
GlobalConfusion: TrustZone Trusted Application 0-Days by Design

Marcel Busch Philipp Mao Mathias Payer
EPFL, Lausanne, Switzerland

Abstract

Trusted Execution Environments form the backbone of mobile
device security architectures. The GlobalPlatform Internal
Core API is the de-facto standard that unites the fragmented
landscape of real-world implementations, providing compati-
bility between different TEEs.

Unfortunately, our research reveals that this API standard is
prone to a design weakness. Manifestations of this weakness
result in critical type-confusion bugs in real-world user-space
applications of the TEE, called Trusted Applications (TAs).
At its core, the design weakness consists of a fail-open design
leaving an optional type check for untrusted data to TA devel-
opers. The API does not mandate this easily forgettable check
that in most cases results in arbitrary read-and-write exploita-
tion primitives. To detect instances of these type-confusion
bugs, we design and implement GPCheck, a static binary anal-
ysis system capable of vetting real-world TAs. We employ
GPCheck to analyze 14,777 TAs deployed on widely used
TEEs to investigate the prevalence of the issue. We recon-
firm known bugs that fit this pattern and discover unknown
instances of the issue in the wild. In total, we confirmed 9
known bugs, found 10 instances of silently-fixed bugs, and
discovered a surprising amount of 14 critical 0-day vulnerabil-
ities using our GPCheck prototype. Our findings affect mobile
devices currently in use by billions of users. We responsibly
disclosed these findings, already received 12,000 USD as bug
bounty, and were assigned four CVEs. Ten of our 14 critical
0-day vulnerabilities are still in the responsible disclosure
process. Finally, we propose an extension to the GP Internal
Core API specification to enforce a fail-safe mechanism that
removes the underlying design weakness. We implement and
successfully demonstrate our mitigation on OPTEE, an open-
source TEE implementation. We shared our findings with
GlobalPlatform and suggested our mitigation as an extension
to their specification to secure future TEE implementations.

1 Introduction

The security architecture of modern mobile devices heavily
relies on Trusted Execution Environments (TEEs) to protect
highly sensitive data for use cases such as biometric authenti-
cation, secure storage, digital rights management, and mobile
payment. These distinct use cases require modularization
and isolation. They are therefore typically encapsulated in
user-space programs executed within the TEE called Trusted
Applications (TAs).

The organic evolution of the mobile ecosystem led to heavy
fragmentation and heterogeneity of the software stacks on
mobile devices. Depending on OEM (Original Equipment
Manufacturer), chipset, and model, several TEEs, including
QSEE, Kinibi, TEEGris, Trusty, OPTEE, and BeanPod power
the security backend of our devices. Each TEE exposes its
unique API that is incompatible with the other TEEs.

To counteract this fragmentation and ensure the compatibil-
ity of TAs across different TEE implementations, a non-profit
industry association, called GlobalPlatform strives to enable
a collaborative and open ecosystem by developing specifi-
cations, especially regarding trusted computing technologies
and particularly for TEEs. The specification relevant to our
work is the GP TEE Internal Core API [22], which defines a
common interface that can be used by TAs.

In this work, we take a closer look at the GP TEE Internal
Core API design and make an insightful discovery. The design
choices of this de-facto standard API led to a class of type-
confusion bugs affecting almost all TEE implementations
used on production devices. Our analysis reveals that this
design weakness affected more TAs than was publicly known
and continues to manifest itself as critical vulnerabilities in
TAs deployed on mobile phones used by billions of users.

In detail, the design weakness leads to a type-confusion
bug where an attacker-controlled value is used as a memory
reference. In the majority of these cases, this bug leads to
arbitrary read-and-write exploitation primitives in the context
of the affected TA and, thus, allows to fully take control over
parts of the TEE.

Prior work noticed instances of these bugs in isolation
without identifying the design weakness. We are the first
to elaborate on the design weakness of the GP Internal Core
API and its ecosystem-wide scale. Our discovery connects
seemingly unrelated bugs affecting platforms of reputable
vendors like Huawei [3,54] and Samsung [43,49], and relates
these disclosures back to the GP API design weakness.

We present several findings and contributions. First, we de-
tail and systematize the design weakness in the GP TEE Inter-
nal Core API highlighting the severe class of type-confusion
bugs this weakness leads to. Next, we aim to study the preva-
lence of this bug class in the ecosystem. Since the vast ma-
jority of real-world TAs are closed-source, we designed and
implemented GPCheck, a static binary analysis system that au-
tomatically detects instances of the type-confusion bug. In the
design of GPCheck, we model this domain-specific class of
type-confusion bugs as taint-style vulnerability. The encoding
of this vulnerability class is our novel contribution, allowing
us to conduct a large-scale study regarding the prevalence
of this bug class in practice. In total, we investigate 14,777
TAs deployed on billions of devices by 5 vendors. Our results
reconfirm the 9 previously known instances of the bug class.
Unfortunately, the scope and impact of this bug class is larger
than publicly known. We uncover 10 unknown and silently
fixed vulnerabilities in old TAs, and 14 critical 0-day vulnera-
bilities in the latest versions of TAs. Further, to mitigate the
threat of this design weakness and to end this stream of criti-
cal type-confusion bugs, we propose an extension to the GP
TEE Internal Core API specification. This extension preserves
compatibility and adds a fail-safe design feature that will pre-
vent type-confusion bugs in the future. We implemented this
design on OPTEE and demonstrate its effectiveness.

In summary, we make the following contributions:

• Discovery of a design weakness in TAs using the Glob-
alPlatform API specification that leads to a series of
critical bugs across vendors.

• Modeling of this TA type-confusion bug class as a taint-
style vulnerability, as well as the design and implemen-
tation of a static analysis system, GPCheck, capable of
detecting instances of this bug class in closed-source
TAs.

• Automated static analysis pipeline to conduct a large-
scale study to measure the scope and impact of this threat.
We analyze 14,777 TAs spanning 5 vendors and demon-
strate the scope of this issue that affects the majority of
the ecosystem.

• Proposal and implementation of a viable countermeasure
based on OPTEE.

The artifacts of our research are publicly available
at https://github.com/HexHive/GlobalConfusion. All
discovered bugs were responsibly disclosed to the respective

Normal World Secure World

Client Applications

Rich OS

...

Trusted Applications

...

TEE Internal Core API

Trusted OS

Dispatcher

Figure 1: Architecture and communication channels of mod-
ern TrustZone-based TEEs. The logical channel of a Client
Application–TA interaction (dashed line) is carried out by
both OSes that, cooperatively, forward and dispatch requests
(solid lines).

vendors. We are in an ongoing responsible disclosure for 10
vulnerabilities, 4 CVEs have been assigned. Additionally, we
contacted GlobalPlatform aiming to change the underlying
specification to mitigate this bug class once and for all.

2 Background

The basis for almost all TEEs found on modern mobile de-
vices is ARM TrustZone [6]. It allows for partitioning of the
System-on-Chip (SoC) into two execution contexts – the Se-
cure World and the Normal World – where code and data from
the Secure World cannot be accessed by the Normal World.
The idea is to run a feature-rich operating system (the rich OS)
and its userland in the Normal World and only execute trusted
code in the Secure World. Recent TrutZone-based TEEs split
the Secure World into a kernel, the trusted OS, and a userland,
which hosts TAs.

For data exchange, a logical communication channel ex-
ists between a Client Application and a TA (dashed line in
Figure 1). Using this channel, Client Applications can request
services from TAs. For example, requesting the generation of
an asymmetric key pair, where the private key resides in the
TEE, and the Client Application can use the public key [23].
In addition to the key generation, the TA would also provide
an API to perform cryptographic operations using the safely
stored private key (e.g., sign or decrypt messages).

Technically, the Client Application cannot call a TA di-
rectly. It must go through the rich OS that takes care of using
a Normal World-Secure World shared memory region for the
provided request data and initiates the world switch using a
privileged instruction (e.g., smc). Then, the trusted OS dis-
patches the request to the TA. When the TA has processed
the request, it writes its output to the shared memory region
used for this session, and returns to the trusted OS, which, in
turn, initiates the world switch back to the Normal World. Fi-
nally, the rich OS returns execution to the Client Application.
Figure 1 depicts this communication channel with solid lines.

https://github.com/HexHive/GlobalConfusion

Vendors of TEEs have an interest in providing a common
interface for TAs in order to execute third-party TAs on their
platforms. One set of standards that has been adopted by the
mobile market is specified by GlobalPlatform (GP). GP is a
non-profit organization dedicated to fostering open ecosys-
tems through the development of specifications, with a focus
on TEEs. The GP TEE Internal Core API [22] defines a com-
mon interface that can be used by TAs (depicted in Figure 1).
This API is the de-facto standard for developing TAs that may
be deployed on multiple different TEE implementations.

One especially relevant part of the GP TEE Internal Core
API is the lifecycle functions that are used from a Client Ap-
plication’s perspective to interact with a TA. The specification
defines the following lifecycle functions:

1. TA_CreateEntryPoint: This function is the construc-
tor for a TA. It is called only once during the lifetime of
the TA when the first session is established.

2. TA_OpenSessionEntryPoint: This function is used to
establish a session between the Client Application and
the TA. It is primarily responsible for authenticating the
Client Application and initializating data structures for
the session.

3. TA_InvokeCommandEntryPoint: This function in-
vokes the actual command handler of the TA. Each TA
usually implements multiple commands.

4. TA_CloseSessionEntryPoint: This function frees all
session-specific state.

5. TA_DestroyEntryPoint: This function deallocates all
resources reserved in the initial entry point creation.

Both the TA_OpenSessionEntryPoint and
TA_InvokeCommandEntryPoint handle untrusted data
passed as arguments. In Section 4, we provide an example of
how their fail-open design leads to critical type-confusion
vulnerabilities.

3 Threat Model

We adopt our threat model based on the standard assurances
provided for TrustZone-based Trusted Execution Environ-
ments (TEEs), tailoring it to the specific environment of a
functional mobile device operating on the Android platform.
TEEs leveraging TrustZone offer robust hardware-based iso-
lation, ensuring the integrity and confidentiality of all compo-
nents within the Secure World. This isolation thwarts the exe-
cution of unauthorized code within the TEE, such as loading
unsigned or modifying existing code. It also safeguards con-
fidential information, including cryptographic keys and bio-
metric identifiers, from being exposed to the Normal World.

In this threat model, we assume an adversary with the ca-
pability to execute code in the context of the rich OS and
Client Applications, with access to TEE-exposed interfaces.

1 TEE_Result TA_EXPORT TA_OpenSessionEntryPoint(
2 uint32_t paramTypes, [inout] TEE_Param params[4],
3 [out][ctx] void** sessCtx);
4

5 TEE_Result TA_EXPORT TA_InvokeCommandEntryPoint(
6 [ctx] void* sessCtx, uint32_t cmdId,
7 uint32_t paramTypes, [inout] TEE_Param params[4]);

Listing 1: The function signatures of the two affected GP API
functions.

