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Abstract
The number and complexity of Trusted Applications (TAs,

applications running in Trusted Execution Environments—
TEEs) deployed on mobile devices has exploded. A vulnera-
bility in a single TA impacts the security of the entire device.
Thus, vendors must rapidly fix such vulnerabilities and revoke
vulnerable versions to prevent rollback attacks, i.e., loading
an old version of the TA to exploit a known vulnerability.

In this paper, we assess the state of TA rollback preven-
tion by conducting a large-scale cross-vendor study. First, we
establish the largest TA dataset in existence, encompassing
35,541 TAs obtained from 1,330 firmware images deployed
on mobile devices across the top five most common vendors.
Second, we identify 37 TA vulnerabilities that we leverage
to assess the state of industry-wide TA rollback effectiveness.
Third, we make the counterintuitive discovery that the un-
coordinated usage of rollback prevention correlates with the
leakage of security-critical information and has far-reaching
consequences potentially negatively impacting the whole mo-
bile ecosystem. Fourth, we demonstrate the severity of inef-
fective TA rollback prevention by exploiting two different
TEEs on fully-updated mobile devices. In summary, our re-
sults indicate severe deficiencies in TA rollback prevention
across the mobile ecosystem.

1 Introduction

On Android, Trusted Applications (TAs) are vendor-signed
dynamically loadable modules that extend the features pro-
vided by a Trusted Execution Environment (TEE). The TA
loader is responsible of verifying the TA’s signature. Thus,
only authentic TAs can be loaded. TAs provide many security-
critical tasks including secret-based authentication (e.g., login
via PIN, pattern, or password), biometric authentication (e.g.,
fingerprint and face identification), playback of protected dig-
ital content (e.g., digital rights management), disk encryption,
mobile banking, and generic cryptographic key management.
In this study, we are concerned with vulnerabilities in TAs
putting these security-critical tasks at risk.

TEEs on Android devices leverage the ARM TrustZone
architectural extension. TrustZone creates an isolated execu-
tion context separated from the commonly known Android
software stack. This separated context provides integrity and
confidentiality guarantees for its components (TEE OS and
TAs). Code in the normal world can only interact with TAs
through well-defined and protected interfaces. TAs can inter-
act with the TEE OS through system calls.

Rollback Exposure. TAs are an attractive target for attack-
ers. Their number and complexity is ever-increasing. TAs
are a prime attack surface to breach the TEE because TAs
are directly accessible from the Android context. Either an
attacker breaches a specific TA and has direct access to con-
fidential data, or the breach serves as a initial foothold to
compromise the entire TEE [1, 35, 49]. Unsurprisingly, TAs
of all major TEE implementations have been exploited in the
past [1, 8, 31–33, 35]. Such breaches are usually followed by
the rollout of updates that fix the underlying vulnerabilities.
However, attackers retain access to the original, signed, vul-
nerable TA. Without rollback prevention, meaning to increase
a rollback counter, this vulnerable TA may still be loaded into
the TEE and exploited.

In this paper, we extend the existing vulnerability lifecycle
model [2, 27, 43] to cover this underexplored rollback attack
vector. The vulnerability lifecycle captures the phases from
the point of introduction of a vulnerability into a codebase
until the point where all systems affected by the vulnerability
are patched. The study of the vulnerability lifecycle is im-
portant as it helps to mature software security practices and
workflows, and provides insights into the impact of security
efforts. While prior measurement studies on different targets
than TAs have produced a number of valuable insights into
the vulnerability lifecycle [2, 27], our study provides novel
insights on the rollback exposure for TAs.

Challenges and Solutions. Studying the TA rollback at-
tack vector poses several unique challenges.

• Capturing the complexity of the TA ecosystem. Several
parties including vendors, chipset providers, third-party



TEE implementations, and third-party TAs as well as
their interdependencies have to be taken into account.

• Understanding and measuring the implication of
security-related events, like vulnerability disclosures and
rollback counter increases. The impact of these events on
individual products and the ecosystem is underexplored.

• Identifying reasonable past and present industry trends
to extrapolate the future development of the ecosystem.

• Obtaining a representative ground truth of TAs and past
security-related events. The (lack of) availability of his-
torical firmware, proprietary file formats, and vague in-
formation on public TA vulnerabilities pose difficulties.

Our study is the first large-scale systematic measurement
of its kind and addresses all of these challenges. To address
these challenges, we systematize and model the TA ecosystem
in Section 5 by surveying and reverse engineering the propri-
etary TEE software stacks of a representative subset of device
series. This ecosystem model allows us to reason about the
implications of security-related events and guides our discov-
ery of real-world instances of rollback-counter-related side
effects in Section 7. For these real-world instances, we obtain
a representative ground-truth dataset of TAs and security-
related events as described in Section 6.1 and Section 7.1.
This dataset required us to define the criteria for represen-
tativeness, obtain and process 1,330 proprietary firmware
images, and aggregate the heterogeneous information across
these sources. Finally, from the past and current industry
trends, we extrapolate and discuss future developments of the
ecosystem in Section 8.

Study Outline. We present a large-scale cross-vendor
study on the effectiveness of TA rollback prevention survey-
ing the prevalence of rollback mitigations. First, we collect a
representative dataset of 1,330 firmware images containing
35,541 TAs deployed on recent mobile devices spanning the
five most common vendors. Next, we reverse engineer and
fully automate the extraction of TAs and their metadata from
these firmware images. Then, we establish a ground truth of
37 TA vulnerabilities that we leverage to investigate the ef-
fectiveness of TA rollback prevention. Conversely, we form a
subset of TAs with rollback counter usages and investigate the
corresponding leakage of security-critical information and its
implications for the ecosystem. Lastly, we conduct a study on
the effectiveness of TA rollback prevention by investigating
if we can load and breach vulnerable TAs in the most widely-
used TEEs, namely Samsung’s TEEGRIS, Trustonic’s Kinibi,
Qualcomm’s QSEE, and Beanpodtech’s BeanPod.

Results. Our results indicate the lack of effective TA roll-
back prevention on an industry-wide scale and discovers a net-
negative security impact on the entire ecosystem in the case
of uncoordinated rollback prevention. Based on our ground
truth of 37 vulnerabilities, we discovered 2,582 cases of roll-
back exposure out of which 265 remain vulnerable on the

latest firmware images (note that one vulnerable TA can af-
fect multiple device models). These rollback exposure cases
affect all major TEE platforms. Consequently, all platforms
can potentially be breached using n-day exploits.

Counterintuitively, we discover that the uncoordinated us-
age of rollback counters for individual products has implica-
tions for other products by the same vendor and potentially
the ecosystem as a whole. We observe that the ad-hoc and
uncoordinated usage of rollback counters correlates with se-
vere vulnerabilities in TAs and, thus, leaks security-critical
information affecting all products making use of the affected
TA. We observe this phenomenon across products by the same
vendor and anticipate this leakage to occur across products
by different vendors.

Finally, to demonstrate the severity of the flawed state of
TA rollback prevention, we carry out two case studies where
we breach two major TEE platforms on fully updated devices.

Contributions. Our contributions are the following:

• We establish the largest dataset of TA images and vul-
nerable TAs in existence to investigate TA rollback pre-
vention.

• We investigate the TA rollback exposure using 37 manu-
ally verified vulnerabilities by conducting a large-scale
cross-vendor study on the effectiveness of TA rollback
prevention. We discover that rollback prevention is not
used securely across the entire industry.

• We discover that the uncoordinated usage of TA rollback
prevention of individual products implies the leakage
of security-critical information potentially leading to a
net-negative security for the entire ecosystem.

