
AIFORE: Smart Fuzzing Based on Automatic Input Format Reverse Engineering

Ji Shi1,2,3,4, Zhun Wang∗2, Zhiyao Feng2,6, Yang Lan2, Shisong Qin2, Wei You5, Wei Zou1,4,
Mathias Payer6, and Chao Zhang†2

1{CAS-KLONAT‡, BKLONSPT§}, Institute of Information Engineering, Chinese Academy of Sciences
2Institute for Network Science and Cyberspace & BNRist, Tsinghua University; Zhongguancun Lab

3Singular Security Lab, Huawei Technologies
4School of Cyber Security, University of Chinese Academy of Sciences

5Renmin University of China
6EPFL

Abstract
Knowledge of a program’s input format is essential for ef-

fective input generation in fuzzing. Automated input format
reverse engineering represents an attractive but challenging
approach to learning the format. In this paper, we address
several challenges of automated input format reverse engi-
neering, and present a smart fuzzing solution AIFORE which
makes full use of the reversed format and benefits from it.
The structures and semantics of input fields are determined
by the basic blocks (BBs) that process them rather than the
input specification. Therefore, we first utilize byte-level taint
analysis to recognize the input bytes processed by each BB,
then identify indivisible input fields that are always processed
together with a minimum cluster algorithm, and learn their
types with a neural network model that characterizes the be-
havior of BBs. Lastly, we design a new power scheduling
algorithm based on the inferred format knowledge to guide
smart fuzzing. We implement a prototype of AIFORE and
evaluate both the accuracy of format inference and the per-
formance of fuzzing against state-of-the-art (SOTA) format
reversing solutions and fuzzers. AIFORE significantly outper-
forms SOTA baselines on the accuracy of field boundary and
type recognition. With AIFORE, we uncovered 20 bugs in 15
programs that were missed by other fuzzers.

1 Introduction

Fuzzing is an efficient technique for finding vulnerabilities
in programs. Typically, fuzzing produces a large number of
inputs and feeds them to programs under test, detecting secu-
rity violations. A smart and effective fuzzer relies on a high
quality of inputs, which enables efficient exploration of the
program state space and increases the chance of triggering
vulnerabilities.

∗Zhun Wang is the co-first author.
†Chao Zhang is the corresponding author.
‡Key Laboratory of Network Assessment Technology, CAS
§Beijing Key Laboratory of Network Security and Protection Technology

Knowledge of the input format is essential to generat-
ing high-quality inputs. The input format describes how the
program expects the input bytes to be organized. Ideally,
well-formatted inputs will be parsed and processed properly,
achieving the desired results. Ill-formed inputs will be filtered
out by sanity checkers in the program and discarded early.
Therefore, the fuzzer can generate inputs following the for-
mat specification, which will help bypass some sanity checks
in shallow code, and finally, reach and test deeper and more
complex code. Besides, because the sanity mechanisms in
programs are not always sound and complete, it is highly pos-
sible that some inputs against the format specification are not
filtered out but passed to deeper code [1]. These inputs usually
have a greater chance of triggering unexpected behavior or
bugs, and therefore should be favored by the fuzzer. Thus, the
fuzzer can produce valuable inputs for both exploration and
exploitation purposes with the guidance of format knowledge.

There are abundant works on input format inference and
format-guided smart fuzzing. In general, such solutions try to
answer three core questions regarding the input format: (1)
where the boundaries of different input fields are, (2) which
types these fields belong to, and (3) how to utilize the knowl-
edge of input format to guide fuzzing. However, existing
solutions so far only address parts of these problems or have
limitations.

Regarding the input field boundary recognition, existing
studies [2–4] mainly rely on statistical analysis or dynamic
taint analysis to group bytes processed by the same instruction
into a unique field. Such solutions have several limitations.
First, an instruction may process multiple input fields, e.g.,
in a loop, and thus these fields will be erroneously merged
into one field. Further, a long field would be processed by
different instructions and be erroneously split into multiple
fields, because one instruction, in general, cannot process data
beyond the machine word size (e.g., 4 bytes for a 32bit CPU).
Lastly, identifying fields through statistical analysis requires
lots of different inputs, which are often not available.