This attacker model aligns with real-world scenarios on typi-
cal Android devices, considering the historical prevalence of
privilege escalation exploits targeting the Linux kernel, exem-
plified by incidents like CVE-2018-9568, CVE-2019-2215,
and CVE-2022-0847. Furthermore, the model can be nuanced
and weakened, given that a plethora of user-space daemons
have access to the TEE driver interface exposed by the kernel.
In many cases, access to this interface (limited to individual
Client Applications) is sufficient for an attacker to execute
the described attacks.

Our specific focus involves an adversary aiming to compro-
mise the integrity and confidentiality of a Trusted Application
(TA) and potentially exploit the TA’s capabilities to breach the
TEE’s operating system. Note that achieving the latter only re-
quires an exploitable vulnerability in a single TA, establishing
a single point of failure.

4 GlobalConfusion: A Design Weakness in the
De-Facto TA API Standard

We discovered a design weakness related to the GlobalPlat-
form API specification for TAs that proposes a fail-open de-
sign for optional, but critical, type checks of untrusted parame-
ters. In the majority of cases, manifestations of this weakness
result in an arbitrary read-and-write exploitation primitive
and, thus, a complete compromise of the affected TA.

The two affected GP API function signatures are illustrated
in Listing 1. In all GP-compliant TAs, these functions are
directly exposed to Client Applications and the rich OS which
makes them accessible in the context of our threat model
described in Section 3. Note that untrusted input is crossing
the trust barrier between Normal World and Secure World
when these functions are invoked and, thus, all arguments
must be properly sanitized.

The sessCtx is an opaque pointer that can be set by the TA
during session establishment and does not contain untrusted
data. Within subsequent command invocations, this pointer is
available and used to maintain session-specific data structures.
The remaining parameters contain untrusted data and their
usage becomes clear by looking at an example.

In Listing 2, we present an echo-TA to demonstrate the us-
age of GP-compliant TAs and to highlight the type-confusion

1 TEE_Result TA_InvokeCommandEntryPoint(
2 void __maybe_unused *sessCtx,
3 uint32_t cmdId, uint32_t paramTypes,
4 TEE_Param params[4])
5 {
6 (void)&sessCtx; // Unused parameter
7

8 switch (cmdId) {
9 case TA_ECHO_CMD_ECHO: {

10 char *in_buf, *out_buf;
11 size_t in_buf_sz, out_buf_sz;
12

13 /*
14 uint32_t exp_paramTypes = TEE_PARAM_TYPES(
15 TEE_PARAM_TYPE_MEMREF_INPUT,
16 TEE_PARAM_TYPE_MEMREF_OUTPUT,
17 TEE_PARAM_TYPE_NONE,
18 TEE_PARAM_TYPE_NONE);
19

20 if (paramTypes != exp_paramTypes)
21 return TEE_ERROR_BAD_PARAMETERS;
22 */
23

24 in_buf_sz = params[0].memref.size;
25 in_buf = (char*)params[0].memref.buffer;
26 out_buf_sz = params[1].memref.size;
27 out_buf = (char*)params[1].memref.buffer;
28

29 if (in_buf_sz > out_buf_sz)
30 return TEE_ERROR_BAD_PARAMETERS;
31

32 TEE_MemMove((void*)out_buf, in_buf, in_buf_sz);
33

34 return TEE_SUCCESS;
35 }
36 default:
37 return TEE_ERROR_BAD_PARAMETERS;
38 }
39 }

Listing 2: The GP TEE Internal Core API specification pro-
poses a weak “fail-open” design to sanitize untrusted input.
The type check that distinguishes memref from value param-
eters is optional.

problem exposed through the API. In this listing, we can see
a simple command handler of an echo-TA. The session con-
text (sessCtx in Lines 2 and 6) is not used in this example,
and the command handler only implements one command
identifier (TA_ECHO_CMD_ECHO in Line 9). The implemented
echo command uses the first parameter (params[0] in Lines
24 and 25) as a reference to an input buffer and the second
parameter (params[1] in Lines 26 and 27) as a reference to
an output buffer. As the name of this TA suggests, the input
buffer is copied to the output buffer (Line 32) in this command
handler before the TA returns successfully.

Each GP-compliant TA must check the parameter types
(paramTypes) sent by a client against the expected param-
eter types (Lines 14 to 21) for the corresponding cmdId
handler. If the expected types do not match the provided
types, the TA is supposed to abort execution and return a
TEE_ERROR_BAD_PARAMETERS status code to the client. The
individual parameters (params) are supposed to be passed us-
ing either one of two different parameter type classes, value

1 typedef union {
2 struct {
3 void *buffer;
4 uint32_t size;
5 } memref;
6 struct {
7 uint32_t a;
8 uint32_t b;
9 } value;

10 } TEE_Param;

1 #define TEE_PARAM_TYPE_NONE 0
2 #define TEE_PARAM_TYPE_VALUE_INPUT 1
3 #define TEE_PARAM_TYPE_VALUE_OUTPUT 2
4 #define TEE_PARAM_TYPE_VALUE_INOUT 3
5 #define TEE_PARAM_TYPE_MEMREF_INPUT 5
6 #define TEE_PARAM_TYPE_MEMREF_OUTPUT 6
7 #define TEE_PARAM_TYPE_MEMREF_INOUT 7
8

9 #define TEE_PARAM_TYPE_GET(t, i) \
10 ((((uint32_t)t) >> ((i)*4)) & 0xF)

Listing 3: The parameter type is either a value or memref
struct. Due to the union, the two structs overlap in memory.
The GP API specifies two classes of parameter types, value
and memref. Each parameter’s type is encoded by 4 bits in
the param_types argument.

or memref. Each class can be an input, output, or in-out param-
eter (Listing 3). Additionally, there is the none type indicating
that a parameter is not used. Each parameter is implemented
as a union, TEE_Param, consisting of a memref and a value
struct, as illustrated in Listing 3. The memref’s first member is
an opaque pointer to a buffer, and its second member describes
the size of this buffer. The value’s members, a and b, are two
32-bit unsigned integers. Due to the union, the two structs
overlap, and the same underlying data can be interpreted as
either memref or value type. In a 64-bit environment, the
integers a and b overlap with only the buffer.

Design Weakness. In Listing 2, we indicate a forgotten
parameter type check in Lines 14 to 21. This type check is
essential to prevent type-confusion vulnerabilities. The Glob-
alPlatform TEE Internal Core API specification proposes
an optional preprocessor macro-based type check, resulting
in a weak fail-open design, instead of enforcing the proper
sanitization of untrusted input (fail-closed design). Listing 2
demonstrates a manifestation of this weak design when a
value is used like a memref. Assuming an adversary notices
the missing type check in any of the commands of any TA
(usually there are many commands), it can have severe conse-
quences as we can learn from our example echo-TA. In this
case, an attacker can invoke the TA_ECHO_CMD_ECHO com-
mand and provide the type information used for any of the
two used parameters to indicate a value type. Since the TA
does not check its parameter types, but still interprets them as
memref types, the attacker provided a and b values overlap
with the buffer and size fields (in the 32-bit case) and, thus,
the attacker has control over the two pointers within the vir-
tual address space of the TA that can be read from or written
to. While the prior case can lead to the leakage of confidential
data, such as reading export-protected cryptographic keys, the
latter case could allow an adversary to manipulate the TA’s
address space and, in the worst case, lead to code execution.

5 GPCheck Design

Based on the design weakness of the GlobalPlatform Inter-
nal Core API as introduced in Section 4, we first surveyed
the landscape of existing analysis tools and second, due to
their limitations, design a static binary analysis tool to auto-
matically find manifestations of this weakness in proprietary
closed-source TAs.

5.1 Prior Art

In our study, we aim for a large-scale analysis of closed-source
TAs compiled from C/C++ code. These TAs are shipped as
binary blobs in proprietary firmware images and deployed on
production devices. They are executed within the TEE of these
production devices and do not allow any introspection. Within
these TAs, we aim to detect a type-confusion vulnerability as
outlined in Section 4. This section reviews prior work related
to this class of vulnerabilities. An overview of prior work is
summarized in Table 1.

Dynamic Approaches. At its core, manifestations of the
GlobalPlatform Internal Core API design weakness materi-
alize as type-confusion vulnerabilities in TAs. Prior research
on type-confusion vulnerability detection focuses primar-
ily on dynamic analysis techniques which fundamentally
requires concrete executions to trigger the type-confusion.
TypeSan [25], HexType [28], BiType [31], EffectiveSan [16],
and Uncontained [32] propose several approaches in differ-
ent domains to instrument target programs during compila-
tion. This instrumentation allows for the detection of type
confusions during runtime. In principle, dynamic taint track-
ing approaches like TaintDroid [18] or TaintArt [56] could
also be leveraged to uncover type-confusion vulnerabilities
by ensuring that a type check occurs before every access
to the variably typed object. There exist similar dynamic
approaches targeting type confusions in binaries, including
libcrunch [30] and BinTyper [31]. Unfortunately, all of these
approaches require recompilation based on source code to
extract the necessary type information, require the modifi-
cation of the target program to add the checks, and/or rely
on powerful introspection capabilities into the program state.
TAs are closed-source binaries compiled from C/C++. They
are vendor-signed and cannot be executed when modified.
Additionally, TrustZone TEEs enforce isolation between the
Normal World and the TEE, meaning that introspection is
prohibited. While emulation-based approaches for TEEs [26]
seem promising, they suffer from fidelity issues, require sig-
nificant engineering efforts to support a wider range of TEE
implementations, and existing prototypes are not available to
the public. Hence, past approaches leveraging dynamic analy-
sis are inappropriate to support our study of type-confusion
bugs in TAs.

Static Approaches. As illustrated in Section 4, the type-
confusion bug becomes a vulnerability when a memref use is

not preceeded by a corresponding type check. In static analy-
sis, this problem falls into the category of taint-style vulnera-
bilities. Analyses aiming to detect taint-style vulnerabilities
consist of (i) taint-introducing sources, (ii) taint propagation
rules, (iii) taint-removing sanitizers, and (iv) taint-consuming
sinks. These analyses raise alerts when a taint can flow from
source to sink without being sanitized.

The encoding of these four elements of taint-style vul-
nerability analyses is highly problem-specific. For instance,
Livshits and Lam [38] define a taint-style vulnerability analy-
sis for Java-based web applications. Amongst other encodings,
they detect SQL injections when tainted data from an un-
trusted source flows into an SQL statement interpreted by the
database management system without being sanitized. Simi-
larly, Pixy [29] encodes a taint-style vulnerability addressing
cross-site scripting vulnerabilities in PHP applications. Their
analysis raises an alert when untrusted input is returned to the
client without being sanitized.