Responsible Disclosure. In this study, we discovered sev-
eral TA rollback attacks affecting recent fully-updated mobile
devices. We responsibly disclosed our findings to all affected
vendors. Samsung confirmed that TA rollback prevention is
applied to models released after the Galaxy S22, since the
patch required a huge update that included internal infras-
tructure. According to Samsung, this patch cannot be applied
to the devices we reported to be vulnerable to TA rollback
attacks. Although several recent devices stay vulnerable to TA
rollback attacks, we were not assigned an official identifier
for these issues (i.e., CVE or SVE). Further, we disclosed our
findings to Xiaomi, Oppo, Vivo, and MediaTek, and inquired
about how they will address TA rollback attacks on their prod-
ucts. We did not receive a response to our inquiry yet and are
waiting for a response from these vendors.

2 Motivation for Up-to-Date TAs

In this section, we motivate the need for up-to-date TAs by
reviewing ARM TrustZone and TA rollback prevention.

ARM TrustZone Preliminaries. ARM is the dominant
CPU architecture on mobile devices. Thus, the vast majority



of available devices leverage ARM TrustZone as the hardware
primitive for their TEE. Modern ARMv8-A CPUs, as typi-
cally used for mobile devices offer four privilege levels (i.e.,
exception levels in ARM terminology) where EL3 denotes
the highest and EL0 the lowest level.

ARM TrustZone splits these exception levels into two ex-
ecution modes, the untrusted normal world and the trusted
secure world. For the OS level (EL1), this mode also results
in a dedicated way to use the memory management unit, lead-
ing to the world split and logical components as illustrated
in Figure 1. We commonly refer to the combination of the
TEE OS (S-EL1) and TAs (S-EL0) as the TEE. Additionally,
dedicated hardware protects the TEE memory and peripherals
from normal world accesses.
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Figure 1: ARMv8 privilege levels.

Cryptographically signed TA images reside in the rich OS’s
file system and are dynamically loaded into the TEE at run-
time. By design, TAs expose their services to the untrusted
normal world. Thus, in comparison to the TEE OS, TAs com-
prise an attack surface that is directly accessible to attackers.
Additionally, TAs constitute the largest attack surface of the
TEE. As we show in Section 7, we identified 187 unique TAs
available for Samsung devices, and 106 unique TAs available
for Xiaomi devices, two popular brands in the mobile market.

Vulnerabilities in TAs have severe consequences. TAs have
been used to directly compromise the integrity and confi-
dentiality guarantees expected by security-sensitive services,
including mobile payment [32], full-disk encryption [25],
and biometric authentication [49]. Further, TA vulnerabil-
ities served as initial footholds to compromise the entire
TEE [1, 35, 49]. These breaches emphasize that vulnerable
TAs can subvert the purpose of the TEE, and threaten the
security guarantees expected by TEE-protected assets like
biometric identifiers, payment data, and cryptographic keys.
Given this threat potential, users and vendors have a great
interest in fixing vulnerable TAs quickly, and deploying these
fixes to devices as soon as possible.

TA Rollback Prevention. Figure 2 illustrates a simplified

vulnerability lifecycle for a TA vulnerability. The solid section
of the arrow indicates the time in which the vulnerable TA can
potentially be exploited. The red solid section is especially in-
teresting to attackers since publicly known vulnerabilities, or
even readily available n-day exploits, can be used to compro-
mise a vulnerable non-revoked version of a TA. Consequently,
vendors must enforce the loading of up-to-date TAs.
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Figure 2: The TA vulnerability lifecycle. Attackers can lever-
age publicly disclosed vulnerabilities up until the rollback to
a vulnerable TA version is prevented.

TAs, in contrast to the TEE OS, are dynamically loaded
and unloaded from the untrusted normal world. Hence, the
vendor has to ensure that only up-to-date TAs can be loaded.
The mechanism of choice for OP-TEE and the majority of
commercial TEEs (see Section 5) is TA rollback prevention
based on a secure storage.

Rollback prevention is typically desired on a per-TA basis,
as opposed to a group of TAs or all TAs on a given device.
One major property achieved with per-TA rollback prevention
is modularity. If certain features are not used, then the corre-
sponding TA is not loaded, thus the trusted computing base is
not unnecessarily increased. Additionally, TAs are developed
individually and may originate from different sources as we
discuss in Section 5. Per-TA rollback prevention facilitates
the coordination of patching and increasing rollback counters.
Thus, the TA loader needs to (1) uniquely identify a TA and
(2) have access to a protected TA-specific version counter.
This information needs to be part of a signed segment of each
TA and securely persisted on the device. After verifying the
TA’s authenticity, the TA loader can leverage this information
to distinguish TAs and keep track of each TA’s version counter.
If an attacker tries to load an outdated version, the loader will
reject the corresponding TA.

In practice, taking OP-TEE as an example, platform design-
ers can leverage a replay-protected memory block (RPMB)
as a secure storage to enable TA rollback prevention [52].
RPMB is a feature of embedded multi-media cards (eMMCs),
and introduced in the eMMC4.4 standard, a widely available
technology. Figure 3 illustrates how a Client Application re-
quests the helper daemon (supplicant) to load a TA from
the regular filesystem (FS) in steps 1a - 1b - 1c . After verifying
the TA’s authenticity, the TA Loader requests the ta_ver.db
from the supplicant ( 2a - 2b ). This file contains all TA iden-
tifiers and TA versions. The RPMB and the TA loader have
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Figure 3: When a Client Application (CA) loads a TA ( 1a -
1b - 1c ), the TA Loader keeps track of the TA versions using
an RPMB-based database ( 2a - 2b ).

access to a shared key deployed by the manufacturer. This key,
which is kept secret from the Normal World, is used to gener-
ate hash-based message authentication codes (HMACs) for
messages exchanged between the RPMB and the TA Loader
to guarantee authenticity. Thus, the TA loader can leverage
the authentic ta_ver.db for TA version bookkeeping. The
TA Loader must handle three scenarios. If the version found
in the TA header (TAver) is lower than the version maintained
in the ta_ver.db file (verRPMB), the TA is rejected. If the
TAver is greater than the verRPMB, the TA Loader writes to
the RPMB to update the ta_ver.db. This write operation
makes use of the shared key and a write counter present in
the RPMB to guarantee authenticity and freshness. Lastly, if
the TAver is equal to the verRPMB, the Loader accepts the TA.

3 Research Overview

In this section, we outline the challenges of this measurment
study and briefly discuss how we addressed them.

TA Ecosystem Complexity. The complexity of the TEE
ecosystem is hidden by its lack of transparency, closed-source
nature, absence of documentation, and inherent security-
senstitive nature, making it challenging to comprehend and
analyze without privileged insider knowledge. In fact, even
when this insider knowledge is given, researchers are re-
strained by the secrecy requirements imposed by industry
collaborators. For instance, the PartEmu prototype [22] cannot
be publicly released because of non-disclosure agreements.

This lack of transparency makes it challenging to draw a
clear picture of the ecosystem that includes vendors, chipset
providers, third-party TEE implementations, and third-party
TAs as well as their interdependencies.

Implications of Security-Related Events. Given the fact
that TA code is shared amongst different parties in the ecosys-
tem, security-related events originating from one party may
affect another party. These events include the release of se-
curity advisories, rollback counter increases, third-party vul-
nerability reports, and updates in general. The implications of
these events are unexplored, and require a thorough modeling
and empirical validation. Creating a robust model that yields
interesting insights for real-world TAs is a challenging task.

Identify Trends. Already in 2017 Google P0 discussed
the issue of TA rollback attacks [4]. Since then, new players
entered the TEE ecosystem and established ones evolved. The
specific question regarding the effectiveness of TA rollback
prevention in the ecosystem requires to gather, aggregate, and
interpret historical and current data to distill the evolution and
future trends, which is a non-trivial task.

Representative Dataset. The core of this study is a large
and representative dataset of TAs and past security-related
events. The availability of historical firmware, proprietary file
formats, and vague information on public TA vulnerabilities
pose difficulties for this task.