Regarding the input field type identification, existing solu-
tions [5–7] in general rely on prior knowledge (e.g., parameter

types of some standard library calls like strcpy) to extract the
type of fields being passed in. Nevertheless, such prior knowl-
edge is scattered and requires intensive engineering efforts
to convert to heuristic rules and apply them, which will also
inevitably introduce false positives and false negatives. More-
over, such solutions can generally only recognize program
variable types (e.g., int, array, and string) rather than se-
mantic types (e.g., magic number, size, or checksum), since
they do not model how the input fields affect the program’s
behaviors from the semantic level.

Regarding the utilization of input format, existing fuzzing
solutions [2,8–10] in general use the input format to guide test
case generation or mutation to reach deeper code in the target
program. Besides, some solutions also use format knowledge
to determine if a seed is good or not. For example, AFLS-
mart [10] assigns more power (i.e., performing more muta-
tions) to well-formed seeds, which can be parsed success-
fully by Peach [11] (a generation-based fuzzer with manually
crafted input specification templates). However, it cannot dis-
tinguish the quality of seeds if given a simple template without
field relation constraints (Table 1).

Our approach: To address these challenges, we propose
AIFORE which automatically reverses input formats, later
using them to smartly guide fuzzing. The core insight is that,
since input fields are interpreted by BBs, the structural and
semantic information of inputs can be inferred from them, no
matter what the input format specification is like. Thus, we can
learn the structures and semantics of input fields by analyzing
BBs that process them, and then utilize the knowledge to
conduct smart fuzzing.

First, AIFORE utilizes dynamic taint analysis to learn
which input bytes are processed by each BB. Note that, a
single indivisible field may be partially processed by multiple
instructions in one BB, but is unlikely to get partially pro-
cessed by multiple BBs, since these BBs will not always get
executed together but an indivisible field should get analyzed
together. As a result, we assume that BBs can be used as a
basis to identify field boundaries. Given the taint analysis
results, we split field boundaries by recognizing indivisible
fields via a minimum cluster algorithm. (§3.1)

Second, AIFORE builds a deep learning model to com-
prehend BBs, i.e., to predicate the type of input fields pro-
cessed by them. Note that, BBs process different types of
input fields (e.g., size, offset, enum, string, checksum, or
magic number) differently. Therefore, we train a Convolu-
tional Neural Network (CNN) model [12] to learn the patterns
of how BBs process different types of input fields and then
predict the semantic type of input fields. (§3.2)

Third, we design a novel power scheduling algorithm based
on the format dynamically extracted during fuzzing to im-
prove fuzzing efficiency. Note that, a program may still accept
inputs that do not satisfy the specification [1], as well as inputs
of different format variants. Different variants of input formats
have different impacts on program behaviors. Therefore, we

present a two-step strategy to utilize the format knowledge,
i.e., recognizing new variants and prioritizing infrequently
tested formats. First, we pick test cases that have significantly
different code coverage and re-analyze their input formats,
since they are likely to have different formats. Second, we
prioritize the seeds whose formats are less frequently tested
during fuzzing, and increase their mutation power. (§3.3)

