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Abstract

Mutation-based fuzzing effectively discovers defects in JS engines.
High-quality mutations are key for the performance of mutation-
based fuzzers. The choice of the underlying representation (e.g., a
sequence of tokens, an abstract syntax tree, or an intermediate rep-
resentation) defines the possible mutation space and subsequently
influences the design of mutation operators. Current program repre-
sentations in JS engine fuzzers center around abstract syntax trees
and customized bytecode-level intermediate languages. However,
existing efforts struggle to generate semantically valid and mean-
ingful mutations, limiting the discovery of defects in JS engines.

Our proposed graph-based intermediate representation, FlowlR,
directly represents the JS control flow and data flow as the muta-
tion target. FlowlIR is essential for the implementation of powerful
semantic mutation. It supports mutation operators at the data flow
and control flow level, thereby expanding the granularity of mu-
tation operators. Experimental results show that our method is
more effective in discovering new bugs. Our prototype, FuzzFlow,
outperforms state-of-the-art fuzzers in generating valid test cases
and exploring code coverage. In our evaluation, we detected 37 new
defects in thoroughly tested mainstream JS engines.
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1 Introduction

JavaScript (JS) is the most popular programming language and
drives the modern Web [54]. An astonishing 98.8% of websites
execute JS on the client side [45]. As of 2022, JS has more code
repositories than any other language on GitHub [15]. The JS engine
serves as a language processor to compile and execute JS code. It is
integrated into Web browsers to facilitate dynamic features of web-
sites. In recent years, a notable series of high-risk vulnerabilities
[40] have emerged in widely used JS engines, posing substantial
security risks for billions of users. Adversaries can chain successful
attacks with an escape from the browser sandbox, gaining unau-
thorized privileges by crafting malicious Web pages and enticing
victims to access them [41]. It is imperative to proactively identify
potential defects in JS engines to protect users against attacks.

Fuzzing is an effective automated bug discovery approach for JS
engines [21, 24, 35, 44, 46]. Mutation-based fuzzers [53, 56] create
new test cases by mutating existing seeds. They are effective in
exploring the input space surrounding existing inputs, thereby
potentially uncovering unexpected edge cases or vulnerabilities
[1, 20, 37, 47, 48].

Efficient mutation operators are key to the performance of mu-
tational fuzzers [19]. Designing effective mutation operators for
JS engines raises several challenges: C1-Validity. Mutations must
produce test cases with correct syntax and semantics to prevent
the engine from rejecting the test case during the early stages
of the engine’s processing (e.g., parsing, semantic analysis). C2-
Semantically meaningful mutation. The attack surface of JS
engines predominantly resides in the engine’s backend [42], which
process the semantics of JS programs. Syntactic information is
largely discarded during the parsing stage. Effective testing of
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backend components necessitates semantically meaningful muta-
tions, going beyond mere syntactic changes. Achieving this requires
thoughtfully altering the control flow or data flow of the program.
C3-Mutation granularity. High-quality input corpora such as
known proof of concept (PoC) inputs or regression test cases are
deliberately designed to deal with vulnerable components like JIT
compilers, which have specific control-flow conditions crucial for
JIT compilation [37]. Effectively identifying vulnerabilities in JIT
compilers necessitates refining the granularity of mutation. This en-
tails preserving the control-flow structure within the seed to retain
the trigger conditions, coupled with effective semantic mutations
at the data-flow level.

The fuzzer’s input representation format dictates possible mu-
tation operators. The representation defines the rules and mecha-
nisms by which mutations are applied to existing seeds. Fuzzers for
JS engines fall into three categories based on the representation of
the JS program:

o Initially, fuzzers have mutated source code based on byte
or token sequences [31, 55]. As this mutation is unaware
of the syntax, the resulting test cases are prone to syntax
errors, thereby diminishing their validity. The majority of
generated inputs fail at the early parsing stage, and cannot
proceed to more complex aspects of the implementations.

o Current methods mutate the Abstract Syntax Tree (AST). In
contrast to token sequences, mutating the AST facilitates
the generation of syntactically correct test cases [37, 47].

o Alternatively, mutation may happen at an intermediate lan-
guage [20]. Fuzzilli devises a bytecode-level Intermediate
Representation (IR) of the JS as the mutation target, aiming
to produce high-quality inputs.

However, both AST and bytecode IR, commonly used for mu-
tation, have limitations in exploring vulnerabilities in JS engine
backends. AST mutations lack semantic constraints, often yielding
test cases with semantic errors that cannot reach the backend (C1).
Additionally, mutations on the AST generate many test cases with
altered syntax but unchanged semantics, failing to adequately test
complex interactions of the backend implementations (C2). Byte-
code IR lacks explicit control and data flow, making semantically
meaningful mutation implementation difficult (C2). For instance,
identifying unused data flow in bytecode IR is challenging, leading
to wasteful computing resource consumption due to a substantial
number of mutations on invalid data flows. Designing fine-grained
mutation operators for comprehensive data-flow-level mutation
proves highly challenging, regardless of whether based on AST or
bytecode IR (C3). Overall, the inherent characteristics of these repre-
sentations constrain mutation operator design in fuzzing, rendering
neither AST nor bytecode ideal choices for mutation.

We address the aforementioned gap by designing a new repre-
sentation to support effective mutation operators. The mutation
of a program requires code transformation, and one common sce-
nario within this transformation is optimization [27]. Similarly, the
mutation operator is closely related to the IR where the mutation is
carried out. We introduce a graph IR named FlowIR. Our proposed
IR directly represents the JS program’s control flow and data flow
for mutation. Specifically, we explicitly model the control flow and
data flow of JS programs with FlowlIR, capturing the semantics
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of the program through the interconnected relationships between
nodes. FlowIR supports bidirectional conversion to and from ]JS.
During fuzzing, we maintain the seed queue in the FlowIR format.
Based on FlowlIR, we design a series of mutation operators. Mu-
tations are performed on FlowlR, and subsequently, the mutated
representation is converted back to source code as input for the
tested engines.

To address C1, FlowIR emphasizes representing semantics rather
than syntactic structures. This strategy facilitates the enforcement
of semantic constraints during mutation. To address C2, FlowIR
represents the control flow and data flow of the program directly.
Mutations operate directly on the semantics of the seed, simplifying
the implementation of meaningful semantic mutations. For instance,
explicit modeling of the data flow allows for the easy identification
of unused data flows in the seed, enabling the avoidance of mutation
on invalid semantics. To address C3, this paper establishes a low
coupling between control flow and data flow in FlowIR. This feature
enables the fuzzer to concentrate on mutations within either the
control-flow or data-flow subgraph independently, mitigating the
need to simultaneously address their mutual influence and thereby
minimizing the likelihood of introducing semantic errors. This
enhances the operational granularity of mutations.

To validate the efficacy of our approach, we implement FuzzFlow
as a prototype fuzzer that utilizes FlowIR. The experimental results
demonstrate that FuzzFlow enhances the syntax correctness and
semantic validity of generated test cases significantly. Low coupling
between data flow and control flow enhances testing effectiveness
for backend engine components. The validity of test cases gener-
ated by FuzzFlow reaches 72% (18.6% higher than the baselines),
showcasing a remarkable improvement in code coverage by 4.78%.
Moreover, mutations based on the FlowIR achieve high throughput,
leading to efficient fuzzing. After applying our technique to six
mainstream JS engines (V8 in Chrome, SpiderMonkey in FireFox,
JavaScriptCore in Safari, ChakraCore, JerryScript, Quick]S), Fuz-
zFlow has identified a total of 37 new defects. Our prototype will
be available at https://github.com/walkcreate/FuzzFlow. We make
the following contributions:

o This paper proposes FlowlR, a graph-based program rep-
resentation used for mutation that directly represents the
control and data flow of JS.

e Based on FlowlR, this paper proposes mutation operators
with the following advantages: (1) facilitate the generation of
semantically valid test cases, (2) enable semantically mean-
ingful mutation, (3) enhance mutation at finer granularity.

e The experimental results demonstrate that FlowIR serves
as a highly effective mutation target for fuzzing JS engines.
Based on FlowIR, we implemented a new fuzzer named Flow-
Fuzz, which has successfully identified 37 new defects in the
mainstream JS engines.

2 Background
2.1 Challenges when Fuzzing JS Engines

Mainstream JS engines are composed of a parser, bytecode compiler,
interpreter, JIT compiler, and supporting components. To enhance
the execution efficiency, mainstream JS engines adopt a mixed
compilation architecture. Specifically, they use a bytecode compiler
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Figure 1: Mutations for JS can be applied at different levels

[18] as a baseline, complemented by one or even multiple levels
of JIT compilers [16] to deeply optimize hot code, and compile it
into machine instructions for execution. The introduction of a JIT
compiler has significantly improved the execution efficiency of JS
engines [25]. However, its complexity has also unveiled new attack
surfaces, making JIT compilers a focal point for researchers [3, 40].

The attack surface of the JS engine predominantly resides in
its backend components, notably represented by the JIT compiler
[42] and garbage collector [39]. While the frontend handles lexical
analysis and syntax analysis, the backend handles garbage collec-
tion, code optimization, and deoptimization. Backend functions
involve complex logic with frequent updates. Uncovering defects in
backend components imposes elevated demands on the mutation
operators employed by fuzzers.

2.2 Existing Mutation Targets and Operators

The JS engine exclusively receives input in the form of source code.
Regardless of the chosen IR for mutation, such as AST or byte-
code, a conversion process is required between the JS program
and the selected IR. Although this conversion introduces compu-
tational overhead, opting for an IR instead of the token sequence
significantly enhances the quality of generated test cases [47]. This
improvement contributes to the overall effectiveness of fuzzing,
explaining its widespread adoption among researchers.

