568.

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://nats.io/
https://www.openfaas.com/
https://www.openfaas.com/
https://qflex.epfl.ch/
https://qflex.epfl.ch/
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://knative.dev/docs/
https://kubernetes.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Traditional FaaS Systems
	2.2 The Case for Single-Address-Space FaaS

	3 Jord's System Architecture
	3.1 Programming and Threat Models
	3.2 Memory Isolation
	3.3 Orchestrator
	3.4 Executor

	4 Implementing Jord
	4.1 VMA Management
	4.2 VLB Coherence
	4.3 PD Management
	4.4 Software

	5 Methodology
	6 Evaluation
	6.1 Performance Comparison
	6.2 Memory Isolation
	6.3 Scalability

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