Results: We compare AIFORE prototype with SOTA
format-aware fuzzing solutions and input reversing works,
including ProFuzzer [8], TIFF-fuzzer1 [6], WEIZZ [9], Eco-
Fuzz [13], AFL-Analyze [14], and AFLFast [15]. We conduct
experiments on 15 different types of formats and 15 well-
tested real-world programs, including document readers, mul-
timedia processors, packet parsers, compression tools, and
network protocol analyzers. The results show that AIFORE’s
format reverse engineering module achieves high accuracy for
different seed sizes and different compiler optimization levels
(§5.1). AIFORE’s average accuracy of field boundary recogni-
tion is 84.06%,2 compared to the corrected ground truth from
010 Editor3, while the accuracy of ProFuzzer, TIFF-fuzzer,
and AFL-Analyze are 36.27%, 63.14%, and 23.73%, respec-
tively (§5.2). Regarding the field type identification, AIFORE
correctly predicts the type with an accuracy of 84.26% in
untrained formats and programs, higher than ProFuzzer’s
56.60% and AFL-Analyze’s 36.76% (§5.2). At last, we apply
the extracted format knowledge and the power scheduling
algorithm to fuzzing. In the testing of 24 hours, AIFORE out-
performs other fuzzers in BB coverage (6% higher than Pro-
Fuzzer, 26% higher than WEIZZ) and finds 20 bugs missed
by other fuzzers (§5.3).

In summary, we make the following contributions:
• We propose a field boundary recognition method, which

utilizes taint analysis to identify relationships between
input bytes and BBs, as well as a minimum cluster algo-
rithm to split indivisible input fields.

• We present a novel deep learning–based solution to pre-
dict the type of input fields processed by BBs.

• We present a novel format-based power scheduling algo-
rithm to explore infrequent types of inputs.

• We implement a novel smart fuzzing solution AIFORE
and systematically evaluated it on a wide range of in-
put formats and programs. Results show that it has a
much better performance on input format recognition
and format-aware fuzzing than SOTA solutions.

2 Motivational Example

In this section, we take readelf as an example to illustrate
how it parses the ELF file format and summarize the limita-
tions of existing approaches.

1We use TIFF-fuzzer to distinguish it from the file format TIFF.
2We calculate the arithmetic mean of the accuracy in Table 6.
3A popular commercial editor which can resolve different file formats.

Homepage: https://www.sweetscape.com/010editor/

https://www.sweetscape.com/010editor/

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: 7F 45 4C 46 01 01 01 00 00 00 00 00 00 00 00 00

0x10h: 02 00 03 00 01 00 00 00 74 80 04 08 34 00 00 00

0x20h: A4 00 00 00 00 00 00 00 34 00 20 00 02 00 28 00

0x30h: 04 00 03 00

Magic Number E_ident

Magic Enumeration Offset Size

Address of Program Header

E_flags

String

E_type E_version Address

Address of Section Header ELF Header Size Header Size Header Number Sec Header Size

Sec Header Num Sec Header Index

E_machine

Checksum

Ei_padClass Data Version Osabi Abiver.

(a) ELF file header structure of 32bit.
0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: 7F 45 4C 46 02 01 01 00 00 00 00 00 00 00 00 00

0x10h: 01 00 3E 00 01 00 00 00 00 00 00 00 00 00 00 00

0x20h: 00 00 00 00 00 00 00 00 58 D0 03 00 00 00 00 00

0x30h: 00 00 00 00 40 00 00 00 00 00 40 00 3D 00 10 00

Magic Number Class Ei_pad E_ident

Magic Enumeration Offset Size

Address of Program Header

E_flags

Data Version Osabi Abiver.

String

E_type E_version Address

Address of Section Header

ELF Header Size Header Size Header Number Sec Header Size Sec Header Num Sec Header Index

E_machine

Checksum

(b) ELF file header structure of 64bit.
Figure 1: ELF file header definition.

An ELF file consists of several data structures (e.g., file
header, program header, and section header), each composed
of several fields. For the file header structure as shown in
Figure 1, it has some fields consisting of consecutive bytes
(e.g., magic number from offset 0x00 to 0x03) and some
fields with single-byte values (e.g., class at offset 0x04).
Take the e_machine at offset 0x12 as an example, it indicates
the machine architecture (e.g., AArch64, i386, or x86_64),
which changes the structure of ELF (e.g., the length of address
fields can be four or eight bytes, marked with the red box).