The parsing process produces the AST. Given the existence of
open-source parsers for most programming languages [2], AST
stands out as the most readily accessible IR. In comparison to token
sequences, AST-based mutations prove advantageous in preserv-
ing the syntactic validity of the code. Therefore, it serves as the
predominant mutation target for the fuzzing of language proces-
sors [1, 23, 47]. However, mutations based on the AST often cause
semantic errors (with the result that test cases are rejected early)
[37]. Moreover, as it corresponds directly to the syntax structure,
mutating at the AST-abstraction yields alterations in syntax but no
change in semantics. Such mutations fail to reach the vulnerable
backend of JS engines.

To enhance the capability of mutation operators in generating se-
mantic mutations, Fuzzilli [20] conducts mutations on the bytecode
IR developed in their work. They introduce FuzzIL, an IR comprised
of instruction sequences. The supported mutation operators en-
compass the insertion and modification of instructions, as well as
the mutation of instruction input. Unlike AST, bytecode-level IR is
generated after specific semantic analysis, providing a more direct
expression of semantics. However, FuzzIL does not explicitly cor-
respond to the control flow and data flow, potentially resulting in
meaningless semantic mutation.
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var vo = 0;
2 var vl = "hello";
3 VO = 3;
var v2 = vl + " world";
print(foo(ve, v2));
W/ ====== MUEAELERH ======
7 var v@ = 100; // mutation on unused data flow
var vl = "hello";
) VO = 3;
var v2 = vl + " world";
var v3 = foo(v@, v2); // mutation on syntax only
> print(v3);

1

» vl <- LoadString

11

13

Listing 1: An example of mutation on AST

v0 <- LoadInt @
"test"

v23 <- LoadInt @

5 v24 <- LoadBuiltin "foo"
CallMethod v24, vo
(] =====s MUEAELERH ======
3 v@ <- LoadInt 0
vl <- LoadString "test"
v23 <- LoadInt @
12 v24 <- LoadBuiltin "foo"

CallMethod v24, v23 // mutation with the same data flow

Listing 2: An example of mutation on Bytecode-level IR

Listing 1 highlights the mutation with changes in syntax but no
change in semantics. At the first mutation position, the initial as-
signment to variable v@ in the seed is an unused data flow, because
the value of the variable is reassigned to 3 before v@ is subsequently
read. Therefore, there is no benefit in mutating the value 0 in line
1. Detecting such unused data flows based on the existing muta-
tion targets requires challenging data flow analysis. In the second
mutation position, the syntax tree of the test case has changed, yet
the semantics of the program remain unchanged. Unfortunately,
these mutations are inevitable with existing fuzzers. This type of
mutation is incapable of testing the backend components of the JS
engine.

To enhance the mutation of the seed’s data flow, Fuzzilli intro-
duces several constraints on the bytecode IR. These constraints
involve adopting a Static Single Assignment (SSA) paradigm [8, 9]
and restricting instructions to accept only a single variable as input.
While these constraints enhance the efficacy of semantic mutation,
they do not fully address the underlying challenge. For instance,
Listing 2 illustrates the analytical dilemma encountered when im-
plementing semantic mutation based on bytecode IR. Variable vo
and v23 differ, yet they contain identical data. As a result, chang-
ing v0 to v23 does not modify the seed’s semantics, presenting a
challenge in identifying these indistinguishable data flows based
on bytecode IR.

2.3 Program Transformation and Graph IRs

The mutation of JS seeds involves transforming these programs.
Compilation optimization transforms code to be more efficient.
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Figure 2: Overall architecture of FuzzFlow

However, a notable distinction is that optimization requires pre-
serving the semantic invariance of the program, a constraint not
applicable to mutation.

Optimizations are accomplished on IRs. IR serves as an interme-
diate layer between the source code and the machine code [28, 43].
Modern compilers often employ a variety of IRs. Common examples
include the AST, bytecode IR, or graph-based IR. The AST repre-
sents syntax structure but lacks a direct representation of program
semantics, resulting in challenges for the execution of semantic-
related optimizations. Bytecode IR involves complex expression of
control flow and data flow [7]. Optimizing at this level may require
dealing with intricate branching and data manipulation, making it
more challenging compared to higher-level representations.

Graph-based IRs [4] play a crucial role in modern compiler de-
sign by providing a structured unified representation that facili-
tates a wide range of analyses and optimizations across different
programming languages [6]. Graph IRs utilize graph-based data
structures to depict the control flow and data flow of a program.
Generally, nodes symbolize program entities (e.g., constants, expres-
sions, statements), and edges between nodes signify relationships
or dependencies among program entities. Presently, graph-based
IRs are widely used in modern compilers and contribute to a range
of optimization tasks, including constant propagation, common
sub-expression elimination, loop optimization, or function inlin-
ing [13]. Program Dependency Graph (PDG) [14] stands out as a
widely adopted paradigm within the realm of graph IR. PDG ex-
plicitly models and represents the control-flow dependencies and
data-flow dependencies of the program, offering a structured repre-
sentation that assists the efficient deployment of many traditional
optimization techniques. Illustrating on the JS engine, the Turbo-
Fan compiler [16] employed by V8 is developed on the graph-based
TurboFan IR. Edges in TurborFan IR represent data flow, control
flow, and dependencies.

Inspired by the code transformation scenario of optimization,
this paper advocates for the use of graph IR as a mutation target
to effectively achieve semantic mutations of JS programs. This is
depicted in Figure 1.

3 Design

Figure 2 highlights the overall framework of FuzzFlow, the pioneer
fuzzer that mutates programs using a graph IR. FuzzFlow comprises
three components: JS2Graph, Mutation, and Graph2jS. In the fuzzing
initiation, JS2Graph compiles the initial seed set into FlowIR format.
While fuzzing, Mutation randomly picks a seed from the queue and
mutates it. Post-mutation, Graph2jS lifts test cases in FlowIR back
to source code for execution. We detail the modules as follows.
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3.1 FlowlR

Our main contribution, FlowlIR, expressively represents the control
flow, data flow, and dependencies between JS entities. Our prototype
implementation, FuzzFlow, utilizes FlowIR for JS fuzzing.

The first key difference between FlowIR and existing graph IRs
is that FlowIR supports bidirectional conversion with source code,
achieved through a careful redesign of nodes and edges. Bidirec-
tional conversion enables the fuzzer to reflect on and improve seeds
continuously, mapping execution feedback to concrete parts of the
test input.

The second key difference between FlowlR and existing IRs is
the precise definition of FlowIR’s functional scope, which prevents
exposure to unnecessary information during mutation. This feature
allows the fuzzer to avoid redundancy in the test inputs. Nodes are
categorized into two types: Control Flow Nodes (CFN) capturing the
program’s structural representation, and Data Flow Nodes (DFN)
handling data-related operations. The label on a node indicates the
operation it represents, with inputs to a node serving as inputs to
the operation.

To construct FlowIR from a JS program, we conduct an intra-

procedural analysis, associating each method with a corresponding
graph. We merge control flow and data flow into a cohesive graph
with minimal coupling. This unified graph provides two key bene-
fits: it aids in JS code conversion and facilitates mutation operators
involving both control flow and data flow, thereby enhancing flexi-
bility in mutation operator design. The coupling is low, allowing
independent mutations of control flow and data flow.
Definition 1: The FlowIR G = (V, E, 1) is a directed, node-labeled,
and edge-unlabeled graph where V is a set of nodes, E C (V X V)
is a set of directed edges, and A: N — ¥ is a node labeling function
assigning a label from the alphabet X to each node.

This graph encompasses a Control-Flow subGraph (CFG) and a
Data flow Dependency subGraph (DDG):

e Nodes represent control structures in the program, as well as
operators and operands. The labels on the nodes represent
the node’s semantic operation.

o The edges incident to a node represent both the data values
on which the node’s operations depend and the control con-
ditions on which the execution of the operations depends.

The set of all dependencies for a program are viewed as induc-
ing a partial order on the operations in the program that must be
followed to preserve the semantics of the original program. For
improved analysis, FlowIR is in SSA form. Each node produces at
most one value. ¢ functions are used at join points. ¢ nodes input
several data values and output a single selected data value.
Definition 2: The CFG represents the partial order of statement
execution, as defined by the semantics of JS.

The CFG comprises two node types: operator or instruction
nodes with side effects (behavioral CFNs), and region nodes (struc-
tural CFNs) indicating control flow structures. Operator nodes with
side effects include New and Delete for object creation and dele-
tion, Load and Store for reading and writing objects, and Invoke
for method calls. Instruction nodes denote control flow changes
like return and throw statements. Operator and instruction nodes
in CFG are fixed within the control flow. Motion of these nodes
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will change the semantics of the program. Region nodes encapsu-
late control conditions, grouping nodes with identical conditions.
FlowIR employs region nodes to represent control structures such
as branches, loops, and exceptions. The distinguished entry node
Start representing the beginning of the program.

Nodes in the CFG have successor edges indicating their possible
next nodes. Edges between control flow nodes denote direct transi-
tions. Each node in the graph has at most two successors. Nodes
with two successors are assumed to have true and false attributes
associated with their outgoing edges.

Definition 3: The DDG demonstrates the flow of values from
definitions of a variable to its uses. The nodes in DDG consist of
operators and operands.