Different from these domains, our targets are binaries
compiled from C/C++. Taint-style vulnerability analyses
for binaries were used by Bootstomp [46] and its succes-
sor Karonte [47]. Both systems use heuristics, i.e., keywords
in strings and memcpy functions, to identify sources and sinks.
In the scenarios for these systems, sanitizers are not well-
defined and it is left to a human analyst to decide if a detected
flow leads to unintended behavior. COMfusion [65] is an-
other system leveraging taint-style vulnerability analyses to
detect improper usages of unions in the context of Microsoft
Component Object Model (COM) code. COMfusion requires
Microsoft Interface Definition Language (MIDL) files and
uses them to identify union-type parameters of functions.
These parameters serve as sources for the inter-procedural
taint analysis. The taints are propagated using no further spec-
ified “normal data movements”. Interestingly, the sinks are
identified by a succeeding symbolic execution phase as spe-
cific uses of tainted data (i.e., a union is passed as a parameter
to memcpy). The sanitization check is integrated to the sym-
bolic execution by introducing the type selector (i.e., member
of the struct containing the union) as symbolic variable
and determining its possible values at each sink location. If
there are more than one possible values (i.e., multiple types
possible), the system reports a type confusion.

The above-mentioned systems propose promising ap-
proaches to detect domain-specific taint-style vulnerabili-
ties. However, they are not directly applicable to the type-
confusion issues outlined in Section 4. Bootstomp and
Karonte do not rely on sanitizers and leave the interpreta-
tion of alerts to human analysts. Given the large-scale scope
of our study, this approach is infeasible. Further, while COM-
fusion introduces a taint for one union-typed parameter, our
problem (see Section 4) requires tracing the params array and
continue as a multi-tag taint system whenever the TEE_Param
union members of this array are propagated. To be precise,
we are only interested in the propagation of the first member

Solution Analysis Target Approach

TypeSan [25] Dynamic Source (C++) Runtime Sanitization
HexType [28] Dynamic Source (C++) Runtime Sanitization
BiType [44] Dynamic Source (C++) Runtime Sanitization
Effectivesan [16] Dynamic Source (C++) Runtime Sanitization
Uncontained [32] Hybrid Source (C) Def-Use Chains / Runtime Sanitization

TaintDroid [18] Dynamic Bytecode (Dalvik) Runtime Taint Tracking
TaintArt [56] Dynamic Bytecode (Dalvik) Runtime Taint Tracking

libcrunch [30] Dynamic Binary (C++) Runtime Sanitization
BinTyper [31] Hybrid Binary (C++) Class Recovery / Runtime Sanitization

Bootstomp [46] Static Binary (C) Static Taint Propagation
Karonte [47] Static Binary (C) Static Taint Propagation
COMfusion [65] Static Binary (C) Static Taint Propagation

Table 1: Overview of prior approaches related to type-
confusion detection.

(buffer or value) of TEE_Param. COMfusion does not sup-
port multiple taints and cannot express these tainting rules
with sufficient granularity. Extending COMfusion in these
two aspects would be an option, but neither the prototype
source code nor any other artifacts of this work are publicly
available. In the following sections, we describe our contribu-
tion of encoding the type-confusion bug class into a taint-style
vulnerability and our system, GPCheck, capable of detecting
instances of these vulnerabilities in closed-source TAs.

5.2 Overview
Our system, GPCheck, relies on static analysis to find the
type-confusion vulnerabilities as mentioned above. We ex-
tend commodity reverse-engineering tools to implement our
static analyses. In particular, we require a tool that disassem-
bles the TA’s machine code and identifies functions. Further,
we aim for an architecture-agnostic analysis by utilizing an
intermediate representation (IR) typically provided by reverse
engineering tools as a lifter step in the decompilation process.
A common feature of these tools is to optimize the IR repre-
sentation of the code in multiple passes. These optimizations,
similar to compiler optimizations, transform the IR into the
single static assignment (SSA) form to allow for more ad-
vanced data-flow analyses. For instance, SSA facilitates the
detection of def-use chains of variables because each variable
is defined exactly once. All major reverse-engineering tools
provide a scriptable API to query their optimized IR. For
instance, IDA Pro lifts machine code to Microcode IR [24],
Binary Ninja to BNIL [1], and Ghidra to PCODE [2].

Combining powerful and mature decompilation tools with
security-centered static analysis is a promising approach to
analyzing proprietary TAs as found within firmware images
deployed on production devices.

As illustrated in Section 4, the type-confusion bug becomes
a vulnerability when memref TEE_Params are used without
the corresponding preceding paramTypes check. The core
of our system is an information flow analysis that tracks the
flow of data within the program. Using this analysis, we can
effectively determine the distinct cases of unchecked memref

GP Function
Detection

Alerts

GPCheck

BIN Trusted
Application

Loading &
Decompilation

Taint Analysis Engine

Memref Usage
Detection

Param Type
Check Detection

Unchecked Memref Usage Analysis

Figure 3: GPCheck consumes closed-source TAs and is based
on commodity reverse-engineering tools. First, it detects the
relevant GP functions, next it introduces and tracks several
taints, and finally combines these information flow analyses
to generate alerts for unchecked memref usages.

usages and raise an alert for each of these cases. A human
analyst can then process these alerts and verify if the reported
type-confusion bugs can be exploited.

Our system proceeds in the following steps, as outlined in
Figure 3:

1) TA Pre-processing. GPCheck’s input is a TA binary.
The design choice of supporting binaries enables our system
to handle proprietary closed-source TAs. These binaries can
directly be obtained from firmware images of devices employ-
ing TEEs. We leverage commodity reverse-engineering tools
and their decompilation features to obtain control-flow and
data-flow information.

2) GP Function Detection. TA binaries are often
stripped. Thus, GPCheck needs to identify the two
lifecycle entrypoints TA_InvokeCommandEntryPoint and
TA_OpenSessionEntryPoint. Since each TEE implemen-
tation uses a different SDK to implement TAs, this detection
is TEE-specific and non-trivial. GPCheck identifies these life-
cycle entrypoints using a set of effective heuristics that rely on
structural patterns of the individual SDKs. The localization
of these entrypoints is a prerequisite for our information flow
analysis.

3) Memref Usage and Type Check Detection. As ex-
plained in Section 4, we are interested in all cases where
one of the four TEE_Params may be used as a memref. In
particular, any access (dereference) of the buffer member of
memref can be critical. Hence, GPCheck considers the two
relevant lifecycle functions as taint sources and marks their
params argument as tainted. Further, the system tracks the
usages of params throughout the CFG and introduces new
distinct taint sources for all sinks that access the memory
backing any of the up-to-four memref.buffer members. In
other words, we convert the params taint into a multi-tag
taint with different propagation rules whenever a potential
memref.buffer members is created. These memref.buffer
candidate taints are further propagated and dereferencing ac-

cesses are marked as sinks. Analogously, GPCheck tracks the
usages of paramTypes and marks all sinks that compare this
value. This comparison indicates a parameter type check.

If any taint is propagated to another function, GPCheck
properly forwards this information and recursively tracks
taints across function boundaries, making this analysis inter-
procedural.

4) Unchecked Reachability Analysis and Alerting. Hav-
ing identified memref usages and paramTypes checks inter-
procedurally, GPCheck performs a reachability analysis
where we determine if a memref usage sink is reachable from
a source (i.e., entrypoint of a function) without encountering
a sanitizing paramTypes check in the CFG. In other words,
“can we find a path within the CFG that connects a source with
a sink without traversing a checker node”. GPCheck raises
an alert for all unchecked usages and compiles a report for
a human analyst containing relevant context information to
pinpoint the vulnerability during a manual analysis.

The unchecked reachability analysis also decides if de-
scending into tainted callees is necessary. If the call site is
checked, GPCheck does not descend into the callee.

False Positives. Conservative static information flow anal-
yses as the one suggested above have high false-positive rates
due to overtainting. GPCheck employs a domain-specific
analysis tailored for a fairly narrow class of bugs. Due to
the introduction of taints via standardized APIs, we assume
a homogeneous handling of the tainted parameters. For in-
stance, it is unusual to encounter paramTypes checks more
than two callees deep into the callgraph originating from the
GP API function. Additionally, we observed a uniform pat-
tern to access the buffer members inside of the params and
did not observe any obfuscation or anti-analysis techniques
in in-the-wild TAs. These properties are beneficial for static
information flow analysis and result in a false-postive rate of
about 10%, as our empirical evaluation in Section 7 shows.

5.3 GP Function Detection
In this section, we describe how we can identify GP API
functions in proprietary and stripped binaries.

The GP API defines return codes to indicate certain error
conditions. For instance, 0xFFFF000C indicates an out-of-
memory condition, while 0xFFFF0000 indicates a generic
error. As a heuristic, GPCheck uses these return codes to
identify GP function candidates. Additionally, we use a set of
vendor-specific constants and (log) strings that consistently
appear within TAs, making use of GP “artifacts” to extend
the set of candidates.

Next, we use a set of vendor-specific structural features
to first split the result set into TA_OpenSessionEntryPoint
and TA_InvokeCommandEntryPoint candidates, and second
uniquely identify the two functions. One structural feature
is related to the integration of the GP API lifecycle func-
tions into the binary. All lifecycle functions are only ref-

erenced once from one function that implements the life-
cycle state machine. Therefore, we filter the result set for
candidates having only one caller. Then, we exploit the fact
that the lifecycle functions have a common caller and clus-
ter our result set into groups of functions having the same
caller. A further cross-vendor structural feature is the pa-
rameters used by the two target functions. By considering
the parameter count of each function, we can exclude candi-
dates and split each group into TA_OpenSessionEntryPoint
and TA_InvokeCommandEntryPoint candidates. Lastly, we
end up with groups of candidates for both functions and use
the fact that their common caller passes the same variables
(paramTypes and params) to both functions.

In practice, these heuristics yield reliable results. Depend-
ing on the target, the used heuristics can be extended or modi-
fied to fit the structural features of other implementations.

5.4 Static Information Flow Analysis

After identifying the two problematic functions as described
above and using commodity reverse-engineering tools to ob-
tain control- and data-flow information, the core of our static
analysis consists of three elements. First, we identify the CFG
nodes that check the parameter types (type check). Second,
we identify the CFG nodes accessing the memory backing
memref buffers (memref usage). Third, we determine if any
of the memref usages is reachable without traversing a type
check.

Tracking paramTypes. To intra-procedurally
track the paramTypes, we taint the corre-
sponding parameter of the taint-introducing
function (i.e., TA_OpenSessionEntryPoint or
TA_InvokeCommandEntryPoint). Then, we collect all
descendants of the taint by recursively tainting all new
definitions that depend on a tainted use. The propagation
of the taint is dependent on the expression in which it is
used. For instance, copying to a register, casting, or storing to
memory introduces new taint flows. The taint can reach two
kinds of sinks, a comparison or a function call. A comparison
marks the containing CFG node as a type check node. A
function call creates an entry in the worklist to later descend
into the called function. We generate an alert for unexpected
expressions. For instance, we do not expect the paramTypes
to be used in arithmetic expressions or as a memory location
that is written to or read from.