Listing 1 shows the code snippet of readelf, which
parses inputs of ELF format. We can see that there are
two main steps to parse the input file. The first step is to
read the input and initialize certain variables correspond-
ing to the input fields. For example, line 3 to line 6 read
the fields from the input and initialize corresponding vari-
ables (e.g., file_header.e_machine). The next step is to
further process these initialized variables in the function
process_file_header. Different BBs are used to process
different types of variables (i.e., input fields). For example,
the four-byte magic number is compared one byte at a time
on line 21, while the e_machine is handled as an enumeration
with a switch-case statement.

From this example, we observe the following:
Observation 1: In most cases, bytes in an indivisible field

are parsed together in one BB. For example, the two-byte
field e_machine is processed as a whole in the block starting
at line 4, and another block starting at line 10. For the field
e_shstrndx, it is parsed together in BBs at line 27. However,
there are corner cases in which parts of one field (e.g., magic
number field parsed at line 21) can be parsed in different BBs.
Developers’ code style and compiler optimizations would
affect whether to parse them as one entity or separately. We
will illustrate this further in §5.1.1.

Besides, one BB may process multiple fields and get ex-
ecuted multiple times at runtime. For example, BBs in the
BYTE_GET function are executed multiple times to read from
the input buffer and extract different fields to assign different
variables.

Listing 1: Source code taken from readelf, which is respon-
sible for parsing ELF format input.
1 #define BYTE_GET(field) byte_get(field , sizeof (field))
2 static bfd_boolean get_file_header (Filedata * filedata

){
3 ...
4 filedata ->file_header.e_machine = BYTE_GET(ehdr32.

e_machine);
5 filedata ->file_header.e_shnum = BYTE_GET(ehdr32.

e_shnum);
6 ...
7 }
8 void init_dwarf_regnames_by_elf_machine_code(unsigned

int e_machine){
9 dwarf_regnames_lookup_func = NULL;

10 switch (e_machine){
11 case EM_386:
12 init_dwarf_regnames_i386 ();
13 break;
14 case EM_X86_64:
15 init_dwarf_regnames_x86_64 ();
16 break;
17 ...
18 }
19 }
20 static bfd_boolean process_file_header (Filedata *

filedata){
21 if (header ->e_ident[EI_MAG0] != ELFMAG0 ||...||

header ->e_ident[EI_MAG3] != ELFMAG3){
22 return error;
23 }
24 ...
25 init_dwarf_regnames_by_elf_machine_code(filedata ->

file_header.e_machine)
26 ...
27 if (header ->e_shstrndx != SHN_UNDEF && header ->

e_shstrndx >= header ->e_shnum){
28 printf("corrupt");
29 }
30 ...
31 }

Observation 2: The program code processing fields of
different types shows different patterns. For example, an enu-
meration variable (e.g., e_machine) is very likely to be pro-
cessed by a switch-case statement, and a size variable (e.g.,
e_shnum) may be processed by mathematical operations.

Observation 3: The structure of the input may differ, and
the program will dispatch distinct code to parse the input. For
example, the variation of e_machine may indicate a different
data structure, like the length of address fields marked with
the red box in Figure 1. If a new structure is found during
fuzzing, the fuzzer should re-assign the power and use the
corresponding format knowledge to get more coverage.

From these observations, we summarize that the existing so-
lutions have the following limitations. First, splitting fields at
the instruction level is not generally appropriate. For example,
instructions in BYTE_GET may parse multiple fields and will
cause different fields to be merged erroneously. Second, most
existing solutions of field type identification rely on human-
extracted code patterns , which are labor-intensive and cannot
cover complicated cases. For instance, there could be multiple
BB patterns given one input field type. Third, existing format-
aware fuzzing solutions have limitations when considering the
power scheduling during fuzzing. For example, ProFuzzer [8]

Initial Seed

Taint
Analysis

Binary

Format Template

(insn, offset)

Field Boundary Analysis
(§3.1)

BB Level
Merge

Minimum
Cluster

Field Type Classification
(§3.2)