For data flow representation, a node has input edges pointing to
nodes providing its operands. The inputs to a node are inputs to the
node’s operation. Operands encompass literals, variables, or expres-
sions. Each node defines a value based on its inputs and operation,
available on all output edges. All input edges signify scheduling
dependencies. A node must be scheduled post its dependencies
when lifting FlowIR to JS.

Control-flow structures form a backbone for data-flow nodes.
Data flow nodes are solely restricted by their data dependencies.
Formally, let X and Y be nodes in a DDG. There is a data dependence
from X to Y with respect to a variable v iff:

(1) there is a non-null path p from X to Y with no interventing

definition of v and either:

(2) X contains a definition of v and Y a use of v; or X contains

the use of v and Y a definition of v.

Edges between CFG and DDG: FlowIR minimizes the coupling be-
tween control flow and data flow. Interaction between the CFG and
DDG is restricted to three node types: behavioral CFNs, PhiNode
and IfNode. Behavioral CFNs often take data flow input. Meanwhile,
they may have control predecessors and successors. PhiNode is clas-
sified into data flow nodes, linked to control condition expressions
and resulting data-flow nodes from two branches. The ith data
input to PhiNode corresponds to the ith branch. Similarly, IfNode
is classified into a control flow node, linked to both the data flow
node representing the conditional expression and the two control
flow branches. We show the example edges between CFG and DDG
in Figure 3.

Predecessor  CallTarget Predecessor ~ Condition ~Merge  Data[0] ~Data[1]
IfNode PhiNode
Successor Begin Begin Usages

Figure 3: Nodes connecting control flow and data flow

In our prototype, FlowIR incorporates support for diverse JS
language features, covering basics like variable operations, bina-
ry/ternary operations, if-else branches, loops, and functions. Addi-
tionally, FlowIR extends support to advanced features, including
JS object-oriented programming, and the JS exception-handling
mechanism. Nodes for fundamental language features are language-
independent, while those expressing JS-specific semantics are not.
This implies that FlowIR cannot be directly used as a mutation target
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Algorithm 1: Translate JS to FlowIR

Input :The seed ]S code
Output : FlowIR of the seed

1 ast < Parse(JSCode)

2 ast < ScopeAnalysis(ast)

3 ast « ReferenceResolve(ast)

4 ast « LeftValueAnalysis(ast)

5 graph « CreateEmptyGraph ()

6 function ProcessTree(node):

7 if node == VariableDeclaration then

8 if node.initialization is not null then

9 flowNode < ProcessTree (node.initialization)
10 Create a new variable proxy

11 Set the variable proxy to flowNode

12 AddNodeToGraph ()

13 return flowNode
14 if node == BinaryOpExpression then

15 leftFlow < ProcessTree (node.left)

16 rightFlow < ProcessTree (node.right)

17 Create BinaryOpNode

18 Create edges between BinaryOpNode and its dependencies
19 AddNodeToGraph ()

20 return BinaryOpNode
21 if node == IfStatement then
22 conditionFlow < ProcessTree (node.condition)
23 Create BeginNodes and EndNodes for the two branches
24 Create IfNode

25 Create edges between IfNode and its dependencies

26 Set the current control flow as the BeginNode for true branch
27 ProcessTree (node. trueBranch)

28 Set the current control flow as the BeginNode for false branch
29 ProcessTree (node. falseBranch)

30 Create MergeNode

31 Merge the two branches control flow into MergeNode

32 AddNodeToGraph ()

33 Set the current control flow as the MergeNode

34 return IfNode
35
36 return node

37 ProcessTree (ast)

for other language processors. However, the conceptual foundation
of FlowlR can be extendable to other languages. Moreover, nodes
for fundamental language features are reusable.

Figure 4 illustrates the FlowIR corresponding to a seed triggering
CVE-2021-21220 in V8. Notably, FlowIR directly represents the
control flow and dependencies in data flow, achieving low coupling.
Data flow analysis on FlowlIR is straightforward. For example, in
Figure 4c, node-1 is unused by any other, indicating an unused data
flow (parameter in function foo). Consequently, mutating this node
is ineffective for uncovering defects in the JS engine.

Mutations on FlowIR are highly efficient. For instance, altering
the edge from node-20 to node-19 in Figure 4b and redirecting it
to node-3 (red dashed line) allows mutation of the loop condition
from i < 0x100 to i < 2%*31. Notably, the latter expression
corresponds to an AST subtree with a height of 2. Generating such
an AST subtree requires 2 steps. In contrast, leveraging the graph,
only modifying the destination node of an edge is needed.

3.2 Translating JS to FlowIR

To leverage existing high-quality seeds, FuzzFlow supports the
translation of JS to FlowIR. Notably, Lee et al. [29] underscore the
effectiveness of regression test cases as fuzzing seeds. Development
teams for mainstream JS engines continually augment their regres-
sion test sets with tests that expose historical engine defects, aiding
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1 arr = new Uint32Array ([2*%*31]);

5 7
CallTarget
Uint32Aray(arro) | | EINode
4
ArrayLiteral

3 function foo(a) {

var x = 1;
x = (arr[0] * @) + 1; 3 « -~
6 return x;

} 1 2

ndependent data flow
subgraph example

) for (let i=0;
o { foo(true); }

i<0x100; ++i)

(a) Test case
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8 1| Param(a)
a0
LoadNode

7
9 Add(+)
3

1 6
A
D o)

9
LoopEnd

(b) The FlowIR of the main script

5
LoadIndex 4
14 1 18 |:|
Callf':)rget .0 Add(+) P E
0 Global
13 16 arrd

(c) The FlowlR of function
foo

Figure 4: Test case to trigger CVE-2021-21220 in V8 and the corresponding FlowIR. Blue nodes denote control flow nodes, while
orange nodes signify data flow nodes. Blue edges represent control flow edges, while orange edges represent data flow edges.
Black edges denote connections between control flow and data flow, as well as auxiliary connections.

subsequent development. By mutating these regression test cases,
the fuzzer gains an avenue to delve deeper into historical vulner-
ability patterns. To allow continuous testing and protect against
regression bugs, we implement the 3S2Graph module, designed to
seamlessly convert JS programs into FlowIR. Consequently, Fuz-
zFlow can navigate the input space surrounding existing test cases,
thereby revealing potentially unforeseen neighboring bugs.

The JS2Graph involves syntax analysis of the JS to acquire the
AST. Subsequently, a top-down semantic analysis is conducted on
the AST to establish scope, identify declared symbols, perform re-
solve resolution, and analyze left values. Finally, syntax-directed
translation is performed based on the results of the semantic anal-
ysis to convert the AST into FlowIR. Throughout this conversion,
the control flow and data flow of the program are analyzed.

Algorithm 1 outlines the conversion process of JS2Graph. Given
the diverse syntax features of JS and space constraints on the page,
the algorithm only presents a subset of JS2Graph functionality.
Considering that the basic building blocks of JS programs are dec-
larations (e.g., VariableDeclaration), expressions (e.g., BinaryOp,
represented by the DFN), and statements (e.g., IfStatement, rep-
resented by the CFN), Algorithm 1 opts to showcase these three
elements. The prototype implementation encompasses support for
additional language features.

3.3 Mutation Operators on FlowIR

FuzzFlow encompasses two types of mutation operators: data-flow
subgraph mutation and control-flow subgraph mutation.
Mutation on Data-flow Subgraph. The data-flow subgraph mu-
tation entails preserving the control structures of the seed while
solely mutating the data flow. This mutation operator introduces a
finer granularity. For instance, it enables the retention of conditions
that trigger JIT compilation. If the seed induces JIT compilation,
the mutated test cases under this operator can also similarly trigger
JIT compilation.

Data flow mutation via FlowIR provides distinct advantages over
Fuzzilli’s FuzzIL, a sequential IR based on Three Address Code
(TAC). Firstly, TAC’s data flow is fixed within the control flow

structure of the JS program. However, this mutation is restricted
by instruction sequence, limiting the available data flow to that
generated by preceding instructions. Consequently, the mutation
space is constrained, hindering full utilization of the seed’s overall
data flow. Secondly, input mutation of TAC instructions alters vari-
able names as instruction parameters. As noted in the background,
variable names do not directly map to the data flow. Different vari-
able names may represent the same data flow, posing challenges
for effective data flow mutation. FlowIR effectively addresses the
aforementioned challenges. Firstly, FlowIR’s DFNs are independent
of control flow, constrained only by data dependencies. After chang-
ing these dependencies through mutation, the Graph2jS module
can appropriately relocate DFNs within control flow regions. Thus,
leveraging FlowIR’s data-flow subgraph enables mutations to span
instructions and basic blocks, facilitating comprehensive analysis
and mutation of the entire seed’s data flow. Secondly, the input
for mutation is the DFN, not the variable name. DFNs in FlowIR
accurately model data dependencies within the seed, enabling more
targeted mutations.

Data-flow subgraph mutation operators can be further catego-
rized into two types. The first category involves node attribute
mutation. This fine-grained mutation alters the attributes (labels)
of DFNs. For example, if an original binary operation node employs
an addition operator, mutating it into a subtraction modifies the
data flow of the seed. Similarly, for a terminal node with an original
integer value of 1, changing its value to -1 alters the data flow of the
seed. The second category is input mutation of the node, which is
further divided into intra-procedural mutation and inter-procedural
mutation. In intra-process mutation, the data flow is mutated by
modifying the connection between data nodes and changing the
input of a specific data node within the method. Leveraging FlowlIR,
this mutation demonstrates high execution efficiency. It involves
changing the starting point of an input edge of the data node to
another one without having to copy any nodes. Inter-procedural
mutation on data flow aims to splice the flow across methods. In-
dependent data-flow subgraphs are extracted from the seeds to
serve as the material for splicing.
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Figure 4b shows an independent data-flow subgraph in the gray
rounded rectangle. An independent data-flow subgraph is defined
as a subgraph extracted from the FlowlIR. In this context, all nodes
within the subgraph depend solely on the data flow inputs ex-
isting in that subgraph. The extraction of independent data-flow
subgraphs aims to establish a comprehensive data flow Pool for
mutations. During initialization of a fuzzing run, after converting
all seed JS programs to FlowIR, we analyze each FlowIR and extract
independent data-flow subgraphs into the Pool. Each node within
any subgraph in Pool has the potential to be inserted into a seed
as an input node for splicing, thus achieving data flow splicing
between procedures.