Tracking params. The intra-procedural analysis of
params starts identical to the one performed for the
paramTypes parameter. The taint is introduced by the corre-
sponding parameter of one of the GP functions and points
to an array of four TEE_Param unions. When collecting the
descendants, we look for sinks that load data from the location
of the first member of any of the entries in params, meaning
a load of either memref.buffer or value.a. This prepara-
tion is typically expressed via (pointer) arithmetic where a

(constant) offset is added to the base of the params array.
Such a sink allows us to introduce a param taint for which we
still need to determine if it is ever used as a memref. Similar
to the paramTypes tracking, a usage of params as part of a
function call creates a new worklist entry to later descend into
the callee.

Tracking param. Each param taint represents a potential
buffer. Hence, we collect all descendants for each param taint
and proceed according to how these descendants are used. We
mark a CFG node as memref usage sink if we encounter a
taint being used as a reference to memory that is read from
or written to. We add an item to the worklist containing the
param taint when we encounter a call site consuming this
taint as a parameter. This item will be processed later.

Alerting. Having the current function’s CFG annotated
with type check nodes and memref usage nodes, is a prereq-
uisite to detect unchecked memref usages. For each memref
usage, we determine if it is reachable without traversing a san-
itizing type check node. If we can find such a path, GPCheck
raises an alert, otherwise the usage is marked as correctly
checked.

Inter-procedural Tracking. Similarly, the type check
nodes help us to decide if we need to analyze functions con-
tained in the worklist. If we can reach a call site without
traversing a type check node, we have to analyze it. If a call
site is only reachable by traversing a type check node, we
discard the entry. The call-site-based analysis is context sen-
sitive in the sense that the callee is analyzed multiple times
depending on the call sites that propagate taints into it.

6 Implementation

We implemented GPCheck on top of Ghidra using the
Ghidrathon plugin to enable Python3 support. GPCheck con-
sists of roughly 2,100 lines of Python3 code. GPCheck lever-
ages Ghidra’s headless mode and can automatically analyze
proprietary TAs of all major TEE implementations.

GPCheck performs a conservative static information flow
analysis in the sense that alerts are raised for undetermined
taint propagation situations. For instance if a taint is prop-
agated into an external unknown function or an indirectly
called function, GPCheck will warn the analyst that the taint
can no longer be tracked. Our prototype expects a TA’s code
to behave well and reports cases of misbehavior. For instance,
GPCheck will report if the uint32_t paramTypes parameter
is used as a memory location. As an optimization, GPCheck
maintains a catalog of known functions to shortcut the anal-
ysis. For instance, if a param taint is passed to a memcpy()
function as src or dst, the call site is directly marked as a
memref usage node instead of descending into the function.
All the details of our taint propagation policies can be found
in our open-source prototype.

7 GlobalConfusion Prevalence Study

In our evaluation, we aim to answer the following research
questions:

RQ 1: GPCheck Effectiveness. Can GPCheck detect type-
confusion bugs resulting from the design weakness of the GP
Internal Core API specification in closed-source TAs?

RQ 2: Bug Class Prevalence. How prevalent are mani-
festations of the GP Internal Core API design weakness in
contemporary TEE implementations?

RQ 3: Bug Class Severity. How severe is the type-
confusion bug in real-world settings?

First, we focus on the effectiveness of GPCheck. We eval-
uate its GP function detection and type-confusion bug de-
tection capabilities on a ground-truth dataset of proprietary
real-world TAs. Next, we employ GPCheck to conduct a large-
scale study to understand the prevalence of the type-confusion
bug class within the TEE ecosystem. Then, we demonstrate
the severity of this bug class by exploiting two discovered
vulnerabilities under real-world conditions.

7.1 TA Dataset
We collected a dataset of 545 firmware images from 54 An-
droid devices employing 5 different TEE implementations
and spanning from 2016 to 2024. Our dataset is comprised
of the top five Android Smartphone vendors covering a mar-
ket share of over 60% [53]. From these firmware images we
extracted 14,777 proprietary TAs (i.e., no open-source TAs),
which grouped by their Universally Unique IDentifier (UUID)
for each TEE implementation result in 374 TAs. While the
TA grouping by UUID and TEE yields insights regarding the
distribution and scope of our findings, it does not account
for UUIDs being shared across TEEs and vendors assign-
ing different UUIDs for TAs originating from the same code
base. A manual data cleansing revealed that TA code is shared
across BeanPod, Kinibi, and TEEGRIS on MediaTek chipsets.
While the UUID assignment for Kinibi and BeanPod TAs is
consistent, we found that it diverges for TEEGRIS. Our in-
terpretation is that Samsung (the only vendor using TEEGris
on MediaTek chips) assigned new UUIDs to these TAs. To
account for these duplicates, we report the manually dedupli-
cated aggregate number of TAs (#Unique TAs = 336) consis-
tently in our evaluation. Our dataset is summarized in Table 2.

7.2 Ground-truth GP Function Detection
To assess GPCheck’s ability to detect GP functions, we select
three GP-compliant and three legacy TAs for each TEE im-
plementation, since each of these implementations is using a
different TA SDK. We select these TAs by randomly sampling
from all TAs grouped by TEE and manually confirm the pres-
ence (or abscence) of the TA_InvokeCommandEntryPoint
function. We conduct this experiment only for MiTEE, Kinibi

TEE #TAs #TA UUIDs

BeanPod 1,061 25
MiTEE 13 13
QSEE 7,798 189
Kinibi 1,316 67
TEEGRIS 4,589 80

Total 14,777 374 (336*)

Table 2: Our dataset of TAs for different TEE implementations.
*Number of unique TAs.

and QSEE, because we found that the TAs running on
the other TEEs (BeanPod and TEEGRIS) do not strip the
TA_InvokeCommandEntryPoint symbol. Hence, we do not
need the GP function detection step for these TAs. Our results
are summarized in Table 3. GPCheck detected the GP API
functions in all of the GP-compliant TAs in this evaluation.
The detection of GP API functions is a prerequisite for the
GP API type-confusion bug detection. Thus, our empirical
evaluation partially answers RQ1.

TA TEE Stripped GP-Compliant Detected

vtrust.elf QSEE X X X
eid.mbn QSEE X X X
secstore2.elf QSEE X X X
tz_kg.elf QSEE X
alipay.elf QSEE X
eseservi.elf QSEE X

655a4b46-cd77-11ea-aafbf382a6988e7b.ta* MiTEE X X X
e97c270e-a5c4-4c58-bcd3384a2fa2539e.ta* MiTEE X X X
14b0aad8-c011-4a3f-b66aca8d0e66f273.ta* MiTEE X X X

05060000000000000000000000009578.tabin Kinibi X X X
a2d1038963f25c97be80d40f2d498582.tabin Kinibi X X X
09010000000000000000000000000000.tabin Kinibi X X X
05120000000000000000000000000001.tlbin Kinibi X
030c0000000000000000000000000000.tlbin Kinibi X
07150000000000000000000000000000.tlbin Kinibi X

Table 3: We evaluate GPCheck’s GP function detection capa-
bilities on a ground-truth dataset of proprietary TAs. (*)We
did not find any non-GP compliant MiTEE TAs in our dataset.

7.3 Ground-truth Type Checking

To assess GPCheck’s ability to detect GP API type-confusion
bugs, we collected a dataset of known vulnerable TAs. We
obtained this information from publicly available advisories
and blog posts of security researchers. Note that there are no
open-source TAs in our dataset. Table 7 in our Appendix lists
the sources for this ground truth.

As our results in Table 4 show, GPCheck is capable of
detecting all known type-confusion bugs. Our empirical eval-
uation suggests that GPCheck is effective in detecting GP
API type-confusion bugs in closed-source TAs (RQ1).

Vuln TA TEE Detected

task_storage TrustedCore* X
d78d338b1ac349e09f65f4efe179739d.ta BeanPod X
00000000-0000-0000-0000-000000000046 TEEGRIS X
00000000-0000-0000-0000-000048444350 TEEGRIS X
00000000-0000-0000-0000-0000534b504d TEEGRIS X
00000000-0000-0000-0000-00575644524d TEEGRIS X
00000000-0000-0000-0000-42494f535542 TEEGRIS X
00000000-0000-0000-0000-46494e474502 TEEGRIS X
00000000-0000-0000-0000-5345435f4652 TEEGRIS X
00000000-0000-0000-0000-53454d655345 TEEGRIS X

Table 4: We evaluate GPCheck’s GP API type-confusion
bug detection on a ground-truth dataset of vulnerable and
proprietary TAs. (*) Huawei’s TrustedCore is deprecated, but
we found an old firmware image containing this publicly-
known vulnerable TA [54].

7.4 Large-scale Study on Type Checking

In this section, we aim to measure the prevalence of the
GP API type-confusion bug class on contemporary TEE im-
plementations. Table 5 summarizes the results of our large-
scale study. Overall GPCheck analyzed 14,777 TAs, which
are comprised of 374 TAs with distinct UUIDs on five dif-
ferent TEEs (336 after deduplication). GPCheck detected
6,962 GP-compliant TAs mapping to 165 (43%) TAs, or 131
(35%) unique TAs, respectively. All GP-non-compliant TAs
are found on Kinibi and QSEE. Kinibi and QSEE support
their own proprietary APIs that were in use before the GP
APIs were adopted. Thus, many of their legacy TAs continue
to use these proprietary APIs.

We analyzed all 6,962 GP-compliant TAs using GPCheck.
On average, the analysis of one TA took three minutes. We
ran our experiments on a Xeon E5-2680 (56 cores, 256GB
RAM) using 46 analysis jobs in parallel. Analyzing all 6,962
GP-compliant TAs takes about seven hours.

GPCheck found 850 vulnerable TAs in total. As a vulnera-
bility deduplication step, we group these TAs by UUID and
manually analyze the oldest and newest instances (two TAs
per group). Overall this amounts to 86 manually analyzed TAs.
We find that 8 TAs are flagged incorrectly as vulnerable by
GPCheck (false-positive rate of 9.3%), due to imprecisions in
Ghidra’s decompilation and taints propagated into indirectly
called functions that end up using the taint as value parame-
ter. The remaining 78 TAs are true positives, resulting in 39
vulnerable and 33 unique vulnerable TAs. Table 6 shows the
involved and affected parties of the vulnerable TAs. Note that
about half of the vulnerable TAs in our dataset affect multiple
TEE implementations or OEMs.