This study is the first to 1) systematize and model the TA
ecosystem (Section 5), 2) relate this model to the implica-
tions of security-related events and discover real-world in-
stances of rollback-counter-related side effects (Section 7),
3) obtain a representative ground-truth dataset of TAs and
security-related events (Section 6.1 and Section 7.1), and 4)
extrapolate and discuss potential future developments of the
ecosystem (Section 8).

4 Threat Model

We base our threat model on the typical guarantees given to
the TEE by ARM TrustZone, and refine the model in the spe-
cific context of a production mobile device running Android.

Attack Surface Chracterization. ARM TrustZone-based
TEEs benefit from strong hardware-assisted isolation that
provides integrity and confidentiality guarantees for all the
components running in the secure world. In particular, this
isolation prevents the execution of any unauthenticated code
within the TEE (e.g., loading unsigned code or modifying
existing code), and ensures that secrets that are not shared with
the normal world stay confidential (e.g., cryptographic keys
or biometric identifiers). Consequently, this attacker model
assumes an attacker capable of executing code on N-EL0 and
N-EL1, having access to the TEE-exposed interfaces.

On a typical production device running Android, this at-
tacker model is realistic, given the history of privilege escala-
tion exploits available for the Linux kernel (e.g., CVE-2016-
5195, or CVE-2018-9568, CVE-2022-2602). Moreover, this
attacker model can be refined and weakened, since typically
a large list of user-space daemons have access to the TEE
driver interface exposed by the kernel. In the best case, access



to this interface (N-EL0 only) is all an attacker needs to carry
out the attacks described in our work.

Attack Objectives. In our specific scenario, the attacker
is interested in breaching the integrity and confidentiality
of a TA, and potentially use the TA’s capabilities to further
compromise the TEE (e.g., breach the TEE OS). Note that for
the latter, an exploitable bug in a single TA (single point of
failure) is enough to achieve this goal.

Bug Classes and Rollback. All TAs for major TEE plat-
forms are implemented in memory-unsafe languages, namely
C/C++. The C/C++ code is compiled to aarch32 or aarch64
ARM machine code. We found that most TEE platforms for
ARMv8-based SoCs support 32-bit and 64-bit TAs, and follow
standard calling conventions. These design choices expose
the TEE to traditional memory corruption bugs like buffer
overflows and dangling pointers that can lead to arbitrary
code execution within the virtual address space of a TA, in
the worst case.

The “classic” approach for an attacker to compromise the
TEE is to search for unknown exploitable vulnerabilities (0-
days) in TAs, which is non-trivial and requires deep knowl-
edge of the target. The second attack vector, the focus of our
work, is to load a properly signed but vulnerable TA. This
attack vector option is easier, as in the best case, the attacker
can simply reuse existing publicly-available proof-of-concept
exploits. However, this option must be prevented by effective
TA rollback prevention mechanisms, which leads us to the
centerpiece of our research: the industry-wide effectiveness
of TA rollback prevention mechanisms.

5 Security Analysis of the TEE Ecosystem

The Android TEE ecosystem consists of several complex
components. We focus our description on TAs and analyze
security implications related to the effectiveness of TA roll-
back prevention that directly derive from the characteristics
of the ecosystem.

5.1 TA Origins and Anti-Rollback Challenges

The Android TEE landscape is complex and growing. To un-
derstand this ecosystem, we concentrate on two important
entities. The Original Design Manufacturer (ODM) provides
the hardware platform (e.g., the SoC for a mobile device) and
the initial firmware/software provisioning. This platform is re-
branded by the Original Equipment Manufacturer (OEM) and
further customized or provisioned with software components
to create the customer-facing branded product. The following
real-world examples illustrate the ecosystem further.

Xiaomi Mi series. The Xiaomi Mi series is a line of high-
end mobile devices sold worldwide, where the two above-
mentioned entities are relatively clear. The hardware of these
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phones is provided by Qualcomm, the ODM in this case. The
consumer-facing branding and final customizations are done
by Xiaomi, the OEM. The ODM usually determines low-level
components. Thus, the TEE deployed on these phones is the
Qualcomm Secure Execution Environment (QSEE). Further,
a subset of TAs could originate from the ODM. OEMs can
extend their TEEs by either developing their own TAs or
integrating third-party TAs. For instance, a popular TA for
digital content protection is Google’s Widevine [55].

Samsung S series. We observe instances where the ODM
leverages third-party TEEs. For instance, on the Samsung
Galaxy S9 sold outside of the US, we find an Exynos chipset
by Samsung and the Kinibi TEE by Trustonic. Samsung in-
troduced its own TEEGris TEE in later models (e.g., the Sam-
sung Galaxy S10).

Xiaomi Redmi series. We observe OEMs selling several
series of products based on different ODM platforms. For
instance, besides Xiaomi’s high-end Mi series based on Qual-
comm SoCs, their Redmi series is based on MediaTek SoCs.
MediaTek utilizes a TEE stack called BeanPod by Bean-
podtech for their chips.



All of these non-exhaustively mentioned TEE implementa-
tions (e.g., QSEE, Kinibi, TEEGris, or Beanpod) differ dras-
tically in terms of features and, thus, affect the focus of our
research—the capability to prevent TA rollbacks. We provide
an overview of the different TA header formats indicating
their rollback capabilities in Tables 8a, 8b, 8c, 5, and 7 in
the Appendix. Furthermore, considering that TAs can have
several origins, it is a challenge for the OEM to compose the
final product’s firmware image containing the latest TAs and
ensure that rollback counters are updated accordingly. We
illustrate the dependencies of TA deployment in Figure 4.

For the purpose of our research, surveying this landscape
yields the following high-level insights:

• TAs are developed by several entities (e.g., ODM, OEM,
or third-party).

• The ODM determines the TEE OS, which can be pro-
vided by a third party.

• The customer-facing brand (the OEM) alone does not
reveal the underlying TEE implementation.

• The TEE OS implementations differ in terms of sup-
ported features.

5.2 Hypotheses for TA Anti-Rollback
Given the Android TEE ecosystem structure as described
above, we derive a set of hypotheses that directly affect the
effectiveness of TA rollback prevention.

HYP1: Leakage. When TA rollback counters are used in
an uncoordinated way to enforce anti-rollback prevention for
severely vulnerable TAs, the counter increase can inadver-
tently disclose information about the existence of a vulnera-
bility in the TAs.

HYP2: Cross-Product Leakage. The leakage due to a
rollback-counter increase affects devices of the same prod-
uct series. Vendors often update their phone models yearly.
Most of the software stack deployed on the previous genera-
tion within a product series remains the same. Consequently,
an increased TA rollback counter on one product of a se-
ries will directly leak security-critical information about the
other products in this series. In a product-centric organization,
where rollback counters are increased in an ad-hoc and unco-
ordinated way, the vulnerability leakage will directly affect
other products. Figure 5 illustrates this hypothesis.

HYP3: Cross-OEM Leakage. If two different OEMs are
using the same ODM, the set of common TAs is prone to
cross-OEM leakage in case of a TA rollback counter increase.
Consequently, the uncoordinated usage of TA rollback coun-
ters by one OEM affects other OEMs and may leak TA vulner-
abilities affecting other OEMs’ products. Figure 6 illustrates
this hypothesis.

HYP4: Cross-ODM Leakage. If a TA is supported on
multiple ODMs, a rollback counter increase on one ODM
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platform will leak security-critical information affecting the
other ODMs’ platforms. This leakage is especially relevant
if ODM platforms lack support for proper rollback preven-
tion or employ a different (weaker) set of exploit mitigations,
putting this weaker platform at risk. Figure 7 illustrates this
hypothesis.