To extract independent data-flow subgraphs, the traversal ini-

tiates from the leaf nodes, typically literals, within the data-flow
subgraph, ascending along their dependencies. Leaf nodes, without
data input, are unequivocally eligible for inclusion in the data-flow
subgraph. Following this, the analysis advances along the data flow
edge of each node, examining the higher-level nodes that utilize the
current node as their data input. For each traversed DFN, whether
it is included in the subgraph depends on all the DFNs it depends on
already being part of the subgraph. If an input (designated as I) on
which the DFN relies is absent from the extracted subgraph, there
is an attempt to recursively incorporate node I into the subgraph.
When executing input mutations of data flow across graphs, an
independent subgraph is randomly selected from Pool as the input
for the mutation node.
Mutation on Control-flow Subgraph. In comparison to exist-
ing mutation platforms, control flow mutation based on FlowIR
proves advantageous in generating test cases that are both syntac-
tically correct and semantically valid. When mutating the control
flow in AST or bytecode IR, changes in the positioning of control
flow elements can easily break the semantic integrity of the seed.
Conversely, FlowIR, by modeling dependencies between nodes, en-
sures that moving a CFN does not impact other edges of the node,
except for the mutated control flow edge. The reason is that de-
pendencies related to unchanged edges are automatically fulfilled
in the Graph2JjS module. This helps control flow mutation based
on FlowIR without compromising semantic dependencies. Such a
mechanism contributes to the generation of test cases that are not
only syntactically correct but also semantically valid.

The mutation target of the control-flow subgraph may be a single
behavioral CFN, or a node group containing a control flow structure,
such as a branch or a loop. Control flow mutation operators can be
further divided into four types: CEN scheduling, CFN deletion, CEFN
insertion and CFN data input mutation. CFN scheduling involves
alterations in the placement of CFNs, which can markedly modify
the execution of the seed and induce semantic changes. Specific
implementation methods for control flow scheduling include:

e Individual CFN Movement: This mutation relocates a behav-
ioral CFN (e.g., function call or object creation) to a random
position in the control flow.

o CFN Group Relocation: This method entails moving a control
flow unit, such as conditional branches or loops, to a random
location in the control flow.
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o If-Else Branch Swapping: This mutation involves swapping
the if-else branches, thereby changing the execution branch
under specific branch conditions.

Control flow scheduling proves highly effective in altering the ex-
ecution of a seed. For instance, it can shift the control flow from
within a loop to outside the loop, or vice versa. Leveraging the
graph data structure, CFN deletion requires only the modification
of predecessor and successor edges between CFNs to achieve the
desired changes. CFN insertion involves incorporating new nodes
or node groups into the existing flow. For instance, in a seed con-
taining function declarations, one can introduce nodes for new
function calls with different parameters. Additionally, loops can
be inserted into a seed, thereby augmenting the complexity of its
control structure. CFN data input mutation, coupling control flow,
and data flow, specifically modifies the data input of CFNs. For
instance, altering the data input of a ReturnNode impacts the data
flow that is returned. In most cases, when mutating the control-flow
subgraph, changes in the data-flow subgraph are often implicated,
indicating a larger mutation granularity.

Speeding Up Mutators. We conduct further optimizations on
FlowIR-based mutations to enhance the fuzzer’s efficiency. Instead
of copying the entire graph for a mutation, we conduct the mutation
directly on the FlowIR of the seed, keeping a record of the performed
mutation operators. After mutation, the Graph23S translation is
applied to the mutated FlowIR to generate the JS program for testing.
When the engine finishes execution, we copy the mutated FlowIR to
generate a new seed only when the test case reveals new coverage.
Irrespective of the interest of the mutated seed, after the execution
finishes, a reverse operation is performed according to the recorded
mutation operators, restoring the seed to its pre-mutated state. This
design mitigates unnecessary copying of FlowlIR, thereby improving
the overall efficiency of the fuzzer.

3.4 Translating FlowIR to JS

After mutation, FuzzFlow converts FlowIR back into JS as fuzzing
input. This conversion poses new challenges. Firstly, the IR must
preserve high-level semantic information to facilitate the conver-
sion back to JS programs, distinguishing it from existing IRs. For
example, in LLVM IR, the control flow of exception handling is
simplified to ordinary branch and jump instructions, resulting in
the loss of crucial high-level semantic information that makes it im-
practical to restore the IR to source code. Secondly, the conversion
must ensure the accurate translation of both control and data flow,
maintaining consistency between FlowIR and the source code.

To address the aforementioned challenges, FuzzFlow incorpo-
rates targeted designs. Firstly, in FlowIR, high-level semantics are
preserved as nodes. By utilizing these nodes (e.g., TryNode, Store-
FieldNode), precise restoration of semantics is achieved. Secondly,
FuzzFlow conducts graph traversal along the control flow based
on the dependencies and completes code generation during this
traversal process. Dependencies are satisfied during this process.
When lifting the FlowIR, FuzzFlow structures the source code in
regions. A region represents a nested structure, corresponding to
a block scope of the program. Organizing the generated code in
regions helps maintain the relationships between scopes.
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Algorithm 2: Translate FlowIR to JS

Input :FlowlR of the seed
Output:]JS code of the seed

StartNode « FlowIR
topRegion < CreateRegion ()

[N

function LiftGraphNode (node) :

3
4 if node ==BinaryOpNode then

5 region < LoadCurrentRegion ()

6 proxies «— GetVariableProxyOnDataNode ()

7 if IsFirstVisit then

8 leftCode «— LiftGraphNode (node.left)

9 rightCode «— LiftGraphNode (node.right)
10 binaryCode «<— leftCode + node.operator + rightCode
11 if len(proxies) > 0 then
12 GenAssignmentStatement (region)

13 ‘ return proxies.name
14 else
15 | returnbinaryCode
16 if node == IfNode then
17 parentRegion « SaveCurrentRegion ()

18 ifRegion « CreateRegion ()

19 conditionCode « LiftGraphNode (node.condition)
20 EmitExpression (ifRegion, conditionCode)
21 branchTrueRegion «— CreateRegion ()

22 Change current region to branchTrueRegion
23 LiftGraphNode (node.branchTrue)

24 branchFalseRegion «— CreateRegion ()

25 Change current region to branchFalseRegion
26 LiftGraphNode (node.branchFalse)

27 Add two sub-regions to ifRegion

28 Restore the parentRegion as current region
29 LiftGraphNode (node.next)

30 return

31

32 return

w

3 LiftGraphNode (graph)
34 JSCode < MergeRegionsCode (topRegion)

Algorithm 2 illustrates the lifting process of certain FlowIR nodes.
The prototype FuzzFlow encompasses support for the full list of
FlowIR nodes. The Graph27S initiates from the control flow start-
ing node and proceeds backward along the flow. When encoun-
tering CFNs that generate scopes, such as IfBlock, ForLoop, or
WhilelLoop, a new region is created to accumulate the code that
needs to be generated within the scope. When a CFN depends on
any DFN, a depth-first traversal of the data flow is performed along
the dependencies. If variables are associated with the DFN, variable
assignments are generated. After traversing the current CFN and
the dependent DFNGs, the traversal continues backward along the
control-flow dependencies to subsequent nodes. Once the traversal
of the entire graph is completed, the statement sequence within the
nested region is consolidated into a complete program and passed
to the test module.

3.5 Implementation

To demonstrate the effectiveness of our proposed method, we imple-
ment a fuzzer (FuzzFlow) that leverages FlowIR. Given the pivotal
role of mutation target and operators in fuzzer implementation,
crafting FuzzFlow based on existing open-source fuzzers would
require us to change over 90% of the code. Therefore, we implement
FuzzFlow from scratch with C++. FuzzFlow is a coverage-guided
grey-box fuzzer that we implement in 19K lines of code (LoC). We
use clang sanitizer coverage as feedback to guide the fuzzer to ex-
plore the code coverage of the JS engine. The 7S2Graph module
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first performs syntax analysis on the input JS. We use ANTLR [38]
to implement the parsing component, and implement the rest of
JS2Graph ourselves. Fuzzer components including Graph27S and
Mutation are implemented entirely in C++.

We rigorously tested the 7S2Graph and Graph2jS modules, en-
suring the accuracy of the JS-to-Graph and Graph-to-JS conversion
processes with numerous unit tests. 7S2Graph only operates during
the fuzzing startup phase to handle the initial seed set, encounter-
ing high-quality JS test cases, including historical PoCs. Therefore,
the primary challenge lies in accurately translating JS language fea-
tures. Unit tests help confirm the accurate translation of supported
JS language features.