In total, we found 14 unique zero-day vulnerabilities (af-
fecting the latest versions of TAs, see Table 8 in the Appendix)
and 19 unique patched n-day vulnerabilities. Note that only 9
of the total 19 n-day type-confusion bugs are publicly known.
The remaining n-day bugs were silently fixed by the vendor,

TEE #TAs #GP TAs #Vuln #TA UUIDs #GP TA UUIDs #Unique Vuln #n-day #0-day

BeanPod 1,061 1,061 277 25 25 11 4 7
MiTEE 13 13 1 13 13 1 0 1
QSEE 7,798 676 22 189 19 4 2 2
Kinibi 1,316 623 259 67 28 10 3 7
TEEGRIS 4,589 4,589 291 80 80 17 10 7

Total 14,777 6,962 850 374 (336)* 165 (131)* 39 (33)* 19 (19)* 24 (14)*

Table 5: The results of our large-scale study. The GP TAs are TAs that our analyzer has identified as utilizing the GlobalPlatform
API. *The numbers in brackets account for TA code shared across TEEs and represent the unique count for these columns.

first public instance
of vulnerability
used in fullchain

targeting Huawei P9

Samsung patches 9
vulnerable TAs*

documented exploits
compromise TEEGRIS

Xiaomi silently
patches a single
BeanPod TA*

Samsung silently
patches a

single QSEE TA*

Xiaomi silently
patches two
vulnerable

BeanPod TAs*

vulnerable TA in
Samsung TVs

running OPTEE

Vulnerability in
Huawei TA

affecting iTrustee

Fourteen more
0-days discovered*

Samsung silently
patches

a single QSEE TA*

Xiaomi silently
patches a single
BeanPod TA*

Samsung silently
patches a single
TEEGRIS TA*

Three Kinibi TAs
are silently patched

affecting
Oppo and Vivo*

2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 4: The timeline of known and discovered GP type-confusion bug instances in production TAs. These bugs affect TAs
deployed on products by � Huawei, � Xiaomi, � Oppo and Vivo, � Samsung, and � undisclosed vendors. (*)Type-confusion
bugs discovered by GPCheck.

meaning that the affected TAs were vulnerable prior to these
silent fixes.

A further aspect of this prevalence study is the perspec-
tive of TA developers. Our study reveals that TA developers
missed the type check in GP-compliant TAs in 33 out of 131
cases (23%), as indicated in Table 5.

The prevalence of type-confusion vulnerabilities resulting
from the GP Internal Core API design weakness systemati-
cally occur throughout the history of TAs. We visualize our
findings of known, silently fixed, and 0-day vulnerabilities in
Figure 4. Over the past seven years, TA developers stepped
into the design-weakness trap of this API over and over again.
As Table 6 suggests, we see the resulting vulnerabilities in
TAs across the major OEMs on the mobile device market,
across TEE implementations, and ODMs (Orignal Design
Manufacturer). Our results show a wide prevalence of the vul-
nerabilities in the mobile device ecosystem, which answers
RQ2.

7.5 Real-world Exploitation
To show the severity of the type-confusion bug, we exploit two
vulnerable TAs that we detected with our static analyzer. We

ODM OEM TEEs #TAs

MediaTek Samsung,Xiaomi,Oppo,Vivo TEEGRIS,Kinibi,BeanPod 6
Exynos Samsung TEEGRIS 14
MediaTek,Qualcomm Xiaomi BeanPod,QSEE,MiTEE 7
MediaTek Vivo,Oppo Kinibi 3
MediaTek Vivo Kinibi 2
Qualcomm Samsung QSEE 1

Table 6: #Unique vulnerable TAs and affected parties.

show how the type-confusion bug can be used to easily leak
the memory of a TA and how, under the right circumstances,
this bug may be weaponized to get control of the program
counter. We exploit these TAs on our rooted Xiaomi Redmi
device with the newest firmware version.

TA1449 (14498ace2a8f11e880c8509a4c146f4c.ta)
was silently patched by Xiaomi in April 2021. Although the
TA is outdated we can load it on our fully updated firmware
due to missing rollback protection in BeanPod [41]. Listing 4
shows the vulnerable code. In the code that handles the
command id 1, the TA expects a memory reference for the
first parameter. It then reads a string from this location and
prints it to the kernel log which is accessible from the Normal
World context. By supplying arbitrary integers, which are

1 TA_InvokeCommandEntryPoint(void* sessionContext,
2 uint32_t commandID, uint32_t paramTypes,
3 TEE_Param params[4]) {
4 ...
5 if(commandID == 1) {
6 ...
7 char* aaid = (char*)params[0].memref.buffer;
8 ...
9 ut_pf_log_msg(3,"add Authenticator \

10 aaid = %s\n",aaid);
11 ...
12 }
13 }

Listing 4: Without checking the paramTypes the TA deref-
erences the first entry of the parameters and prints it to the
kernel log.

treated as pointers by the TA, an attacker can read the entire
content of the TA’s memory. This arbitrary read is a problem
as the TA relies on the confidentiality of secret keys stored in
its memory to authenticate certain commands.

For our second case study, we show how this bug can
lead to code execution within the context of the targeted TA.
We exploit the 08110000000000000000000000000000.ta
(TA0811) and get control over the TA’s program counter. The
type-confusion vulnerability in this TA was a 0-day detected
by our static analyzer and has been assigned CVE-2023-32835
by MediaTek. It affects Xiaomi, Oppo, and Vivo smartphones
with a MediaTek SoC running a firmware version from before
November 2023.

Listing 5 shows the relevant vulnerable code executed when
the TA is invoked with the command id 1. The TA assumes,
without checking, the first and second parameters to be point-
ers to shared memory. It subsequently passes the first of these
supposed pointers to the TEE_CheckMemoryAccessRights
function. This function checks if the memory region pointed
to by in points to readable and writable memory. By setting
in to an arbitrary value and observing if the TA returns early
or executes the query_drmkey_impl function, the attacker
can leak the location of relevant memory regions, such as the
stack. After leaking the stack’s location, the attacker can use
the functionality in query_drmkey_impl to overwrite the re-
turn address. This function takes as input the first and second
memory reference in params. It then writes data from the
first parameter to the second parameter. The attacker can set
out to point to the stack, specifically to the location of the
stored return address. The TA then writes the contents in in,
which are fully under the attacker’s control, to the stack. In
our exploit, we overwrite the return address with 0xdeadbeef.
After crashing, the TEE conviniently prints a core dump to
the kernel log accessible from the Normal World context, in-
dicating that the TA aborted when trying to execute code at
0xdeadbeef. Note that this control flow hijacking primitive

1 TA_InvokeCommandEntryPoint(void* sessionContext,
2 uint32_t commandID, uint32_t paramTypes,
3 TEE_Param params[4]) {
4 ...
5 if(commandID == 1) {
6 int* in = (int*)params[0].memref.buffer;
7 int inSize = params[1].memref.size;
8 int* out = (int*)params[2].memref.buffer;
9 r = TEE_CheckMemoryAccessRights(5, in,

10 inSize);
11 if(r==0) {
12 query_drmkey_impl(in, out);
13 }
14 }
15 ...
16 }
17

18 query_drmkey_impl(int* in, int* out) {
19 int ct = in[17];
20 int* src = &in[18];
21 int tmpbuf[22];
22 int c;
23 out[0] = ct;
24 int i = 0;
25 while(i != ct){
26 memcpy(tmpbuf, src, 0x58);
27 int offset = tmpbuf[3] + 0x60;
28 c = tmpbuf[0];
29 out[4*i] = c;
30 src = src + offset;
31 i++;
32 }
33 ...
34 }

Listing 5: The vulnerable parts of the code in TA0811.
The TA does not check the paramTypes and treats en-
tries in the params array as pointers. This allows an at-
tacker to enumerate read/writable memory regions using
TEE_CheckMemoryAccessRights. Furthermore, the attacker
can write to arbitrary memory addresses, abusing the TAs
query_drmkey_impl function.

can easily be converted into arbitrary code execution within
the TA context.

These case studies demonstrate that the ability of an at-
tacker to supply arbitrary pointers to a TA provides an ex-
tremely powerful exploitation primitive, and answer our RQ3.

8 Mitigation

GPCheck serves two purposes. First, it enabled us to carry
out a large-scale study to understand the prevalence of type-
confusion bugs resulting from the GP Internal Core API de-
sign weakness. Second, we will open-source our prototype
and encourage manufacturers to use it as a vetting mechanism
for post-production TAs before they are shipped to consumer
devices. Given the results of our evaluation in Section 7, show-

ing 14 0-day vulnerabilities, we propose to not only treat the
symptoms of these vulnerabilities but also provide a remedy
for their root cause.

To mitigate the GP Internal Core API design weak-
ness, we suggest extending the specification and sub-
stituting the optional type checking mechanism for a
fail-safe alternative. This extension aims at enforcing
the currently optional type check before any untrusted
parameter reaches the TA. The specification contains
two API functions that receive untrusted parameters
and their types, namely TA_OpenSessionEntryPoint and
TA_InvokeCommandEntryPoint. Looking at hundreds of
proprietary TA samples and those provided by OPTEE yields
the insight that the cmdId1 chooses the corresponding handler
and, the code of this handler determines how the four params
are used, namely either as value or as memref. Consequently,
it is the tuple of cmdId and paramTypes that needs to be fixed
and enforced before any untrusted input is supplied to TAs.

From this insight, we propose to deny all cmdIds and
the invocation of TA_OpenSessionEntryPoint by default,
and leverage the TA_CreateEntryPoint lifecycle func-
tion to register command handler-specific paramTypes.
As discussed in Section 2, TA_CreateEntryPoint acts
as a constructor and is executed before any untrusted
parameters can be sent to the TA. To register the
(cmdId, paramTypes) tuples, we introduce two new
functions to be used in the TA_CreateEntryPoint
context. Listing 6 illustrates the signatures of
TEE_RegisterCommand, to register (cmdId, paramTypes)
tuples for the TA_InvokeCommandEntryPoint func-
tion, and TEE_RegisterOpenSession, to register the
paramTypes for the single command handler in the
TA_OpenSessionEntryPoint function. By denying access
to any unregistered interface that consumes untrusted data,
and enforcing a deliberate registration of paramTypes
associated with a specific command handler, we change
the current fail-open design to a fail-closed one. As a
consequence, we prevent any mistakenly forgotten type
checks in future implementations, and mitigate the design
weakness of the current GP Internal Core API specification.

1 TEE_Result TEE_RegisterCommand(
2 uint32_t cmdId, uint32_t paramTypes);
3

4 TEE_Result TEE_RegisterOpenSession(uint32_t paramTypes);

Listing 6: We suggest to extend the GP Internal Core API
specification with functions to enforce a fail-closed rather
than a fail-open design.