6 Study Design

Our goal is to assess the industry-wide effectiveness of TA
rollback prevention for Android smartphones. This section de-
scribes our analysis pipeline. Figure 8 serves as an overview.
To carry out this study, we collect a representative dataset
of firmware images containing TAs distributed to the most
popular devices. We present our dataset selection criteria,
elaborate on the extraction of rollback counters, and describe
the collection of vulnerable TAs.

6.1 TA Dataset Criteria

In this study, we want to understand the current industry-wide
state of TA rollback prevention for Android smartphones.
The foundation for this assessment is a dataset addressing the
following timeliness, representativeness, and diversity criteria.

Timeliness. Given that the average smartphone lifecycle is
around 2.5 to 3 years [46, 48], we can establish a conserva-
tive upper bound by considering smartphone models released
within the last 4 years to capture a set of phones that are
relevant today.
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Representativeness. Further, our guiding principle to
claim representativeness for our dataset is that the investi-
gated devices are widely used. Thus, we base our selection
on the market share of Android smartphone vendors [47].

Diversity. Each OEM typically employs a variety of plat-
forms based on different ODMs. As explained in Section 5,
the ODM determines the TEE. Thus, our dataset should take
the diversity of TEEs into account.

6.2 Rollback Counter Usage
Our dataset contains TAs deployed on a diverse set of TEE
implementations. Each implementation handles rollback pre-
vention differently, but generally, all the relevant information
can be found in the header of a given TA. Hence, we collected
the publicly available information on TA header formats and
reverse-engineered those formats that are not publicly known.
The details on these header formats can be found in Tables 8a,
8b, 8c, 5, and 7 in the Appendix.

As a result of our rollback counter extraction, we obtain a
chronologically ordered sequence of TAs for every phone in
our dataset that shows the rollback counters for each TA.

6.3 TA Vulnerabilities
To establish the ground truth of vulnerable TAs, we sur-
vey known vulnerabilities broadly across all vendors in our
dataset. The set of vulnerable TAs is based on publicly avail-
able information. Our collection of publicly known vulner-
abilities relies on information from three different input
sources. First, we systematically survey the programs of (non-

academic) security conferences (e.g., DEF CON [13], Black-
Hat [12], OffensiveCon [36], or C3 [9]). Second, we diligently
review the blogs of companies and individuals known to con-
duct research on TEEs (e.g., Riscure [39], Quarkslabs [38],
Google P0 [37], or Blue Frost Security [44]). Third, we
scraped the security bulletins of vendors for TEE-related key-
words (e.g., TEE, TA, TrustZone, and various vendor-specific
keywords). Lastly, we aggregate this information, manually
match the vulnerabilities to the TAs in our dataset, and verify
the described issue.

This subset of vulnerable TAs is our ground truth and start-
ing point to assess the rollout of patches and rollback preven-
tion measures.

7 Analyses and Results

After introducing the study design in Section 6, this section
discusses the study results. We first describe our dataset in
detail and then focus on our research questions:

RQ1 What are TA rollback counters used for?

RQ2 Are TA rollback counters used correctly and consis-
tently?

RQ3 What are the consequences of uncoordinated TA roll-
back increases?

RQ4 Can rollbackable TAs be loaded and exploited under
real-world conditions?

7.1 Dataset Collection and Characterization

To create a timely, representative, and diverse dataset as ex-
plained in Section 6.1, we first take into account that smart-
phones have a lifetime of about two-and-a-half to three
years [46,48]. Thus, we choose a conservative upper bound of
smartphones released within the last four years to fulfill our
timeliness criterion. Further, we focus on the top five Android
smartphone vendors as reported bi-quarterly by Statista [47]
over the last four years. These vendors are Samsung, Oppo,
Vivo, Xiaomi, and Transsion covering a share of >65% of the
Android smartphone global market for each reported quarter.
Next, we leverage gsmarena.com to identify all smartphone
models released within the last four years by these vendors.
To address our diversity criterion, we group all phones by
ODM for each vendor. gsmarena.com provides information
on the chipset for each phone which allows us to perform
this grouping. We select at least two phones from each of
these groups to investigate their firmware images. We collect
at least five firmware images for each of these phones span-
ning the firmware evolution of at least two years. We list the
sources of these firmware images in Table 6 in the Appendix.

gsmarena.com
gsmarena.com


Firmware Dataset Rollback Analysis

ODM TEE Vendor #Devices Σ #Firmware Σ #TAs Σ #vulnerable TAs
Σ #TAs with rollback-

counter change
average #days of

rollback exposure†
Σ #rollbackable

TAs§
Σ #rollbackable

devices*

Qualcomm QSEE Samsung 6 88 2,834 132 13 0‡ 13 4
Qualcomm QSEE Xiaomi 5 299 6,982 0 0 N/A 0 0
Qualcomm QSEE Oppo 4 28 215 0 0 N/A 0 0
Qualcomm QSEE Vivo 3 13 92 0 0 N/A 0 0
MediaTek BeanPod Xiaomi 4 173 3,514 584 0 N/A 63 4
MediaTek BeanPod Transsion 4 22 104 0 0 N/A 0 0
MediaTek Kinibi Oppo 5 28 832 97 0 N/A 20 5
MediaTek Kinibi Vivo 4 29 1,512 166 0 N/A 22 4
MediaTek TEEGRIS Samsung 2 16 658 3 83 58 0 0
Exynos Kinibi Samsung 6 325 10,523 1,090 22 0 90 6
Exynos TEEGRIS Samsung 8 309 8,490 510 72 245 99 6

All All All 51 1,330 35,541 2,582 190 99 265 29

Table 1: The dataset used for our study. (†) This column measures the average number of days between advisory publication and
rollback counter increase. N/A denotes that there are no instances of a vulnerable TA whose rollback counter is increased. (§)
A rollbackable TA is a TA whose outdated and vulnerable version can be loaded due to a lack of rollback counter increase on
the newest firmware version. (*) A device whose newest firmware version contains at least one rollbackable TA is considered
to be rollbackable. (‡) All of the TA rollback counter increases for Samsung QSEE devices are on newer devices without any
associated public vulnerabilities for TAs.

For each downloaded firmware image, we extract all en-
closed TAs, parse the available metadata (e.g., rollback coun-
ters), and manually mark TAs with publicly known vulnerabil-
ities. Table 9 in the Appendix shows all publicly known vul-
nerabilities systematically obtained from several resources as
described in Section 6.3 [1,5,23,24,31,32,35,40–42,45,56].

Table 1 summarizes our dataset. In total, we collect 1,330
firmware images recently deployed on 51 different phone
models spanning five vendors (OEMs) and three ODMs. We
obtained 35,541 TAs (293 unique TAs) for four different TEE
implementations. We were able to mark 2,582 vulnerable
TAs and found 190 rollback counter changes. We focus on
the 65% most common vendors to represent the market. The
remaining 35% consists of the long tail of the market. Includ-
ing an additional vendor would only marginally contribute
to the representativeness of our dataset, while obtaining and
processing their historical firmware imposes a disproportional
effort. For instance, vendors like Google, LG, Motorola, HTC,
and Huawei each have a market share of lower than 5% [47].

Although the firmware for Google devices is readily avail-
able [19], we exclude Google devices from our study for
the following reasons. Older QSEE based Google devices
do not use rollback counters to support arbitrary firmware
downgrades [4]. With the Trusty TEE, which replaced QSEE
on newer Pixel devices (Pixel 6 and later), Google disabled
runtime-loadable TAs. TAs are shipped as part of signed
firmware images and cannot be modified [18]. This decision
is a trade-off where Google sacrifices third-party TA support
and their business opportunities for security.

Security-focused Android ROMs such as GrapheneOS [21]
or LineageOS [29] rely on the device’s existing TEE software
stack. Hence, our findings apply equally to these ROMs.