Conversely, Graph27S encounters issues with malformed FlowIR
due to mutation, resulting in some seeds being unable to convert
back to JS. After running FuzzFlow for 24 hours, we found that,
in the current version, 8% of mutated Graph instances cannot be
lifted to JS. We can address this challenge by applying semantic con-
straints to FuzzFlow’s mutation operators, which will help mitigate
the issue. This optimization will be a focus in future development
iterations. It is worting noting that the possible failure of converting
mutated IR back to JS is not exclusive to FuzzFlow. When muta-
tions are applied based on IRs like AST, fuzzers encounter similar
issues, as mutations can disrupt the original well-formed structure,
rendering conversion back to the source code impossible.

4 Evaluation

Evaluation Targets. We evaluated a total of six mainstream JS
engines. The targeted engines encompass Chrome V8, Firefox Spi-
derMonkey, Safari JavaScriptCore, and ChakraCore designed for
desktop browsers. Additionally, we tested JerryScript and QuickJS,
which are often deployed on IoT devices. There are currently no
benchmarks, such as LAVA-M [11] or Magma [22], specifically de-
signed for evaluating JS engine fuzzers. Meanwhile, the number
of mature industrial-grade JS engines is limited. Therefore, despite
ChakraCore not being utilized in the Edge browser, given its sta-
tus as an industrial-grade JS engine developed by Microsoft over
several years, we consider it an interesting target.

These JS engines have undergone thorough code audits and

testing conducted by both the development team and security re-
searchers. Any newly detected defects by FuzzFlow have been
missed by earlier evaluations, affirming the efficacy of the method
proposed in this paper.
Experimental Setup. Both V8 and SpiderMonkey already include
built-in support for Fuzzilli. To ensure compatibility, we adhere to
the Fuzzilli interface. For the other four engines, we modified the
engine code slightly based on Fuzzilli’s patch method. This modifi-
cation enables communication between the fuzzer and the JS engine
through pipelines for test case delivery and coverage feedback. To
prevent the fuzzer from becoming stuck on non-terminating pro-
cesses, the timeout mechanism is commonly employed by fuzzers.
The timeout interval represents the duration permitted by the fuzzer
for executing a single test case. In our experiments, we adopted the
default timeout of Fuzzilli, which is set to 250ms.

To enhance bug detection, JS engine developers have incorpo-
rated numerous assertions into the engine source code for internal
checks. Assertion errors within JS engines may indicate significant
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Table 1: New bugs found by FuzzFlow. The two bugs in V8 are also noticed and patched by developers before our reporting,.

# JS Engine Issue ID Component Security Status Description

1 V8 - Torque Fixed Fatal error in string-tq-inl.inc

2 V38 - JIT compiler v Fixed Fatal error in deoptimizer.cc

3 JavaScriptCore 261949 Runtime Assertion error in runtime/SparseArrayValueMap.cpp

4 JavaScriptCore 265272 JIT compiler v Fixed Integer calculation error after JIT optimization

5  SpiderMonkey 1849099 JIT compiler Fixed Incomplete patch for bug-1745907

6  SpiderMonkey 1849100 Debugger Duplicate  makeDebuggeeNativeFunction allows to create a copy of native function
7  SpiderMonkey 1851135 Debugger Fixed Incomplete patch for bug-1845270

8  SpiderMonkey 1852729 (CVE-2023-5728) Garbage collector v Fixed weakRefMap is updated when a WeakRef target is cleared

9  SpiderMonkey 1853488 JIT Compiler Duplicate FoldConstants optimization reduces the conditional expression
10 SpiderMonkey 1863183 Runtime weakRefMap contains a dead wrapper

11 SpiderMonkey 1864246 Builtins Fixed Incorrect conditional unwrapping. Regression from bug 1841118
12 SpiderMonkey 1864257 Builtins Fixed Regression from bug 1848467

13 ChakraCore 6944 JIT compiler v Assertion error in Backend/FlowGraph.cpp

14 ChakraCore 6945 JIT compiler v Assertion error in Backend/GlobOptArrays.cpp

15 ChakraCore 6946 JIT compiler v Assertion error in Backend/LinearScan.cpp

16 ChakraCore 6947 JIT compiler v Assertion error in Backend/FlowGraph.cpp

17 ChakraCore 6948 Runtime Assertion error in Runtime/Language/ValueType.cpp

18 ChakraCore 6949 JIT compiler v Assertion error in Backend/FlowGraph.cpp

19 ChakraCore 6951 JIT compiler v Assertion error in Backend/BackwardPass.cpp
20 ChakraCore 6959 JIT compiler v Assertion error in Backend/TempTracker.cpp
21 ChakraCore 6960 JIT compiler v Confirmed Assertion error in Backend/BailOut.cpp
22 ChakraCore 6961 Runtime Assertion error in Library/ScriptFunction.h
23 ChakraCore 6962 Runtime Assertion error in Types/RecyclableObject.h
24 ChakraCore 6963 Runtime v Confirmed Segmentation fault
25 ChakraCore 6964 Runtime v Confirmed Assertion error in Runtime/Language/JavascriptConversion.cpp
26 ChakraCore 6965 Code generator Confirmed Segmentation fault
27 Quick]S 192 Bytecode emitter Fixed Null Pointer Dereference
28 Quick]S 198 Garbage collector v Fixed Heap use after free
29 JerryScript 5097 ByteCode generator v Null pointer dereference
30 JerryScript 5098 ByteCode generator Assertion error
31 JerryScript 5099 JIT compiler Assertion error
32 JerryScript 5100 JIT compiler Assertion error
33 JerryScript 5104 Frontend Segmentation fault
34 JerryScript 5105 Frontend Segmentation fault
35 JerryScript 5117 Frontend Fixed Segmentation fault
36 JerryScript 5118 Frontend Assertion error
37 JerryScript 5119 Frontend Fixed Assertion error

security vulnerabilities. The identification of many high-risk vul-
nerabilities, such as CVE-2019-8622, often originates from assertion
errors. Therefore, similar to Fuzzilli, we utilized the debug configu-
ration when compiling the engine to capture assertion errors.
Additionally, for the triggering conditions of JIT compilation, we
have employed the same processing method as Fuzzilli, specifically
by lowering the threshold of repeated executions needed to trigger
JIT compilation. Typically, we configured the thresholds so that
approximately 100 executions trigger the compilation of a function.
This threshold strikes a balance, allowing ample iterations for the
engine to gather type information while speeding up the fuzzing.
Initial seeds and Experiment platform. We selected test cases,
independent of external harnesses, from the regression test suites of
the six engines to create the initial seed set. The combined seed set
is for all engines. These regression test suites are readily accessible
in the engine’s repository. In total, we gathered 1,280 test cases from
regression test suites. When performing comparative experiments,
this seed set served as the initial seeds for baselines. We conducted
experiments for RQ1, RQ3, RQ4, and RQ5 on an Ubuntu 20.04 LTS
system with an Intel Xeon Gold 6238R (56 cores) and 128 GB RAM,
using an RTX 3090 for neural network baselines. RQ2 was evaluated
on an Ubuntu 20.04 system with two AMD EPYC 9654 processors
(192 cores) and 512 GB RAM.
Baselines. We conducted a comparative analysis of FuzzFlow
against four state-of-the-art mutation-based JS engine fuzzers: Su-
perion [47], DIE [37], Montage [29], and Fuzzilli [20]. FuzzFlow
and four baselines are all general-purpose JS engine fuzzers, not
targeting specific components [10, 48]. Superion, DIE, and Montage

mutate the AST of the seed, while Fuzzilli mutates the bytecode IR.
These four competitors represent the two currently prevalent types
of mutation targets.

In addition to the mentioned baselines, open-source JS engine
fuzzers also include CodeAlchemist [21] and jsfunfuzz [35]. How-
ever, these two fuzzers are both generation-based and differ from
the mutation target explored in this paper. Furthermore, in previous
evaluations [29, 37], Montage demonstrated superior performance
compared to CodeAlchemist and jsfunfuzz, while DIE outperformed
CodeAlchemist. Thus, we selected these four advanced mutation-
based fuzzers as comparison targets.

As the paper concentrates on mutation targets and operators,
the evaluation aims to scrutinize their impact on fuzzing. Superion,
DIE, Montage and FuzzFlow are mutation-based fuzzers. In contrast,
Fuzzilli can create new test cases through two methods: generation
and mutation. Initial versions of Fuzzilli lacked a JS-to-bytecode
compiler, using a generative engine to prepare the seed set. This
allowed it to run without initial seeds. Currently, Fuzzilli includes
a compiler module for JS-to-bytecode conversion. We provided
Fuzzilli with the same seed set as other fuzzers while deactivating
its generative engine for a fair evaluation.

Evaluation design. We aim to answer the following research
questions through our experiments:

RQ1: Can FuzzFlow find new bugs in real-world JS engines?
RQ2: How does FuzzFlow perform in terms of code coverage and
bug finding against state-of-the-art fuzzers?

RQ3: Does FuzzFlow’s improvement in mutation granularity help
trigger the vulnerable components of the engine?
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RQ4: Does FuzzFlow generate correct JS code, both syntactically
and semantically?

RQ5: Does using FlowIR as the mutation target introduce signifi-
cant runtime overhead?

To measure and compare code coverage, bug finding, throughput,
and correctness, we conduct 10 rounds of experiments. We then
test the statistical significance of FuzzFlow achieving better perfor-
mance than baselines using Vargha Delaney A;5 and Mann Whitney
U test (U). U tests whether a list of observations is stochastically
greater than the other list, while Aj; measures the magnitude of
the difference (effect size). Finally, we analyze the bug-triggering
test cases generated by FuzzFlow through case studies to further
discuss the effectiveness of our method.