1TA_OpenSessionEntryPoint does not receive this parameter and does
not contain any cmdId-based switching logic. Hence, we can assume a single
fixed set of paramTypes for this function.

i n t T A _ C r e a t e E n t r y P o i n t ()
{

TEE_RegisterCommand (1 , TEE_PARAM_TYPES(
TEE_PARAM_TYPE_MEMREF, . . .)) ;

}

i n t TA_InvokeCommandEntryPoint (. .) {
sw i t ch (commandID) {

case 1 : {
memcpy (op [0] . memref . b u f f e r ,

buf , op [0] . memref . s i z e) ;
}}}

Trusted Application

TEEC_Operation op ;
op . paramTypes = TEEC_PARAM_TYPES(

TEE_PARAM_TYPE_MEMREF,
. . .) ;

TEEC_InvokeCommand(& s e s s i o n , 1 , &op , &e r r) ;

Correct Invocation

TEEC_Operation op ;
op . paramTypes = TEEC_PARAM_TYPES(

TEE_PARAM_TYPE_VALUE,
. . .) ;

TEEC_InvokeCommand(& s e s s i o n , 1 , &op , &e r r) ;

Malicious Invocation

TA Framework

Registered Commands

entry_invoke_command()

is command registered?

do parameter types match?

1

2

3

Figure 5: Inner workings of our mitigation.

Figure 5 illustrates the inner workings of our mitigation.
First, 1 the TA registers a single command with cmdId 1
to have paramTypes TYPE_MEMREF. After the TA has been
loaded, the normal world may invoke the registered com-
mands 2 . Such invocations are handled in the TA frame-
work (e.g., entry_invoke_command function), which eventu-
ally calls the TA’s TA_InvokeCommandEntryPoint function.
However, before the TA framework hands over execution to
the TA, it verifies that the cmdId was previously registered
by the TA and that the paramTypes parameter matches the
types registered by the TA. An example of the mitigation
preventing an attack is shown in Figure 5. In 3 , the attacker
has manipulated the parameter type to be TYPE_VALUE and
the TA without checking the paramTypes would have treated
these values as pointers. However, due to the TA registering
the cmdId 1 with TYPE_MEMREF, the TA framework will deny
this API invocation, since the paramTypes of the invocation
does not match with the expected types.

Compatibility. Our mitigation is backward-compatible
with existing TAs in the sense that the exposed TA inter-
face stays untouched. However, changing from a fail-open to
a fail-closed design requires TA developers to register cmdIds
for all existing TAs in a one-time effort. Given the reccuring
pattern of bugs within the last seven years, as illustrated in
Figure 4, and the 14 0-day vulnerabilities discovered in this
research, we argue that this one-time effort is a worthwhile
investment to eliminate present and future GP API-based
type-confusion bugs once and for all.

Implementation and Evaluation. To demonstrate the ef-
fectiveness and practicality of our mitigation, we implement
our extension for OPTEE [59], the de-facto reference imple-

mentation for TrustZone-based TEEs. In order to demonstrate
the effectiveness of our mitigation, we modify the built-in
TA pkcs11 to remove paramTypes checks. Since this TA
is using memref typed parameters, an attacker can pass ar-
bitrary pointers to the TA and gain powerful read-and-write
exploitation primitives when pkcs11 runs on vanilla OPTEE.
In contrast, after enabling our mitigation, passing a wrong
combination of paramTypes and cmdId to the TA results in
a TEE_ERROR_BAD_PARAMETERS error, effectively preventing
the type confusion. We implement the mitigation in 427 lines
of code and will open-source our evaluation setup.

9 Limitations

Encrypted TAs. Recent firmware images from vendors like
Huawei and Sony are encrypted and cannot directly be pro-
cessed by our analysis pipeline. Breaking this encryption and,
thus, the code confidentiality of encrypted TAs is an orthog-
onal problem. However, these vendors themselves might be
interested to use GPCheck in their integration pipeline, or ea-
ger security researchers might break the code confidentiality
for individual devices and then use GPCheck.

Decompilation. Compilation is a lossy process. Thus, the
inverse process, decompilation, relies on heuristics and infer-
ence methods to re-create structures from the original source
code. GPCheck relies on commodity reverse-engineering
tools and their intermediate representations used in the decom-
pilation process. Consequently, our system inherits the limita-
tions of decompilation, and the specific limitations of Ghidra,
since we build GPCheck on top of this reverse-engineering
tool. Fortunately, we did not encounter any obfuscation, the
dominant programming language to implement TAs is C, and
the type checking problem investigated in this study is fairly
narrow. These factors contribute to meaningful decompilation
results and useful static analysis results.

10 Discussion

In this section, we discuss the findings of our work and contex-
tualize their scope and impact. First, we argue for a fail-safe
design in widely adopted TEE-related specifications. Second,
we emphasize the impact and threat potential of our findings.
Third, we give an outlook regarding the future adoption of
the GP Internal Core API specification.

Enforcing Fail-Safe Design. In its current form, the GP
Internal Core API specification proposes a weak design that
does not enforce type checks of untrusted parameters. The
specification suggests an optional preprocessor macro-based
type check. This lack of “fail-safe” design resulted in 19 n-
day vulnerabilities (9 publicly known and 10 silently fixed)
and 14 0-day vulnerabilities (found by our system GPCheck)
affecting the latest versions of TAs. These numbers underline
that especially in a sensitive context like the TEE, fail-safe

design principles should be followed, and we must enforce
security-critical type checks. In this context, GPCheck serves
two purposes. First, it allowed us to assess the prevalence of
manifestations of the GP API design weakness, identifying
this weakness as a serious threat to the TEE ecosystem. Sec-
ond, it can serve manufacturers as a post-production vetting
tool to catch vulnerable TAs before they are shipped to de-
vices of billions of users. However, instead of treating the
symptoms, our backwards-compatible mitigation proposed in
Section 8, aims to eliminate the root cause of these vulnera-
bilities by enforcing type checks and substituting the current
weak design for a fail-safe one.

Keeping Promises. In total, we found 39 vulnerable TAs
across 5 reputable OEMs affecting 54 recent devices that
employ the 5 dominant TEE implementations on the mar-
ket. Given that OEMs are struggling to deploy effective
anti-rollback protection [10] (i.e., preventing to load prop-
erly signed but outdated and vulnerable TAs into their TEE),
the threat posed by a single vulnerable TA in the history of a
device is amplified. Combined with the critical severity [49]
of the vulnerabilities resulting from the GP Internal Core API
design weakness, the TEE ecosystem must change to keep up
their promised confidentiality and integrity guarantees.

Outlook. Our dataset of 336 unique TAs deployed on a rep-
resentative set of mobile devices in the ecosystem highlights
the trend towards GP-compliance. Hence, we believe that the
central piece of our discussion, the weak design of the GP
Internal Core API, will be adopted by an increasing amount
of stakeholders in the future. Further, our study focussed on
mobile devices but the scope of this discussion reaches far be-
yond this device category. For instance, drones [15], TVs [45],
tablets [50], and gaming consoles [57] require strong confi-
dentiality and integrity guarantees for specific use cases and
are using TrustZone-based TEEs for these purposes. Beyond
these ARM-centric device categories, GP’s specifications as-
pire to be architecture-agnostic and we might see them being
adopted on other TEE-enabling technologies like Intel SGX,
Intel TXT, AMD SEV, and ARM CCA.

11 Related Work

Related work exists across several domains. First, we cover
TrustZone-based TEE flaws in general. Second, we high-
light approaches to find or prevent memory corruptions in
TEEs. Third, we summarize measurement studies in the mo-
bile ecosystem. Finally, we relate to existing work on binary
static analysis.

TEE Flaws. Numerous researchers have delved into the ex-
ploration and exploitation of vulnerabilities within TrustZone-
based Trusted Execution Environments (TEEs). These stud-
ies have targeted various TEE implementations, such as
Beanpod [41], QSEE [34, 40, 48], TEEGRIS [43, 51, 52],
Kinibi [4, 7, 33], TrustedCore [11], and the ARM Trusted
Firmware [37]. Furthermore, researchers have scrutinized

software design deficiencies [39, 55] and side-channel vulner-
abilities [8,35,58,61]. A comprehensive overview of much of
this research has been provided by Cerdeira et al. [12], who
summarized and systematized these findings.

Memory Corruption Defenses. The increasing incidence
of reported memory corruptions has spurred research ef-
forts towards automated vulnerability discovery within TEEs.
TEEzz [9] employs an on-device black-box fuzzing strategy,
while PartEmu [26] adopts an emulation-based approach to
facilitate coverage-guided fuzzing of TAs. In contrast, Wan
et al. endeavor to promote Rust as a memory-safe alternative
for TA development [60], rather than focusing on automated
memory corruption detection. Our work focuses on a specific
vulnerability commonly found in GP-compliant TAs. We pro-
pose an effective binary static analysis tool, GPCheck, to find
this vulnerability post-production and suggest eliminating the
root cause of this issue by updating the GP Internal Core API
using our mitigation that enforces a fail-safe design.

Measurement Studies. The widespread adoption of An-
droid has attracted significant attention from security re-
searchers, leading to comprehensive investigations into vari-
ous facets of its security architecture. Imran et al. [27] mea-
sure the usage of TEE-enforced authorization APIs within
apps. Farhang et al. [20] scrutinize Android security bulletins
issued by different vendors. Numerous studies delve into the
application of updates to apps or libraries [5,14,42]. Addition-
ally, several investigations have concentrated on identifying
and understanding diverse security vulnerabilities present in
the Android ecosystem [19, 36]. Finally, Egele et al. [17]
conduct an empirical analysis of how developers misuse cryp-
tographic APIs within Android applications. In this paper,
we measured the prevalence of type-confusion bugs resulting
from a weak API design as proposed by the GP Internal Core
API specification. In total, we found 33 unique TAs across all
major TEEs that are affected by this critical vulnerability.

Static Analysis. Due to the hardware-enforced isolation
of TEEs, vendors effectively lock down their platforms and
prevent dynamic analysis approaches like advanced fuzzing
provided by LibAFL [21] to discover vulnerabilities in TAs.
Further, TAs are distributed as proprietary binary blobs, mak-
ing them inaccessible for source code-based static analysis
approaches as proposed by Yamaguchi et al. [62–64]. Bi-
nary static analysis approaches like Bootstomp [46], Boot-
keeper [13], and Karonte [47] suggest domain-specific anal-
yses for bootloaders and embedded firmware. These ap-
proaches often use additional techniques like dynamic sym-
bolic execution to reduce reported false positives. Our system,
GPCheck, concentrates on a well-defined problem in the do-
main of TAs. We leverage powerful decompilation features of
commodity reverse-engineering tools and use the architecture-
agnostic and optimized intermediate representation of these
tools for our analyses.