7.2 RQ1: Rollback Counter Use Cases

Table 1 summarizes our results regarding the usage of TA
rollback counters. Our first observation is that all vendors in
our dataset except Samsung are not making use of rollback
prevention. The reason is either that the TEE does not support
rollback prevention (e.g., BeanPod) or the vendor does not
effectively employ the TEE’s rollback counter capabilities to
prevent rollback—even if there are public security advisories
for several TAs available.

Exploring the history of Samsung devices reveals an
episode of ad-hoc and uncoordinated usage of rollback pre-
vention, followed by a period of consistent rollback counter
increases with every other firmware update shipped to cus-
tomer devices. First, this observation shows that Samsung
(the biggest player in the Android smartphone market by mar-
ket share) attempts to address TA anti-rollback enforcement.
Second, the history of ad-hoc and uncoordinated anti-rollback
enforcement indeed shows a correlation between security-
critical vulnerabilities and the increase of TA rollback coun-
ters. In Table 2 we list TAs with an increased rollback counter
that correlates with a public security advisory. As we will
discuss in Section 7.4, the threat of unwanted disclosure af-
fecting other devices of the same vendor, or potentially other
vendors in the ecosystem is real.

7.3 RQ2: Correct and Consistent Usage of
Rollback Counters

To answer RQ2, we analyze TAs across all of a device’s
firmware versions to assess if the device was or still is exposed
to rollback attacks. To track updates to a TA we compute the
hash of the TA’s .text section as a heuristic. If this hash
changes in a firmware version, we register this as an update



TEE TA Vendor ID CVE Published RC++

Kinibi ESECOMM SVE-2017-8889 2017-18655 2017-08 2017-10
Kinibi TEE_keymaster SVE-2019-14126 2019-20607 2019-05 2019-02
TEEGRIS WVDRM SVE-2020-17117 2020-13832 2020-06 2020-05
TEEGRIS SKPM SVE-2019-14892 2019-14892 2019-08 2021-01

Table 2: Four critical security advisories released by Samsung.
TA rollback counter increases often coincide with advisories
indicating critical vulnerabilities. The RC++ column shows
the date of the rollback counter increase.

to the TA. This heuristic serves as upper bound and may
have false positives, i.e., it may signal an update if the TA
is recompiled in a different environment. For each firmware
version, we also check if the rollback counter was increased
and correlate this to the vulnerabilities in our dataset from
Table 9. We consider a TA vulnerable in the time frame af-
ter a vulnerability disclosure and before a rollback counter
increase. If no rollback counter increase takes place then the
vulnerable version can still be loaded in the newest firmware
version. Note that even if a vendor removes a TA from newer
firmware releases, and the rollback counter of that TA was
never increased, the attacker can still load this deprecated TA.

Figure 9(a)-(d) shows the updates and vulnerabilities for
the TAs of four BeanPod devices in our dataset. Each of these
devices has at least 3 vulnerable TAs that may be loaded on
a fully updated device. Note that all TA vulnerability lifecy-
cles ending with a ◦ in Figure 9 represent TAs vulnerable to
rollback attacks. The reason for this high number is that the
BeanPod TA format does not contain a rollback counter. Even
though the vulnerability may be patched in a newer firmware
version, it is still available to the attacker in our threat model,
who can simply load the old vulnerable TA.

Figure 9(e)-(h) shows the updates and vulnerabilities for
the TAs for four Kinibi devices in our dataset. Note that there
are a few version counter increases but no public vulnerability
corresponding to the TA. In contrast, the version counter for
vulnerable TAs is only increased in one instance.

Figure 9(i)-(m) shows the updates and vulnerabilities for
the TAs for five TEEGRIS devices in our dataset. For all
phones older than the S21, there are at least two vulnerable
TAs that can be loaded and there are five occurrences of a roll-
back counter increase preventing the loading of a vulnerable
TA. On the newer S21 device, Samsung periodically increased
the rollback counter.

Figure 9(n)-(p) shows the updates and vulnerabilities for
the TAs for three QSEE devices in our dataset. Note the
difference of rollback counter increases between older devices
and the more recent S21. The S21 also shows an example of
deprecated TAs that still pose a threat to the device. The two
QSEE example TAs, smplap64/smplap32 were shipped in the
first firmware version and then removed from later firmware.
However, the attack surface exposed by these TAs remains
accessible to attackers who can load the TAs shipped in the
first firmware version on a device with the newest firmware.

An overview of the results of this analysis can be seen
in Table 1. In summary, we observe that rollback counters
are rarely used. There are only 190 instances of a TA with a
rollback counter increase out of the 35,541 TAs in our dataset.
In total, we found 2,582 vulnerable TAs and only 22 TAs
whose rollback counter increase prevents loading one of these
vulnerable TAs. Leaving us with 265 rollbackable TAs on the
latest fully-updated devices. As a consequence, we can load
vulnerable TAs into all fully-updated TEE implementations
and into 29 out of the 51 devices in our dataset.

We also observe that, in cases where the rollback counter
was used to prevent rollback attacks, on average the update
with the rollback counter increase is released 99 days after
the publication of the vulnerability. Interestingly, for older
Samsung devices using Kinibi, the average number of days is
0. This means that for these devices, on average the update
with the counter increase was before the advisory publication.
In these cases, there is no rollback exposure as the rollback
counter increase precedes the advisory publication. It appears
that Samsung moved away from these best practices on newer
devices using TEEGRIS, resulting in an average rollback ex-
posure time of 245 days. However, the newest generation of
devices (Samsung S21 and Samsung S22) follows a system-
atic approach and increases rollback counters frequently.

7.4 RQ3: Consequences of Uncoordinated TA
Rollback Increases

The uncoordinated usage of TA rollback counters can lead to
the leakage of security-critical information which can affect
several entities in the ecosystem. As we can see in Figure 9(j)
the WVDRM TA on the Samsung A10 received a rollback
counter increase after a critical vulnerability was fixed. Ana-
lyzing the other smartphone models by the same vendor dur-
ing the time of the counter increase reveals that no other model
received this update. The rollback counter for the WVDRM
TA on the Samsung S10, A40, and S20 was never increased.
The WVDRM TAs deployed on these models share the same
codebase as the TA on the A10 with the counter increase.
Thus, these models remain vulnerable to a rollback attack.
We carry out a rollback attack against the S10 in Section 7.5.

Consequently, we can clearly see that cross-product leak-
age affects products of the same OEM, as hypothesized in
HYP2 Section 5.2, is a real threat within the ecosystem.

Our dataset does not contain clear cases for cross-OEM
and cross-ODM leakage as described in HYP3 and HYP4
in Section 5.2. To estimate the potential impact of HYP3
and HYP4 we estimate a lower bound on the number of TAs
shared between OEMs. These shared TAs are either shipped
by the ODM or third-party TEE provider. For this measure-
ment we match the TA filename, and the strings in the TA. We
then manually confirm matches by decompiling the TA and
comparing the decompilation. Table 3 shows the number of
TAs shared by different vendors. MediaTek maintains 14 TAs
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Figure 9: The TA vulnerability lifecycle for TAs found on 16 devices covering the four most widely-used TEE implementations.
A circle ◦ represents an update to the TA. A × represents a vulnerability. A square � represents a published advisory. A triangle
4 represents an update with a rollback counter increase. Orange circles ◦ are updates to a vulnerable TA that do not increase the
rollback counter. If the last update to a TA is marked with an orange circle, then a vulnerable version of that TA may be loaded
on the latest firmware of that phone.

shared between Oppo, Vivo and Xiaomi. These TAs are de-
ployed on both Kinibi and BeanPod TEEs. BeanPod does not
support anti-rollback while Kinibi does. Thus, cross-ODM
leakage from Kinibi to BeanPod would expose BeanPod de-
vices to rollback attacks.

We anticipate that the demand for security as a feature will
drive vendors to enforce rollback prevention. This upcoming
episode will likely be uncoordinated amongst different entities
in the ecosystem and result in the leakage of security-critical
information that puts the TEEs of the ecosystem at risk.