4.1 RQ1:Identified Bugs

We first evaluate FuzzFlow’s bug-finding capability on real-world
engines and demonstrate the defects detected by FuzzFlow. To eval-
uate FuzzFlow’s ability to find unknown defects, we use FuzzFlow to
conduct testing on six JS engines for 120 days. We allocate 15 cores
to each engine. FuzzFlow has detected a total of 37 new defects,
including 2 in V8, 2 in JSC, 8 in SpiderMonkey, 14 in ChakraCore,
9 in JerryScript, and 2 in Quick]S. Developers have confirmed 16
bugs, two bugs were duplicates. 12 have been fixed. All confirmed
bugs in SpiderMonkey and Quick]JS have been fixed. Two bugs in
V8 were concurrently patched.

Table 1 shows details of all detected bugs. Many of the identified
defects originate from assertion errors. Some of these assertion er-
rors can be classified as security-related based on the bug locations
and crash messages (e.g., Issue-198 in Quick]JS). However, a com-
prehensive analysis is required for the remaining assertion errors
to ascertain their exploitability, which is a task beyond the scope of
this paper. We have submitted all bug information to the developer
teams for thorough examination.

Note that FuzzFlow discovered bugs in various components of
the JS engine. For instance, we have detected defects in the bytecode
emitter, debugger, and runtime of SpiderMonkey. Besides, FuzzFlow
also detects deep bugs in the JIT compilers. We have detected 11
bugs in the JIT compilers of 4 browser engines. Among them, 8
out of 14 defects detected in the ChakraCore are located in the JIT
compiler. This result demonstrates the advantages of FlowIR as a
mutation target in finding deep vulnerabilities.

4.2 RQ2: Bug-finding Ability and Exploring
Code Coverage

General-purpose fuzzers (e.g., AFL and its variants) are evaluated
through ground-truth benchmarks like Magma or FuzzBench [34].
However, no such benchmark exists for JS engines, necessitating
validation on real software without ground truth. To evaluate the
bug-finding capabilities of various fuzzers, we tested FuzzFlow and
baselines for 360 hours each on V8, SpiderMonkey, JavaScriptCore,
ChakraCore, JerryScript, and Quick]S. Ten instances were run per
fuzzer-target pair to reduce randomness. After deduplication based
on crashing stacks, FuzzFlow, Superion, DIE, Montage and Fuzzilli
detected an average of 5.7, 3.5, 2.6, 2.8, and 4.9 defects in Chakra-
Core engine, and 2.7, 1.1, 1.9, 1.3, and 2.2 defects in the JerryScript
engine, respectively. However, none of them detected defects in the
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Table 2: Code Coverage.

Subject Metric ‘ FuzzFlow Superion DIE  Fuzzilli FuzzFlowNH
Average 20.53% 13.68% 14.27% 16.03% 19.30%
SM Improvement - 6.85% 6.26%  4.50% 1.23%
Ay - 0.99 099 099 0.99
U - <0.01 <0.01 <0.01 <0.01
Average 19.32% 15.62% 13.88% 15.13% 18.41%
Vs Improvement - 3.70% 5.44%  4.19% 0.91%
Ay - 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 0.02
Average 22.56% 18.38% 18.81% 19.03% 21.51%
Js¢ Improvement - 4.18% 3.75%  3.53% 1.05%
Arz - 0.99 0.99 0.99 0.99
U - <0.01 <0.01 <0.01 <0.01
Average 19.52% 16.77% 17.19% 18.44% 18.68%
CH Improvement - 2.75% 2.33% 1.08% 0.84%
Ay - 0.95 0.92 0.92 0.90
U - <0.01 <0.01 <0.01 0.01
Average | 67.84% 62.30%  63.55% 63.86% 65.68%
JERRY ImprovemeAnt - 5.54% 4.29%  3.98% 2.16%
A1z - 0.99 0.99 0.99 0.99
pu - <0.01 <0.01 <0.01 <0.01
Average 52.05% 40.52%  46.34% 45.13% 50.33%
Qs Improvement - 11.53% 5.71% 6.92% 1.72%
Ay - 0.99 0.99 0.99 0.99
pPu - <0.01 <0.01 <0.01 <0.01
Average(among subjects) ‘ - 5.80% 3.92%  4.62% 1.32%

V8, JavaScriptCore, SpiderMonkey, and Quick]JS engines during the
test period. This indicates that JS engines are adequately audited
and tested. On the more vulnerable ChakraCore and JerryScript
engines, FuzzFlow demonstrated the highest bug-finding capability.
For industrial engines like V8, SpiderMonkey, and JavaScriptCore,
dynamic testing is already integrated into their development pro-
cesses. Due to extensive testing, comparing bug finding capabilities
over weeks yields few bugs. Thus, our focus shifts to evaluating
fuzzing based on code coverage, exemplified by Fuzzilli [20].

Branch coverage reflects the percentage of the branches exer-
cised by the test cases over the total number of branches. A higher
branch coverage implies a more thorough examination of the tar-
get’s state space. For each tool and each test target, we evaluate the
reached branch coverage after 24 hours of fuzzing, and count the
number of test cases executed to reflect the throughput.

For FuzzFlow and Fuzzilli, we can directly obtain the number
of branches triggered by the engine through the APIL For AFL-
based Superion and DIE, directly obtaining branch coverage is not
feasible. Superion records code coverage using 1 « 20 bytes of
shared memory, recording coverage in one byte per instrumented
location. DIE uses one bit in shared memory to record the coverage
of each instrumentation location. The shared memory used by DIE
is 1 « 16 bytes. Following the method of prior work [48], we obtain
the coverage recorded in the shared memory as the branch coverage
explored by Superion and DIE. Montage, being a black-box fuzzer
without coverage feedback, was omitted from this evaluation.

To evaluate the impact of high-level semantic nodes in FlowIR
on exploring the state space of JS engines, we conducted an ablation
experiment on FuzzFlow. We selected high-level semantic nodes in-
cluding TryNode, CatchNode and ForInNode, disabled support for
these nodes in FuzzFlow, and labeled this version as FuzzFlowNH.
Without these nodes, FuzzFlowNH cannot process the correspond-
ing AST nodes in the JS2Graph stage or generate test cases involving
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these features. We then measured the code coverage achieved by
FuzzFlowNH.

Table 2 presents the results of branch coverage. The row “Im-
provements” indicates the percentage of coverage improvement of
FuzzFlow compared with baselines. Note that the comparison be-
tween Fuzzilli and Superion differs from that presented by Samuel
et al. [20]. This discrepancy arises because Fuzzilli doesn’t employ
the initial seed set in their experimental setup. Our evaluation in-
dicates that the mutation target and operators utilized by Fuzzilli
outperform those of Superion. On all subjects, FuzzFlow achieves
higher coverage than Superion, DIE, and Fuzzilli. FuzzFlow boosted
average coverage by 4.78%. JS engines have extensive codebases,
often exceeding tens of millions of lines. A 4.78% coverage en-
hancement corresponds to an increase of several hundred thousand
lines. These results suggest that the bug-finding abilities of different
fuzzers align closely with their coverage exploration capabilities.
On average, the branch coverage of the target engines triggered by
FuzzFlowNH is 1.32% lower than that triggered by FuzzFlow. This
indicates that FlowIR’s support for high-level JS features enhances
path exploration capabilities. As FuzzFlow expands its support for
these features, its ability to explore the target software’s state space
will also improve.

4.3 RQ3: Effectiveness of Data-Flow Mutation

The low coupling between control flow and data flow in FlowIR
introduces novel mutation opportunities. Altering the data flow of
the seed does not have a direct impact on the control flow, and vice
versa. One immediate benefit of mutating the data-flow subgraph
is the preservation of the seed’s JIT compilation trigger condition,
allowing mutants to continue exerting stress on the engine’s JIT
compiler. To demonstrate that effect, we evaluate the data-flow sub-
graph mutation’s efficacy in upholding the seed’s JIT trigger condi-
tion. We evaluate the fuzzers with a seed corpus that only contains
the JS programs that trigger JIT compilation. We gather the mu-
tants and assess their ability to consistently trigger JIT compilation.
Meanwhile, we evaluate the code coverage of the JIT component
with greov!.

Figure 5 illustrates the proportion of JIT activation by newly
generated inputs. In comparison to Superion, DIE, Montage, and
Fuzzilli, FuzzFlow generates 2.28%, 1.23X, 2.06X, and 1.20X the num-
ber of test cases capable of triggering JIT compilation. Moreover,
FuzzFlow achieved 3.32%, 5.84%, and 9.15% higher line coverage
in the SpiderMonkey engine’s js/src/jit directory (over 330k
LoC) compared to the greybox baselines Fuzzilli, DIE, and Superion,
respectively. Superion and Montage may select a subtree contain-
ing a control structure when it mutates the AST, which potentially
disrupts the control flow characteristics of the seed. In contrast,
DIE, when selecting AST nodes for mutation, strategically filters
certain control structures to focus on structural aspects. In the case
of FuzzFlow’s data flow mutation, the only scenario that might com-
promise existing JIT triggering conditions is altering the number
of loops, potentially falling short of the JIT compilation threshold.
In summary, FuzzFlow’s data-flow subgraph mutation offers finer
mutation granularity, effectively preserving triggering conditions
for engine-specific functions embedded in high-quality seeds.