12 Conclusions

A design weakness in the GlobalPlatform Internal Core API
specification, a specification that serves as the de-facto stan-
dard for Trusted Applications, impacts the security of billions
of mobile devices. Manifestations of this design weakness
lead to critical type-confusion vulnerabilities that threaten
the integrity and confidentiality guarantees promised by mod-
ern TEEs. After discovering this weakness, we investigate
the prevalence of such vulnerabilities and design and imple-
ment GPCheck, a static information flow tracking system that
is based on commodity reverse-engineering tools. GPCheck
allowed us to carry out a large-scale analysis aimed at dis-
covering instances of the type-confusion bug in real-world
closed-source TAs that we obtained from firmware images of
various popular mobile devices.

In total, we analyzed 14,777 TAs and found 33 instances
of the type-confusion issue. 9 out of these bugs are publicly
known, 10 were silently fixed by vendors, and 14 bugs were
unknown 0-days that we responsibly disclosed to the affected
manufacturers. These disclosures resulted in four CVEs and
the remaining 10 critical vulnerabilities are still in the respon-
sible disclosure process. Finally, we proposed a mitigation
to eliminate the root cause of these type-confusion vulner-
abilities. Our backward-compatible mitigation enforces the
currently optional type check of untrusted TA parameters and
only requires 427 additional lines of code when added to
the OPTEE reference implementation for TrustZone-based
TEEs. We suggested this mitigation to GlobalPlatform as an
extension to the GP Internal Core API to hopefully substitute
the design weakness for a fail-safe alternative. As a stop-gap
solution, our open-source GPCheck prototype assists man-
ufacturers in vetting their TAs before they are deployed on
customer devices and bridges the time gap until our mitigation
is adopted to eliminate the issue by design.

Acknowledgments

We thank the anonymous reviewers and our shepherd for
their feedback on the paper. This work was supported, in
part, the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(grant agreement No. 850868), SNSF PCEGP2_186974, and
DARPA HR001119S0089-AMP-FP-034.

References

[1] Vector 35. Binary ninja intermediate language:
Overview. https://docs.binary.ninja/dev/bnil-
overview.html, 2024. Accessed: January 2024.

[2] National Security Agency. P-code operation reference.
https://github.com/NationalSecurityAgency/
ghidra/blob/master/GhidraDocs/languages/

https://docs.binary.ninja/dev/bnil-overview.html
https://docs.binary.ninja/dev/bnil-overview.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/languages/html/pcodedescription.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/languages/html/pcodedescription.html

html/pcodedescription.html, 2024. Accessed:
January 2024.

[3] Maxime Peterlin Alexandre Adamski. Huawei
trustzone tee_service_face_rec vulnerabilities.
https://blog.impalabs.com/2309_advisory_
huawei_trustzone_tee-service-face-rec.html,
2023. Accessed: January 2024.

[4] Maxime Peterlin Alexandre Adamski, Joffrey Guilbon.
A deep dive into samsung’s trustzone (part 1 - part
3). https://blog.quarkslab.com/a-deep-dive-
into-samsungs-trustzone-part-1.html, 2019.
Accessed: April 2023.

[5] Sumaya Almanee, Arda Ünal, Mathias Payer, and
Joshua Garcia. Too quiet in the library: An empirical
study of security updates in android apps’ native code.
In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1347–1359. IEEE,
2021.

[6] ARM. Arm security technology: Building
a secure system using trustzone technology.
http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf,
2008. Accessed: January 2024.

[7] David Berard. Kinibi tee: Trusted application
exploitation. https://www.synacktiv.com/
en/publications/kinibi-tee-trusted-
application-exploitation.html, 2018. Accessed:
April 2023.

[8] Sébanjila Kevin Bukasa, Ronan Lashermes, Hélène Le
Bouder, Jean-Louis Lanet, and Axel Legay. How trust-
zone could be bypassed: Side-channel attacks on a mod-
ern system-on-chip. In Workshop in Information Secu-
rity Theory and Practice, 2017.

[9] Marcel Busch, Aravind Machiry, Chad Spensky, Gio-
vanni Vigna, Christopher Kruegel, and Mathias Payer.
Teezz: Fuzzing trusted applications on cots android de-
vices. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 220–235. IEEE Computer Society, 2022.

[10] Marcel Busch, Philipp Mao, and Mathias Payer. Spill the
tea: An empirical study of trusted application rollback
prevention on android smartphones. In 33st USENIX Se-
curity Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024. USENIX Association,
2024.

[11] Marcel Busch, Johannes Westphal, and Tilo Mueller. Un-
earthing the TrustedCore: A critical review on Huawei’s

trusted execution environment. In 14th USENIX Work-
shop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[12] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted TEE systems. In
2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020, pages
1416–1432. IEEE, 2020.

[13] Ronny Chevalier, Stefano Cristalli, Christophe Hauser,
Yan Shoshitaishvili, Ruoyu Wang, Christopher Kruegel,
Giovanni Vigna, Danilo Bruschi, and Andrea Lanzi.
Bootkeeper: Validating software integrity properties on
boot firmware images. In Gail-Joon Ahn, Bhavani Thu-
raisingham, Murat Kantarcioglu, and Ram Krishnan, edi-
tors, Proceedings of the Ninth ACM Conference on Data
and Application Security and Privacy, CODASPY 2019,
Richardson, TX, USA, March 25-27, 2019, pages 315–
325. ACM, 2019.

[14] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and
Michael Backes. Keep me updated: An empirical study
of third-party library updatability on android. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2187–2200,
2017.

[15] DJI. System security – a dji technology white
paper. https://djiarsmadrid.com/pdfdoc/DJI%
20Security%20White%20Paper.pdf, 2020. Accessed:
January 2024.

[16] Gregory J. Duck and Roland H. C. Yap. Effectivesan:
type and memory error detection using dynamically
typed C/C++. In Jeffrey S. Foster and Dan Grossman,
editors, Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 181–195. ACM, 2018.

[17] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 73–84, 2013.

[18] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick D. McDaniel, and
Anmol Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones.
In Remzi H. Arpaci-Dusseau and Brad Chen, editors,
9th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2010, October 4-6, 2010,
Vancouver, BC, Canada, Proceedings, pages 393–407.
USENIX Association, 2010.

https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/languages/html/pcodedescription.html
https://blog.impalabs.com/2309_advisory_huawei_trustzone_tee-service-face-rec.html
https://blog.impalabs.com/2309_advisory_huawei_trustzone_tee-service-face-rec.html
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-1.html
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-1.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.synacktiv.com/en/publications/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/en/publications/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/en/publications/kinibi-tee-trusted-application-exploitation.html
https://djiarsmadrid.com/pdfdoc/DJI%20Security%20White%20Paper.pdf
https://djiarsmadrid.com/pdfdoc/DJI%20Security%20White%20Paper.pdf

[19] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka,
and Jens Grossklags. Hey google, what exactly do your
security patches tell us? a large-scale empirical study on
android patched vulnerabilities, 2019.

[20] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka,
and Jens Grossklags. An empirical study of android
security bulletins in different vendors. In Proceedings of
The Web Conference 2020, WWW ’20, page 3063–3069,
New York, NY, USA, 2020. Association for Computing
Machinery.

[21] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and
Davide Balzarotti. LibAFL: A Framework to Build
Modular and Reusable Fuzzers. In Proceedings of the
29th ACM conference on Computer and communications
security (CCS), CCS ’22. ACM, November 2022.

[22] GlobalPlatform. Tee internal core api specification.
https://globalplatform.org/specs-library/
tee-internal-core-api-specification/, 2019.
Accessed: January 2024.

[23] Google. Hardware-backed keystore. https:
//source.android.com/docs/security/features/
keystore, 2024. Accessed: January 2024.

[24] Ilfak Guilfanov. Decompiler internals: Microcode.
https://i.blackhat.com/us-18/Thu-August-
9/us-18-Guilfanov-Decompiler-Internals-
Microcode-wp.pdf, 2018. Accessed: January 2024.

[25] István Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. Typesan: Practical type confusion detection.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 517–528. ACM, 2016.

[26] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, and Michael Grace. Partemu: Enabling
dynamic analysis of real-world trustzone software using
emulation. In Proceedings of the 29th USENIX Con-
ference on Security Symposium, SEC’20, USA, 2020.
USENIX Association.

[27] Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim,
Z. Berkay Celik, and Antonio Bianchi. SARA: secure
android remote authorization. In Kevin R. B. Butler and
Kurt Thomas, editors, 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12,
2022, pages 1561–1578. USENIX Association, 2022.

[28] Yuseok Jeon, Priyam Biswas, Scott A. Carr, Byoungy-
oung Lee, and Mathias Payer. Hextype: Efficient detec-
tion of type confusion errors for C++. In Bhavani Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 2373–2387. ACM, 2017.

[29] Nenad Jovanovic, Christopher Krügel, and Engin Kirda.
Pixy: A static analysis tool for detecting web application
vulnerabilities (short paper). In 2006 IEEE Symposium
on Security and Privacy (S&P 2006), 21-24 May 2006,
Berkeley, California, USA, pages 258–263. IEEE Com-
puter Society, 2006.

[30] Stephen Kell. Dynamically diagnosing type errors in
unsafe code. In Eelco Visser and Yannis Smaragdakis,
editors, Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016,
part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pages 800–819. ACM,
2016.

[31] Dongju Kim and Seungjoo Kim. Bintyper:
Type confusion detection for c++ binaries.
https://i.blackhat.com/eu-20/Thursday/eu-
20-Kim-BinTyper-Type-Confusion-Detection-
For-C-Binaries.pdf, 2020. Accessed: May 2024.

[32] Jakob Koschel, Pietro Borrello, Daniele Cono D’Elia,
Herbert Bos, and Cristiano Giuffrida. Uncontained:
Uncovering container confusion in the linux kernel.
In Joseph A. Calandrino and Carmela Troncoso, edi-
tors, 32nd USENIX Security Symposium, USENIX Secu-
rity 2023, Anaheim, CA, USA, August 9-11, 2023, pages
5055–5072. USENIX Association, 2023.

[33] kutyacica. Unbox your phone (part 1 - part 3).
https://labs.taszk.io/articles/post/unbox_
your_phone_1/, 2018. Accessed: April 2023.

[34] laginimaineb. Exploring qualcomm’s secure execution
environment. http://bits-please.blogspot.com/
2016/04/exploring-qualcomms-secure-
execution.html, 2016. Accessed: April 2023.

[35] Paul Leignac, Olivier Potin, Jean-Baptiste Rigaud, Jean-
Max Dutertre, and Simon Pontié. Comparison of side-
channel leakage on rich and trusted execution environ-
ments. In Proceedings of the Sixth Workshop on Cryp-
tography and Security in Computing Systems, CS2 ’19,
page 19–22, New York, NY, USA, 2019. Association
for Computing Machinery.

https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf
https://i.blackhat.com/eu-20/Thursday/eu-20-Kim-BinTyper-Type-Confusion-Detection-For-C-Binaries.pdf
https://i.blackhat.com/eu-20/Thursday/eu-20-Kim-BinTyper-Type-Confusion-Detection-For-C-Binaries.pdf
https://i.blackhat.com/eu-20/Thursday/eu-20-Kim-BinTyper-Type-Confusion-Detection-For-C-Binaries.pdf
https://labs.taszk.io/articles/post/unbox_your_phone_1/
https://labs.taszk.io/articles/post/unbox_your_phone_1/
http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html

[36] Mario Linares-Vásquez, Gabriele Bavota, and Camilo
Escobar-Velásquez. An empirical study on android-
related vulnerabilities. In 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories
(MSR), pages 2–13, 2017.