7.5 RQ4: Rollback Exploitation under Real-
World Conditions

After assessing issues with rollback counters quantitatively,
we now assess them qualitatively by testing if outdated TAs
can be loaded under real-world conditions, answering RQ4.
We attempt to load, crash, and exploit TAs identified as vul-
nerable and rollbackable on our fully patched test devices.
To simulate a compromised normal-world EL1, we manually
root our devices using Magisk [51] with the newest available
firmware version. To load old TAs we remount the vendor



Origin Vendors # shared TAs

MediaTek Oppo, Vivo, Xiaomi 14
MediaTek Transsion,Xiaomi 4
Kinibi Oppo, Samsung, Vivo 1
Kinibi Oppo, Samsung 1
QSEE Oppo, Samsung, Vivo, Xiaomi 2
QSEE Samsung, Vivo, Xiaomi 5
QSEE Oppo, Vivo, Xiaomi 4
QSEE Oppo,Vivo 5
QSEE Vivo, Xiaomi 1
QSEE Samsung, Xiaomi 3

Table 3: The shared TAs across different OEMs and third-
party TEE implementations. Origin denotes the entity that
provides the TA.

partition as writable and copy the old TAs to the folders where
the TAs are stored. We then use a small program that interacts
with the kernel driver to load the TA and invoke commands.

We use our Samsung S10 test device (FW version:
G973FXXSGHWA1 from January 2023) and attempt to load
the seven vulnerable TAs identified in Figure 9(i). We verify
that the rollback counter increase does indeed prevent loading
vulnerable TAs by attempting to load a vulnerable version
of the SPKM TA. Table 4 shows the results. We successfully
load all the vulnerable TAs and trigger a crash for six of the
seven loaded TAs. To successfully rollback the FINGE TA,
we need to first enable biometric authentication. Otherwise,
the TEE refuses to load the TA, both the vulnerable and the
current version. The SPKM TA cannot be loaded anymore
due to the rollback counter increase.

We use our Xiaomi Redmi 9A test device (FW version:
MIUI 12.5.7_RCDEUXM from November 2022) and attempt
to load all vulnerable TAs identified in Figure 9(a)-(d). Note
that this experiment is possible due to cross-device loading
in devices using the Beanpod TEE. Table 4 shows the results.
Overall, we successfully load all vulnerable TAs and trigger
crashes in seven out of nine loadable TAs.

We use our Xiaomi Redmi Note 11 test device (FW ver-
sion: 13.0.14 from February 2023). Since there are no public
vulnerabilities for this vendor/TEE platform we attempt to
load TAs from the earliest firmware version. We are able to
load all the old TAs, see Table 4.

We use our Samsung S9 test device (FW version:
G960FXXUHFVB4 from March 2022) and attempt to load
the five vulnerable TAs identified in Figure 9(h). Table 4
shows the results. We successfully load all vulnerable TAs
and trigger crashes for two out of five TAs.

Exploitation Case Studies. To further demonstrate the fea-
sibility and impact of the rollback attack, we demonstrate two
instances where we rollback to a vulnerable TA version on
a fully patched device and then use the vulnerability to gain
control of the TA’s program counter.

We use our TEEGRIS Samsung S10 test device on the

1 TA_InvokeCommandEntryPoint(void* sessionContext,
2 uint32_t commandID, uint32_t paramTypes,
3 TEE_Param params[4]) {
4 ...
5 if(commandID == 1) {
6 pInput = params[0];
7 nInputSize = params[1];
8 pOutput = params[2];
9 r = TEE_CheckMemoryAccessRights(5,pInput,nInputSize);

10 if(r==0) {
11 DRMKEY_QUERY(pINput, &count, pOutput);
12 }
13 }
14 ...
15 }
16 DRMKEY_QUERY(void* keyblock, int* count,
17 void* pOutput) {
18 int keycount = *(int*)(keyblock + 0x44);
19 void* src = (void*)(keyblock + 0x48);
20 int buffer[0x16];
21 if(keycount < 0x201){
22 pOutput[0] = keycount;
23 int ct = 0;
24 while(ct != keycount){
25 memcpy(buffer, src, 0x58);
26 int encDrmKeySize = buffer[3];
27 int keyblockLeng = encDrmKeySize + 0x60;
28 keyid = buffer[0];
29 // vuln: arbitrary write
30 *(void*)(pOutput + 4*ct) = keyid;
31 src = src + keyblockLeng;
32 ct++;
33 }
34 }
35 ...
36 }

Listing 1: Code in the ta_keyinstall TA relevant for the
DRMKEY_QUERY function. The paramTypes parameter is never
checked, thus the TA has no way of knowing whether the
values in params are integers or pointers to shared memory.
By supplying integers that are treated as pointers by the TA
we obtain an ASLR oracle and arbitrary write.

newest firmware version and exploit the vulnerable HDCP
TA [35]. Since we can successfully install the vulnerable
TA, we can rollback to the same TA version as used in the
blog post and follow the detailed exploitation steps, gaining
control over the program counter. Since exploitation is trivial
and well-documented we omit the details of the exploit here.

For a second case study, we use our Xiaomi Redmi 9A test
device on the newest firmware version, which uses the Bean-
pod TEE, to rollback, load and exploit the ta_keyinstall
TA. Note that this TA is not shipped with the firmware of our
test device but we found that we could nevertheless load the
TA from another device’s firmware. The ta_keyinstall is
vulnerable to a type-confusion bug (CVE-2023-32835). We
exploit this bug to obtain an ASLR oracle and an arbitrary
write primitive. With these primitives, we get control over the
program counter.

Figure 1 shows the relevant code inside the
ta_keyinstall TA. When the TA is invoked with
commandID 1, the TA calls the DRMKEY_QUERY function.
This function reads data from the input buffer and writes
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Samsung S9 Samsung S10 Redmi 9A Redmi Note 11

loaded 3 3 3 3 3 3 3 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

crash
triggered 7 7 7 3 3 3 7 3 3 3 3 3 7 3 3 3 3 3 3 3 7 7 N/A N/A N/A N/A N/A N/A N/A

Table 4: The results of attempting to load vulnerable TAs on our fully-patched devices.

part of it to the output buffer. Due to the missing parameter
type check, the TA cannot ensure that the input or output
buffers point to valid shared memory. We can use the
TEE_CheckMemoryAccesRights call as an ASLR oracle.
The function checks if pInput (the first of our parameters)
points to valid memory. By setting the first parameter to
an arbitrary pointer we can figure out if that pointer points
to valid memory or not. For the arbitrary write, we simply
supply the pointer where we want to write to as the third
parameter (pOutput). The DRMKEY_QUERY function will
then write data from the input buffer under our control to
the output buffer. To get control over the program counter
we first use the ASLR oracle to find the location of the
stack. Then we use the arbitrary write to overwrite the return
address of the TA_InvokeCommand by pointing pOutput to
the corresponding stack address.

8 Takeaways

We now discuss the main takeaways, highlighting the primary
results and their implications for the security community.

The State of TA Rollback Prevention. We examine the
evolution of TAs along their lifetimes on several Android
smartphones. Our study covers a representative set of TEE
implementations deployed on the most popular smartphones,
namely QSEE, Kinibi, TEEGris, and BeanPod.

We observe a division of the market. Either vendors have
rollback attacks in scope (e.g., Samsung), or they remain obliv-
ious to the problem (e.g., Xiaomi, Oppo, Vivo, and Transsion).

Samsung has a long history of advertising security features
to the consumer market and especially the enterprise mar-
ket. Thus, most of their recent models address the problem
of rollback attacks. Although even on the newest Samsung
devices, we still identified deficiencies (i.e., TAs that are not
yet equipped with a version counter), Samsung effectively
protects most TAs against rollback attacks.