Ihttps://github.com/mozilla/grcov
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Figure 5: Proportion of tests that trigger JIT compilation

4.4 RQ4: Validity of Generated Input

Generating syntactically correct and semantically valid test cases is
a prerequisite for deep code testing of the targets. A valid test case
is free of syntax and semantic errors and does not trigger uncaught
exceptions during execution. The higher the validity ratio of test
cases generated by the fuzzer, the smaller the proportion discarded
in the early stages of the engine. Upon each test case execution,
the JS engine’s exit code, as well as the output in stdout and stderr,
indicates whether the test case has syntax or semantic errors. We
run both FuzzFlow and baselines for 24 hours and record the ratio of
valid generated tests over all test cases. The experiment is repeated
for 10 rounds, and we used the results of statistical analysis to reduce
the impact of randomness. The validity of test cases generated by
Montage decreases with higher Top-k values. In our study, we set
the Top-k parameter to 64, as Montage performs optimally in defect
detection under this setting. Additionally, this configuration is the
default in their code.

Table 3 reports the result. Overall, FuzzFlow achieves the highest
test case effectiveness on all six engines. To enhance the validity,
baseline fuzzers have dedicated considerable efforts beyond the
mutation operators. For instance, DIE incorporates type attributes
into the AST and mutates the typed AST, while Fuzzilli introduces a
type system to mitigate semantic errors. Montage resolves possible
reference errors by renaming them with the declared identifiers. In
contrast, FuzzFlow does not impose overhead to enhance the gen-
erated test cases. It directly mutates FlowIR, achieving the desired
effect. Two primary reasons contribute to the result: Firstly, Fuz-
zFlow does not alter the syntax structure of the seed. The Graph23S
module generates syntactically correct test cases, thereby resolving
the challenge of syntactic correctness. Secondly, FuzzFlow performs
mutation within the constraints of the node type, leveraging the
node’s subtype functions as a JS type system. The occurrence of
semantic errors is notably reduced.

4.5 RQ5: Throughput of FuzzFlow

Throughput refers to the quantity of test cases that the fuzzer
mutates and executes within a given time unit. The program repre-
sentation to mutate stands out as a crucial determinant influenc-
ing throughput. Given that FlowIR represents a newly developed
mutation target, a key area of our focus is to assess whether it
introduces substantial transformation overhead in comparison to
established methodologies. We conducted a throughput compari-
son between FuzzFlow and baselines. The results are presented in
Table 4, where throughput is measured by the number of test cases
executed within 24 hours. In summary, FuzzFlow exhibits a 4.19%,
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Table 3: The semantic correctness of tests generated by Fuz-
zFlow and baselines

Subject Metric ‘ FuzzFlow Superion DIE  Montage Fuzzilli

Average | 69.18% 39.43%  60.07%  34.38%  58.20%

SM Improvement - 29.75% 9.11% 34.80% 10.98%
Arz - 0.99 0.99 0.99 0.99

pu - <0.01 <0.01 <0.01 <0.01

Average | 72.04% 38.96%  58.26%  35.54%  51.53%

Vs Improvement - 33.08% 13.78%  36.50% 20.51%
Arz - 0.99 0.99 0.99 0.99

U - <0.01 <0.01 <0.01 <0.01

Average | 70.23% 32.97%  61.83%  35.15%  50.93%

JsC Improvement - 37.26% 8.40% 35.08% 19.30%
Arz - 0.99 0.99 0.99 0.99

pU - <0.01 <0.01 <0.01 <0.01
Average | 72.18% 35.52%  56.40%  35.09% -
CH Improvement - 36.66%  15.78%  37.09% -
Arz - 0.99 0.99 0.99 -
U - <0.01 <0.01 <0.01 -

Average | 64.55% 36.52%  57.79%  38.90%  57.03%

JERRY ImprovemeAnt - 28.02% 6.76% 25.65% 7.52%
Arz - 0.99 0.99 0.99 0.99

U - <0.01 <0.01 <0.01 <0.01

Average | 69.28% 37.41%  61.95%  38.56%  63.09%

Qs Improvement - 31.87% 7.33% 30.72% 6.19%
Arz - 0.99 0.99 0.99 0.99

pU - <0.01 <0.01 <0.01 <0.01

Average Improvement ‘ - 32.77%  10.19%  3331%  12.90%

11.55% and 2.62X improvement of throughput compared to AST-
based DIE, Montage, and bytecode-based Fuzzilli but falls short of
the throughput achieved by Superion. The elevated throughput of
FuzzFlow indicates that the mutation on FlowIR does not introduce
significant additional performance overhead. This is a crucial factor
for efficiently identifying defects within a specified time interval.

FuzzFlow’s superior throughput is attributed to two key factors.
Firstly, stored seeds in the queue remain in FlowIR format. Conse-
quently, during the fuzzing process, each mutation only necessitates
a one-way conversion from FlowlR to JS. Secondly, FuzzFlow is im-
plemented in C++. This choice of a system-level language provides
a notable efficiency advantage compared to DIE, which employs
TypeScript for mutation. It is noteworthy that, in addition to observ-
ing the throughput of a fuzzer, the quality of generated test cases
holds more significance. Test cases of inferior quality may fail to
adequately cover the critical path of the engines. Despite FuzzFlow
exhibiting a lower throughput than Superion, it is important to
highlight that the validity ratio of test cases produced by FuzzFlow
and the exploration of code coverage surpass those achieved by
Superion to a significant extent.

4.6 Case Studies

Mutation on data-flow subgraph. Issue-261949 represents a de-
fect identified by FuzzFlow in Safari’s JavaScriptCore. Listing 3
illustrates a simplified test case that triggers the bug. The initial
seed for this test case originates from Safari’s regression test case
regress-176485. js. The seed includes both try-catch and invo-
cation of the Object.defineProperty method, encompassing two
critical control-flow semantics.

FuzzFlow preserves the existing control flow within the seed,
with data-flow subgraph mutation playing a pivotal role in defect
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Table 4: The total number of tests executed during 24-hour
fuzzing by FuzzFlow and baselines

Subject  Metric ‘ FuzzFlow  Superion DIE Montage  Fuzzilli
M Average 656.40k 1,121k 143.58k 213.08k 337.17k
pU - <0.01 <0.01 <0.01 <0.01
Vs Average 530.25k 1,970k 134.88k 229.00k 250.32k
pU - <0.01 <0.01 <0.01 <0.01
JsC Average 422.91k 3,218.40k 294.02k 294.3k 85.16k
pU - <0.01 <0.01 <0.01 <0.01
CH Average 265.98k 1,688.76k 177.90k 204.25k -
pu - <0.01 <0.01 <0.01 -
JERRY Average | 3,641.91k 18,973.78k 1,257.79k  137.85k  1,575.27k
pu - <0.01 <0.01 <0.01 <0.01
QJs Average | 7,629.24k  19,056.02k  703.82k 219.40k  4,345.47k
pU - <0.01 <0.01 <0.01 <0.01

detection. Records indicate that the applied mutation operators
encompass five data-flow subgraph mutations. Notably, the first
two parameters of the Object.defineProperty method call at line
4, the method name assign, and the parameters at line 6, are all
derived from data flow mutation. By altering data-flow semantics
through the amalgamation of independent data-flow subgraphs
across the seed set, FuzzFlow successfully triggers this edge case.

var x = Object();
2 try {
var a = {};
var b = Object.defineProperty(Object, 1, a);

s var y =

} catch(e) {3}

Object["assign"]1(x, Object);

Listing 3: Test case produced by FuzzFlow which triggers
issue-261949 in JavaScriptCore

Semantic meaningful mutation. CVE-2023-5728 denotes a vul-
nerability identified by FuzzFlow within Firefox’s SpiderMonkey.
This bug specifically resides in the engine’s garbage collector, stem-
ming from an issue in the engine update process related to weakRefMap
when a WeakRef target is cleared. Consequently, the test case trig-
gers a crash upon a validity check detecting the presence of a dead
wrapper within the weakRefMap.

FuzzFlow generates the test case in Listing 4 through effective se-
mantic mutations. The attribute names (representing data flows in
FlowIR), namely nukeA11CCWs, WeakRef, and transplantableOb-
ject, are sourced from three distinct seeds. It is noteworthy that the
initial seed set lacks a seed containing all the aforementioned data
flows. The control flows new newGlobal and bar.deref are both
extracted from SpiderMonkey’s regression test case tests_gc_
weakRef's. js. The bug has existed for over three years. FuzzFlow’s
semantic mutation successfully merges the specified control flows
and data flows in the final test case.

const g = newGlobal ({newCompartment: true});

2 const domObj = this.transplantableObject().object;

3 const bar =

new g.WeakRef (domObj);
bar.deref ();

5 this.nukeAllCCWs();

Listing 4: Test case produced by FuzzFlow which triggers
CVE-2023-5728
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5 Discussion

In this section, we discuss the limitations of our approach and the
possible future works.

Intra-procedural Analysis. FlowIR emerges from intra-procedural
analysis, where each procedure is represented by a distinct graph.
The inherent limitation of intra-procedural analysis lies in its dis-
regard for the global context of the program, concentrating solely
on dependencies within individual methods. This narrow focus
may lead to the oversight of global dependencies, including those
between different procedures. Inter-procedural analysis [36], on
the other hand, proves adept at addressing this issue by considering
dependencies between procedures and offering a holistic view of
the entire program. Nonetheless, the adoption of inter-procedural
analysis often comes with an associated increase in computational
resources. FuzzFlow is a first but substantial step in this direction.
Bug Oracle. In fuzzing, bug oracle determines whether a given
execution of the target program violates a specific security policy
[33]. The most frequently employed bug oracle involves monitoring
whether the input causes an execution crash. Additionally, the JS
engines detect defects through internal self-checks (i.e., assertions).
After the engine detects an assertion error, it will deliberately ini-
tiate a crash. However, there are still defects that may not lead to
a crash. For instance, incorrect optimization by the JIT compiler
might not result in memory corruption or assertion error. Improv-
ing the bug oracle can consequently enhance the effectiveness of
vulnerability detection.