[37] Christian Lindenmeier, Mathias Payer, and Marcel
Busch. El3xir: Fuzzing cots secure monitors. In 33st
USENIX Security Symposium, USENIX Security 2024,
Philadelphia, PA, USA, August 14-16, 2024. USENIX
Association, 2024.

[38] V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications with static
analysis. In Patrick D. McDaniel, editor, Proceedings of
the 14th USENIX Security Symposium, Baltimore, MD,
USA, July 31 - August 5, 2005. USENIX Association,
2005.

[39] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Anto-
nio Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. Boomerang: Exploiting the semantic
gap in trusted execution environments. In NDSS, 2017.

[40] Slava Makkaveev. The road to qualcomm trustzone
apps fuzzing. https://research.checkpoint.com/
2019/the-road-to-qualcomm-trustzone-apps-
fuzzing/, 2019. Accessed: April 2023.

[41] Slava Makkaveev. Researching xiaomi’s tee to get to chi-
nese money. https://research.checkpoint.com/
2022/researching-xiaomis-tee/, 2022. Accessed:
April 2023.

[42] Stuart McIlroy, Nasir Ali, and Ahmed E Hassan. Fresh
apps: an empirical study of frequently-updated mobile
apps in the google play store. Empirical Software Engi-
neering, 21:1346–1370, 2016.

[43] Frederico Menarini. Breaking tee security part 1-
part 3. https://www.riscure.com/tee-security-
samsung-teegris-part-1/, 2019. Accessed: April
2023.

[44] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing
Guo. Mapping to bits: Efficiently detecting type confu-
sion errors. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San
Juan, PR, USA, December 03-07, 2018, pages 518–528.
ACM, 2018.

[45] raelize. Vulnerable tzdemuxerservice ta on samsung
tvs (j-series). https://raelize.com/blog/samsung-
tv-tzdemuxerservice-ta-vulnerabilities/,
2021. Accessed: January 2024.

[46] Nilo Redini, Aravind Machiry, Dipanjan Das, Yan-
ick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. BootStomp: On the security of bootloaders in
mobile devices. In 26th USENIX Security Symposium
(USENIX Security 17), pages 781–798, Vancouver, BC,
August 2017. USENIX Association.

[47] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spen-
sky, Andrea Continella, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Karonte: Detecting in-
secure multi-binary interactions in embedded firmware.
In 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020, pages
1544–1561. IEEE, 2020.

[48] Dan Rosenberg. Reflections on trusting trustzone. Black
Hat 2014, 2014. Accessed: April 2023.

[49] Samsung. Samsung vulnerability bulletin.
https://security.samsungmobile.com/
securityUpdate.smsb, 2019. Advisories from
August 2019 (SVE-2019-14892, SVE-2019-14891,
SVE-2019-14885, SVE-2019-14885, SVE-2019-14864,
SVE-2019-14851, SVE-2019-14850, SVE-2019-
14847). Accessed: January 2024.

[50] Samsung. Security configuration guide
samsung galaxy mobile and tablet devices.
https://kp4-cdn.samsungknox.com/resource/
Samsung%20Mobile%20Device%20-%20Security%
20Configuration%20Guide%208%20September%
202023_CXAN.pdf, 2023. Accessed: January 2024.

[51] Eloi Sanfelix. Tee exploitation - exploit-
ing trusted apps on samsung’s tee. https:
//downloads.immunityinc.com/infiltrate2019-
slidepacks/eloi-sanfelix-exploiting-
trusted-apps-in-samsung-tee/TEE.pdf, 2019.
Accessed: April 2023.

[52] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust
dies in darkness: Shedding light on samsung’s Trust-
Zone keymaster design. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 251–268, Boston,
MA, August 2022. USENIX Association.

[53] Statista. Global smartphone market share
from 4th quarter 2009 to 2nd quarter 2023.
https://www.statista.com/statistics/271496/
global-market-share-held-by-smartphone-
vendors-since-4th-quarter-2009/, 2023. Ac-
cessed: October 2023.

[54] Nick Stephens. Behind the pwn of a trustzone.
https://www.slideshare.net/GeekPwnKeen/
nick-stephenshow-does-someone-unlock-your-
phone-with-nose, 2016. Accessed: April 2023.

https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://research.checkpoint.com/2022/researching-xiaomis-tee/
https://research.checkpoint.com/2022/researching-xiaomis-tee/
https://www.riscure.com/tee-security-samsung-teegris-part-1/
https://www.riscure.com/tee-security-samsung-teegris-part-1/
https://raelize.com/blog/samsung-tv-tzdemuxerservice-ta-vulnerabilities/
https://raelize.com/blog/samsung-tv-tzdemuxerservice-ta-vulnerabilities/
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://kp4-cdn.samsungknox.com/resource/Samsung%20Mobile%20Device%20-%20Security%20Configuration%20Guide%208%20September%202023_CXAN.pdf
https://kp4-cdn.samsungknox.com/resource/Samsung%20Mobile%20Device%20-%20Security%20Configuration%20Guide%208%20September%202023_CXAN.pdf
https://kp4-cdn.samsungknox.com/resource/Samsung%20Mobile%20Device%20-%20Security%20Configuration%20Guide%208%20September%202023_CXAN.pdf
https://kp4-cdn.samsungknox.com/resource/Samsung%20Mobile%20Device%20-%20Security%20Configuration%20Guide%208%20September%202023_CXAN.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose

[55] Darius Suciu, Stephen McLaughlin, Laurent Simon, and
Radu Sion. Horizontal privilege escalation in trusted
applications. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, August
2020.

[56] Mingshen Sun, Tao Wei, and John C. S. Lui. Taintart:
A practical multi-level information-flow tracking sys-
tem for android runtime. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages
331–342. ACM, 2016.

[57] switchbrew.org. Switch system flaws. https:
//switchbrew.org/wiki/Switch_System_
Flaws#TrustZone, 2023. Accessed: January
2024.

[58] Adrian Tang, Simha Sethumadhavan, and Salvatore J
Stolfo. Clkscrew: Exposing the perils of security-
oblivious energy management. In USENIX Security
Symposium, volume 2, pages 1057–1074, 2017.

[59] TrustedFirmware.org. Op-tee documen-
tation - trusted applications. https://
optee.readthedocs.io/en/latest/architecture/
trusted_applications.html, 2023. Accessed: April
2023.

[60] Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang,
and Xu He. Rustee: Developing memory-safe ARM
trustzone applications. In ACSAC ’20: Annual Computer
Security Applications Conference, Virtual Event / Austin,
TX, USA, 7-11 December, 2020, pages 442–453. ACM,
2020.

[61] Jie Wang, Kun Sun, Lingguang Lei, Shengye Wan,
Yuewu Wang, and Jiwu Jing. Cache-in-the-middle (citm)
attacks: Manipulating sensitive data in isolated execu-
tion environments. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1001–1015, 2020.

[62] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and discovering vulnerabilities with
code property graphs. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014, pages 590–604. IEEE Computer Society,
2014.

[63] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic inference of search patterns
for taint-style vulnerabilities. In 2015 IEEE Sympo-
sium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 797–812. IEEE Computer
Society, 2015.

[64] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: exposing missing
checks in source code for vulnerability discovery. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 499–510. ACM, 2013.

[65] Yuxing Zhang, Xiaogang Zhu, Daojing He, Minhui Xue,
Shouling Ji, Mohammad Sayad Haghighi, Sheng Wen,
and Zhiniang Peng. Detecting union type confusion
in component object model. In Joseph A. Calandrino
and Carmela Troncoso, editors, 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA,
August 9-11, 2023, pages 4265–4281. USENIX Associ-
ation, 2023.

13 Appendix

Vuln TA Name CVE Source

task_storage Secure Storage CVE-2016-8764 [54]
d78d338b1ac349e09f65f4efe179739d.ta Soter None [41]
00000000-0000-0000-0000-000000000046 MLDAP SVE-2019-14867 [43, 49]
00000000-0000-0000-0000-000048444350 HDCP SVE-2019-14850 [43, 49]
00000000-0000-0000-0000-0000534b504d SKPM SVE-2019-14892 [43, 49]
00000000-0000-0000-0000-00575644524d WVDRM SVE-2019-14885 [43, 49]
00000000-0000-0000-0000-42494f535542 EXT_FR SVE-2019-14847 [43, 49]
00000000-0000-0000-0000-46494e474502 FINGERPRINT SVE-2019-14864 [43, 49]
00000000-0000-0000-0000-5345435f4652 SEC_FR SVE-2019-14851 [43, 49]
00000000-0000-0000-0000-53454d655345 SEM SVE-2019-14891 [43, 49]

Table 7: Our ground-truth dataset of vulnerable TAs.

0-Day TA Disclosure Status

gpeid Confirmed
chnactiv Confirmed
08110000000000000000000000000000 CVE-2023-32835
08030000000000000000000000000000 CVE-2023-32834
06140000000000000000000000000000 CVE-2023-32848
09010000000000000000000000000000 Confirmed
08020000000000000000000000007169 Confirmed
09030000000000000000000000008270 Confirmed
98fb95bcb4bf42d26473eae48690d7ea Confirmed
abcd270ea5c44c58bcd3384a2fa2539e Confirmed
07770000000000000000000000000000 Confirmed
e97c270e-a5c4-4c58-bcd3384a2fa2539e Confirmed
00000000-4d54-4b5f-4246-566964456e63 CVE-2024-20078
00000000-4d54-4b5f-4246-564448455643 Confirmed

Table 8: 0-Day vulnerabilities discovered in our study.

https://switchbrew.org/wiki/Switch_System_Flaws#TrustZone
https://switchbrew.org/wiki/Switch_System_Flaws#TrustZone
https://switchbrew.org/wiki/Switch_System_Flaws#TrustZone
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html

	Introduction
	Background
	Threat Model
	GlobalConfusion: A Design Weakness in the De-Facto TA API Standard
	GPCheck Design
	Prior Art
	Overview
	GP Function Detection
	Static Information Flow Analysis

	Implementation
	GlobalConfusion Prevalence Study
	TA Dataset
	Ground-truth GP Function Detection
	Ground-truth Type Checking
	Large-scale Study on Type Checking
	Real-world Exploitation

	Mitigation
	Limitations
	Discussion
	Related Work
	Conclusions
	Appendix