However, Samsung’s development until reaching effective
TA rollback prevention presents a controversial picture. It is

noteworthy that several of their still-supported smartphone
models remain vulnerable to TA rollback attacks. Contrary,
their newest generation of phones receives continuous roll-
back counter updates. The episode of uncoordinated, ad-hoc
usage of TA rollback counters as depicted by many past Sam-
sung TAs, provides the opportunity to gain several major
insights for effective anti-rollback. First, and most obvious,
the fix of a vulnerable TA, the increase of the corresponding
rollback counter, and the rollout of these changes should pre-
cede the public disclosure of the vulnerability. Depending
on the interdependencies of the organizational units involved,
even this obvious observation needs to be explicitly taken into
account. Second, when rollback counters are used to prevent
rollback to severely vulnerable TAs, this effort should con-
sider all affected products. Otherwise, the information about
severe vulnerabilities is leaked for all products that did not
receive a rollback counter increase. In our study, we demon-
strated the cross-product dimension of this problem, and we
anticipate seeing cross-OEM and cross-ODM instances of
this problem occur frequently in the future because many
code bases for TAs are shared amongst OEMs.

For the remaining vendors, we observe that rollback coun-
ters never change, and especially that they do not change
when publicly known vulnerabilities are fixed in TAs. Note
that while our ground-truth dataset of vulnerable TAs is likely
incomplete, as no public repositories exist, we nevertheless
identify several cases of ineffective rollback prevention across
all TEE implementations. We conclude that, with the exemp-
tion of the latest Samsung models, TA rollback prevention is
ineffective at an industry-wide scale.

TA Vulnerability Practices. Aside from our focus on TA
rollback prevention, we encountered several supply chain
flaws (Section 5). Vendors manage to successfully patch TAs
internally but fail to roll out the patches to their full fleet of
products. For instance, across all Xiaomi devices, we found
patched versions of the soter, fido, and alipay TAs, but several
individual devices remain vulnerable. The latest version of the
firmware is vulnerable for, e.g., the Xiaomi Note 11S, Redmi



Note 9T, and Redmi 10A. A similar inconsistency applies
to the Samsung S10 and A10 in our dataset. The widevine
TA was found vulnerable on both devices in 2020. While the
vulnerability was fixed on both devices in the latest firmware
for these devices, the A10 widevine TA received a rollback
counter update and the S10 version did not. This leaves the
S10 vulnerable to a rollback attack.

A further unfortunate vendor practice is to patch security-
critical bugs silently. We observed this practice for the soter,
fido, and alipay TAs on Xiaomi devices employing Beanpod.

A further hiccup that might be overlooked by vendors is
discontinued TAs that turn out to be vulnerable but remain
loadable. For the Xiaomi Note 11S, we observed that a vul-
nerable version of the ta_decoder TA was deployed in 2021.
This TA was discontinued mid-2022 and is not present in the
latest firmware images for this device. However, the vulnera-
ble version deployed in 2021 remains loadable and potentially
exploitable on the latest firmware.

Transparency Regarding TA Rollback Prevention. A
major challenge of our study was to establish a ground-truth
dataset of vulnerable TAs, to extract their corresponding roll-
back counters, and to track these version counters over time.
Monitoring this information reveals the lifetime of exposure
to a potential exploit leveraging a rollback attack, and it sheds
light on rollback prevention being effective at all, in case the
counters are never updated. A widely adopted transparency
covering this information would help consumers and vendors.

As a means of public communication and to keep track
of security patches, Google established the Android se-
curity bulletins [20]. These bulletins summarize security-
related patches on a monthly basis and provide details
on each patched vulnerability, including CVE ID, type
of vulnerability, severity, and affected components. An-
droid users can check their current security patch level on
their devices in the “Settings” app searching for “Security
Patch Level”. This patch level shows the system property
ro.build.version.security_patch which corresponds
to the security patch level dates published in the security
bulletins (typically in YYYY-MM-DD format).

A common practice for vendors is to reference these se-
curity patch levels by Google and publish their own security
patch levels containing vendor-specific patches. These vendor
patch levels usually subsume the patch levels by Google.

To establish more transparency regarding the TA rollback
prevention problem, we suggest two approaches. The first
approach requires the cooperation of the vendor who just has
to report the increase of the TA rollback counter (or other
rollback countermeasures) as part of the publicly disclosed
advisory. Typically, these advisories contain a “patch descrip-
tion” that can be used to communicate the handling of TA
rollback. This practice would transparently communicate the
consideration of TA rollback attacks.

The second approach does not require the vendor’s coop-
eration and relies on community effort. For our empirical
study, we created the infrastructure to continuously mon-
itor new firmware releases for five vendors and automati-
cally track TA version counters. Using this growing database,
we can determine if a rollback counter was increased when-
ever a TA-related vulnerability is disclosed. As an artifact
of this paper, we release the dataset used for this study
at http://hexhive.epfl.ch/spill_the_tea.

Both of these solution sketches increase the transparency
regarding TA rollback attacks and communicate the problem
clearly to consumers and vendors.

9 Threats to Validity

Dataset Representativeness. The primary threat to the va-
lidity of our study is the representativeness of our dataset.
Our dataset is representative as it covers a broad selection
of the total market and focuses on recent Android-based mo-
bile devices. The vendors and phones in our dataset cover
over 65% of the Android market share for the last four years.
We extended this dataset with phone models by vendors that
received security audits with publicly available results. The
resulting dataset ensures sufficient vulnerability data to make
our study conclusive—which is the case given the large num-
ber of 37 vulnerable TAs in our dataset. Besides the represen-
tative market share and timeliness of our device selection, we
also considered the diversity of hardware platforms used by
all vendors in our dataset. Since the hardware platform often
determines the TEE, we made sure to include a representative
set of hardware platforms for each vendor.

Missing Firmware Images. In Section 7.3, we analyze
firmware versions over time to demonstrate how vendors use
rollback counters. However, we cannot guarantee that we have
all firmware versions, i.e., we may miss some intermediary
versions. These missing images are not a threat to the conclu-
siveness of our study, since in a realistic scenario, an attacker
can always retrieve these intermediary images to obtain a spe-
cific version of a TA. For our study, it is sufficient to observe
the usage of TA rollback counters over a longer period of
time and associate images with the release of public vulner-
ability disclosures to derive our conclusions concerning the
effectiveness of TA rollback prevention.

Other Rollback Prevention Mechanisms. In our study,
we focus on the rollback counter as the primary defense
against an attacker trying to load an outdated TA version.
However, there may be other mechanisms to prevent TAs
from being loaded. One straightforward mechanism is to re-
sign a TA and not use the public key of the old signature in
the TA loader anymore. We observed TA resigning for eight
TAs out of 35,541 TAs in total, which suggests that resigning
is not used as an anti-rollback mechanism. Moreover, we try
to mitigate this threat to validity by running the experiments
described in Section 7.5. However, due to a lack of physical

http://hexhive.epfl.ch/spill_the_tea


devices, we could not run this experiment for all devices in
our dataset and acknowledge this practical limitation.

TA Vulnerability. We use public advisories to identify TA
vulnerabilities. These advisories often specify the vulnerable
TA and the affected firmware versions. Additional data points
to pinpoint a vulnerable TA are the reporting and the advisory
release dates. We assume that firmware images released past
the release date contain patched TAs and firmware images
released before the reporting date contain unpatched TAs. In
Section 7.5 we investigate a range of vulnerable TAs selected
using this method to demonstrate real-world rollback attacks.