A commonly utilized solution is differential testing. Differen-
tial testing relies on another implementation of the exact same
functionality as a reference. It involves comparing the execution
outcomes of different JS engines or optimization levels, enabling
the detection of non-crash defects. Differential testing has demon-
strated significant efficacy in identifying JIT-related optimization
defects [3] and conformance bugs [52].

The mutation target and bug oracle are two orthogonal chal-
lenges in fuzzing. The FlowIR-based mutation target outlined in
this paper is adaptable and can be extended to support other testing
oracles. Our upcoming research direction entails the integration of
differential testing into FuzzFlow. However, these aspects are not
central to the present paper. Our key contribution is introducing a
graph-based IR that allows the representation of JS programs with
efficient fuzzing mutators.

6 Related Work

Fuzzing JS Engines. Existing JS engine fuzzers fall into two cat-
egories based on the construction of new test cases: generation-
based and mutation-based. Notable examples of generation-based
fuzzers include Jsfunfuzz [35] and CodeAlchemist [21]. Jsfunfuzz is
a black-box fuzzer developed by Mozilla, it creates new test cases
using pre-defined grammars. CodeAlchemist learns the language
semantics from a corpus of JS seed files, it extracts code bricks, and
subsequently reassembling them.

The Superion study [47] shows that the mutation operator based
on AST, owing to its syntax awareness, is more effective in ex-
ploring the JS engine compared to vanilla AFL. DIE [37] employs
AST as its mutation target and advocates for an enhancement in
the utilization of high-quality seeds through aspect preservation.
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Specifically, aiming to improve the testing of the JIT compiler, DIE
endeavors to preserve the structure and type semantic aspects of
the seed AST throughout the mutation. These two aspect features,
structure and type, serve as approximations of specific control-flow
structures and data flow features. Preserving these semantic fea-
tures proves to be beneficial for testing deep locations within the
engine. In contrast to DIE, this paper proposes the FlowIR, which
directly represents control flow and data flow as a mutation target,
facilitating preserving the semantic features more seamlessly.

Instead of mutating the AST, specific IRs have been proposed.
Samuel et al. [20] propose to operate at bytecode level, which is
closer to the engine’s internal representation of the code. They
introduce Fuzzilli and employ a new IR called FuzzIL to stress the
JIT compiler. PolyGlot [5] is a fuzzing framework that generates
high-quality test cases for processors of different programming
language. To achieve the generic applicability, PolyGlot neutralizes
the difference in syntax and semantics of programming languages
with a uniform IR. The IR used in PolyGlot consists of a list of
statements. Each statement includes an order, a type, an operator,
no more than two operands, a value and a list of semantic prop-
erties. In contrast to the bytecode IR used by Fuzzilli, our FlowIR
supports the direct mutation on the semantics of the seed, as the
mutation target itself embodies the semantics. Compared with Poly-
Glot, this paper recognizes the difference (e.g., type system, memory
management, concurrency) among programming languages, and
therefore focuses on the IR of JS. The idea of FlowIR-based mutation
is extensible to other programming languages.

Existing fuzzers have targeted specific components like binding
layers or JIT compilers. Favocado [10] focuses on fuzzing binding
layers of JS runtime systems. It aims to generate syntactically and
semantically correct test cases and reduce the size of the input space
for fuzzing. FuzzJIT [48] leverages differential testing as an bug
oracle to detect non-crashing JIT compiler bugs. To facilitate each
test case in triggering the JIT compilation, Fuzz]JIT introduces an
input-wrapping template based on human knowledge. In contrast
to Fuzz]JIT, FuzzFlow is oriented towards leveraging the inherent
characteristics of the seeds themselves. Section 4.1 verifies the vul-
nerability detection efficacy of FuzzFlow on non-JIT components.
Mutation Operators. Mutation-based grey-box fuzzing offers dis-
tinctive advantages in detecting vulnerabilities. Combined with
evolutionary algorithms, mutation-based fuzzers explore the state
spaces of the target gradually. Established fuzzers like AFL and
Honggfuzz [17] have pre-defined a set of mutation operators. For
instance, AFL regards test cases as byte sequences and applies muta-
tors such as byte insertion, modification, or deletion. The mutation
operator stands as the core component of the fuzzer [50].

Researchers have conducted studies on the scheduling of muta-
tion operators. MOPT [32] introduces a scheduling scheme based
on the particle swarm optimization algorithm. Building upon AFL,
MOPT introduces a comprehensive mutation operator scheduling
algorithm designed to orchestrate operators predefined by AFL. The
findings indicate that, in comparison with AFL, which selects muta-
tion operators based on fixed probability, MOPT exhibits advantages
in exploring code coverage and uncovering software defects.

However, there are limited studies on mutation operator design.
The key insight of this paper is that the representation of mutation
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targets influences the design of the operators significantly. There-
fore, we focus on the mutation target itself and subsequently design
several effective mutation operators based on it.

Graph-based Program Representation. Representing the seman-
tics of source programs with graphs is a long-standing research
problem. FlowlIR differs from existing graph IR paradigms such as
PDG [14, 49] and CPG [51].

PDG and FlowIR represent different control relationships. PDG
consists of a Control Dependency subGraph (CDG) and a Data
Dependency subGraph (DDG), with two types of edges: control
dependency edge and data dependency edge. The CDG in PDG,
which is designed to detect potential parallel optimization, is ob-
tained through post-dominator analysis of the Control Flow Graph
(CFG). The control dependency edges indicate that the execution
of a particular statement is conditionally dependent on another. In
contrast, the control flow edges in FlowIR indicate the direct flow
of control from one statement to another. These two types of edges
have distinct purposes in program analysis: CFG edges represent
the possible paths of execution within a program, CDG edges repre-
sent the dependencies based on control conditions, specifically how
the execution of certain parts of the code depends on the outcomes
of conditional statements.

Converting between PDG and source code is more challenging
than with FlowlIR. Firstly, constructing a JS PDG is more complex
than FlowlR, as it involves additional post-dominator analysis be-
yond the CFG. Secondly, converting a PDG back to JS is more
challenging than converting from FlowIR. While no current work
addresses converting PDG back to JS, we believe it is feasible. How-
ever, the reconstruction of control flow from the exact CDG is more
difficult as noted in the PDG paper [14].

The CPG stands out as a popular choice for detecting vulner-
abilities. A CPG integrates graph structures including AST, CFG
and PDG for static analysis. The integration holds all information
relevant to security analysis but is less suitable for program transfor-
mation. Firstly, subgraphs like AST and PDG contain overlapping
semantic content. While this redundancy is manageable in static
graphs, it complicates the design of mutation operators due to syn-
chronization issues in dynamic contexts. For instance, mutations
applied to CPG’s AST necessitate the re-establishment of the CFG
and PDG to preserve semantic consistency. Similarly, mutations in
the PDG necessitate updates to the AST and CFG graphs, raising
similar synchronization concerns. Secondly, converting the mutated
composite graph back to JS source code poses another challenge.
Currently, there is no existing research to guide this process. Addi-
tionally, the conversion between the mutation target and JS must be
fast for effective fuzzing, but current approaches lack performance
optimization. For the reasons discussed, we chose not to develop
FuzzFlow based on Joern [26], despite Joern’s ability to construct
PDG and CPG for JS using the GraalVM ]S project. Joern stores
graphs in a database for static analysis applications. To the best of
our knowledge, there is no research example of converting these
graphs back into source code.

There are other open-source implementations of graph IR. The
GraalVM IR [12] is a graph IR initially conceived for Java but has
been expanded to include support for multiple languages. Both
GraalVM IR and TurboFan IR [16] are derived from bytecode and
subsequently optimized into machine instructions. They are more
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closely aligned with machine instructions, foregoing some source
code-level semantics, rendering conversion back to JS unfeasible.

As described in Section 3.1, FlowIR differs from existing graph
IRs in two key aspects. First, FlowIR is unique as the first graph-
based IR supporting bidirectional conversion with source code,
achieved through a careful redesign of nodes and edges. High-level
semantics in the source code can be expressed in FlowIR, which are
essential for triggering specific processing logic of target language
processors. Second, we precisely define FlowIR’s functional scope
to avoid unnecessary information for mutations. Selecting mutation
positions is a critical research topic in itself [30]. Each node and
edge can be a mutation point, so redundant elements complicate
effective mutation. For example, IRs in PDG paradigm, designed for
parallelism detection, includes control dependency edges. These
edges are crucial for its purpose but unnecessary for semantic mu-
tation. Thus, FlowIR excludes these edges and uses control flow
graphs. Unlike IRs in CPG paradigm, which includes an AST and
for static vulnerability detection, FlowIR focuses on control flow
and data dependency graphs to convey program semantics directly.
The AST in CPG is redundant for semantic mutation, adding un-
necessary complexity without benefit. We highlight the potential
of graph IRs in fuzzing mutation and consider this work a first step,
anticipating future advancements.

7 Conclusion

In this paper, we introduce a new graph IR to implement effective
mutation operators for fuzzing JS engines. One key contribution lies
in the proposal of new mutations for JS programs that are carried out
on the control and data flow directly. Instead of mutating the AST
or bytecode-level IR, FlowIR is developed and mutations are defined
on it. Our evaluation shows that FuzzFlow achieves 18.6% higher
validity of generated test cases and 4.78% higher code coverage.
More importantly, FuzzFlow has found 37 new bugs in mainstream
JS engines.
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