10 Related Work

The issue of TA rollback prevention on TZ-based TEEs was
discussed before. Beniamini studied rollback prevention in
QSEE and Kinibi and demonstrated that in 2017 rollback
counters were not used [4]. Also in 2017, Chen et al. pre-
sented a rollback attack and its consequences on a Nexus 6
device [11]. Unlike these works, we assess the current status
of TA rollback prevention six years later and focus on a large-
scale cross-vendor study encompassing several recent and
popular devices to assess the effectiveness of current industry-
wide practices. Beyond the study of TA rollback prevention
effectiveness, we discover the leakage effects resulting from
ad-hoc and uncoordinated rollback counter increases aimed
at preventing rollback to severely vulnerable TAs on individ-
ual devices. To the best of our knowledge, we are the first
to explore the negative leakage effects concerning different
entities in the ecosystem (i.e., cross-product, cross-OEM, and
cross-ODM vulnerability leakage).

Beyond TA rollback prevention, several researchers have
studied and exploited vulnerabilities in TZ-based TEEs, in-
cluding Beanpod [32], QSEE [24, 31, 40], TEEGRIS [35,
42, 45], Kinibi [1, 5, 23], and TrustedCore [8]. Moreover, re-
searchers investigated software design flaws [30] and side-
channel attacks [6, 26, 50, 54]. Most of these works were
summarized and systematized by Cerdeira et al. [10].

The growing number of reported memory corruptions led
to the work on automated vulnerability discovery in TEEs.
While TEEzz [7] follows an on-device black-box fuzzing ap-
proach, PartEmu uses an emulation-based approach to enable
coverage-guided fuzzing of TAs [22]. Instead of automatically
finding memory corruptions, Wan et al. attempt to establish
Rust as a memory-safe alternative for TA development [53].

Android’s popularity has attracted many security re-
searchers who have conducted studies on various aspects
of Android’s security architecture. Farhang et al. [17] study
Android security bulletins across various vendors. Several
studies investigate how updates are applied to either apps or
libraries [3, 14, 34]. Further, multiple studies have focused
on various Android security vulnerabilities [16, 28]. Finally,
Egele et al. [15] studied how developers misuse cryptographic
APIs in Android apps.

11 Conclusions

In our large-scale cross-vendor study, we evaluated the perva-
siveness and effectiveness of rollback prevention on Android
devices for TAs running in the TEE. We augmented the study
with publicly known TA vulnerabilities to form a ground-truth
dataset containing vulnerable TAs. These datasets allowed
us to track the handling of patches and rollback prevention
over time. We uncovered a severe ineffectiveness of TA roll-
back prevention across all TEE implementations covered in
our study. Furthermore, our study shows that TA rollback
counters are never updated in the majority of cases across the
industry, with the exception of the latest Samsung devices.
Our case studies show that ineffective TA rollback prevention
can be leveraged to gain code execution inside the TEEs of
two popular up-to-date mobile devices. Our findings call for
an immediate improvement of update strategies to protect the
mobile ecosystem against n-day attacks against patched but
rollbackable versions of TAs. Our dataset is publicly available
at http://hexhive.epfl.ch/spill_the_tea.
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A Appendix

Size Description

- ELF

0x19 magic bytes

- signatures

Table 5: Beanpod TA format (no version counter).

Vendor Firmware Download Sources

Xiaomi https://xiaomifirmwareupdater.com/

Samsung
https://samfw.com/
https://www.sammobile.com/firmwares/

Oppo
https://oppostockrom.com/
https://www.gsmmafia.com/oppo-flash-file/
https://mobifirmware.com/category/oppo-firmware/

Vivo
https://vivofirmware.com/
https://www.gsmmafia.com/vivo-flash-file/
https://mobifirmware.com/category/vivo-firmware/

Table 6: The websites from which we download the firmware
for our study.

Size Description

- ELF header

0x30 metametadata

0x74
secboot

metadata

0x4 anti_rollback

-
certificates and

signature

Table 7: QSEE TA format. The TAs are split into multiple files.
The metadata is stored in a .mdt file, whose structure is shown
above. The rollback counter is stored in the anti_rollback
field.
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Size Description

0x4 magic

0x4 version

0x40
various

ELF and MCLF fields

0x4 ServiceVersion

- ELF

-
certificates and

signature

(a) Kinibi TA format.

Size Description

0x4 SEC version

0x4 ELF size (s)

s ELF

-
certificates and

signature

(b) TEEGris SEC2 TA format.

Size Description

0x4 SEC version

0x4 ELF size (s)

s ELF

0x4 rollback length

0x4 version

-
certificates and

signature

(c) TEEGris SEC3 TA format.

Identifier Origin TA Type Disclosure Date Patch Date
SVE-2017-{8889, 8891, 8892} Samsung ESECOMM stack overflow 4.2017 8.2017

SVE-2017-8890 Samsung ESECOMM OOB read 4.2017 8.2017

SVE-2017-8893 Samsung ESECOMM arbitrary write 4.2017 8.2017

SVE-2018-12852 Samsung ESECOMM stack overflow 8.2018 10.2018

SVE-2018-12855 Samsung vaultkeeper double fetch 8.2018 11.2018

SVE-2018-12853 Samsung fingerprint invalid free 8.2018 10.2018

SVE-2017-{9008, 9009} Samsung CCM integer overflow 4.2017 8.2017

SVE-2017-10638 Samsung CCM session hijack 9.2017 1.2018

SVE-2019-16665 Samsung SEM stack overflow 7.2019 6.2020

SVE-2019-13958 Samsung gatekeeper information disclosure 2.2019 5.2019

SVE-2019-14126 Samsung keymaster heap overflow 3.2019 5.2019

SVE-2021-21948 Samsung keymaster IV reuse 5.2021 8.2021

SVE-2019-14847 Samsung EXT_FR parameter confusion 6.2019 8.2019

SVE-2019-14850 Samsung HDCP parameter confusion 6.2019 8.2019

SVE-2019-14665 Samsung HDCP stack overflow 5.2019 8.2019

SVE-2019-14851 Samsung SEC_FR parameter confusion 6.2019 8.2019

SVE-2019-14864 Samsung FINGERPRINT parameter confusion 6.2019 8.2019

SVE-2019-14867 Samsung MLDAP parameter confusion 6.2019 8.2019

SVE-2019-14885 Samsung WVDRM parameter confusion 6.2019 8.2019

SVE-2019-14892 Samsung SPKM parameter confusion 6.2019 8.2019

SVE-2019-14891 Samsung SEM parameter confusion 6.2019 8.2019

SVE-2019-15873 Samsung WVDRM arbitrary write/read 11.2019 2.2020

SVE-2020-16908 Samsung GATEKE credential bruteforce 2.2020 5.2020

SVE-2021-22658 Samsung KEYMST/skeymast crypto downgrade 7.2021 10.2021

CVE-2020-13832 TEEGRIS WVDRM multiple 3.2020 6.2020

SVE-2019-13952 Samsung sec_store integer underflow 2.2019 5.2019

SVE-2019-13949 Samsung Authnr null dereference 4.2019 5.2019

SVE-2019-13950 Samsung ESECOMM null dereference 2.2019 5.2019

CVE-2020-14125 Xiaomi soter heap overflow 12.2021 2.2022

None Xiaomi soter parameter confusion - 12.2020

None Xiaomi fido parameter confusion - 4.2021

None Xiaomi alipay parameter confusion - 4.2021

CVE-2023-32834 Xiaomi, Vivo, Oppo ta_secmem parameter confusion 5.2023 10.2023

CVE-2023-32835 Xiaomi, Vivo, Oppo ta_keyinstall parameter confusion 5.2023 10.2023,

MSV-828 Xiaomi, Vivo, Oppo ta_decoder parameter confusion - 5.2023

CVE-2023-32848 Xiaomi, Vivo, Oppo ta_decoder2 parameter confusion 5.2023 10.2023

CVE-2023-32849 Xiaomi, Vivo, Oppo ta_cmdq parameter confusion 5.2023 10.2023

CVE-2023-20722 Xiaomi, Vivo, Oppo ta_m4u parameter confusion - 5.2023

Table 9: An overview of the public vulnerabilities we use in our study.
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