Field Feature
Extraction CNN

Valuable Seed

Field Type

Field Boundary

Fuzzing with Power Scheduling
(§3.3)

Seed
Analysis

Format-Aware
Mutation

Power
Reassign

Figure 2: Architecture of AIFORE.

only analyzes the seeds it considers valuable to extract format
knowledge and does not re-assign the fuzzing power to these
valuable seeds. The validity-based power scheduling highly
depends on Peach [11] and the constraints (e.g., checksum or
size) in the pit file. Peach is a fuzzing framework that can
generate program input with a given format model called a
pit file. AFLSmart defines the degree of validity v(s) of a
seed s based on how many input bytes can be parsed by Peach
and assigns more power to the seeds with higher v(s). In the
extreme case, if there is no constraint in the pit file, Peach
will parse the input successfully in most cases and assign a
100% degree of validity to it. To verify this, we choose seven
formats and target programs to observe to which degree the
validity changes during fuzzing in AFLSmart. We choose
these targets since AFLSmart provides the corresponding pit
files, and they contain a few constraints, like checksum, size,
and others.

We divide the experiments into two groups. For the first
group, we launch AFLSmart with its original, provided pit
files, containing the description of the constraints between
fields. For the second group, we feed AFLSmart with cus-
tomized pit files. These pit files only describe field bound-
aries and types, without complex constraints. We use AFLS-
mart to fuzz for 12 hours and collect thousands of seeds
for both groups. We collect the number of seeds considered
"valid" and assigned a high degree of validity by AFLSmart.

From the result (Table 1), we conclude that v(s) is almost
100% when we feed AFLSmart with pit files that lack con-
straints. Almost all the seeds have the same degree of validity,
which makes the power scheduling fall back to AFL, despite
the format quality of the seeds varies. However, if we feed

Table 1: AFLSmart’s degree of validity v(s), average
v(s) / ratio of (v(s)⩾ 50%)

Format Program1 pit w/ Constraints pit w/o Constraints
ELF readelf 0.15%/0.14% 100.00%/100.00%
GIF gif2tiff 0.58%/0.59% 100.00%/100.00%
JPG jhead 0.06%/0.06% 100.00%/100.00%

PCAP tcpdump 3.48%/3.73% 100.00%/100.00%
PNG pngtest 35.23%/29.90% 100.00%/100.00%
WAV sfinfo 52.86%/54.27% 100.00%/100.00%
ZIP 7za 0.13%/0.13% 100.00%/100.00%

1 Parameters are shown in Table 2

AFLSmart with well-prepared pit files, the distributions vary
for different formats and programs. For PNG, the average of
v(s) decreases to 35.23%, and 29.90% of them are no less
than 50%, which is the key threshold to judge the quality of a
seed file in AFLSmart. In AIFORE, we design a new power
scheduling algorithm to re-assign the energy to those formats
that are seldom fuzzed.

3 Design

The architecture of AIFORE is shown in Figure 2. During
fuzzing, if the coverage increment a seed brings is distinguish-
able (i.e., increasing 3% of the average coverage), we then
mark it as a valuable seed. For each valuable seed, we use
AIFORE to analyze its format and fuzz the file with a format
model including the extracted knowledge of field boundary
and field type. The core insight of AIFORE is that the in-
put format knowledge can be inferred from patterns of BBs
processing the input file. Therefore, AIFORE utilizes taint
analysis to construct a map between input bytes and the BBs
processing them. Figure 3 demonstrates two BBs taken from
readelf which parse the input format in the motivation ex-
ample. The annotation at the end of each instruction lists the
offsets of input bytes processed by it, traced by the taint
analysis engine.

Given the knowledge of input bytes processed by each in-
struction, the following three modules jointly reverse the input
format and balance the fuzzing power to the seeds. The first
module analyzes the field boundary and splits the input into
fields, i.e., consecutive bytes which have the same semantics
concerning the impact on program behaviors. The second
module predicts the field type information via a CNN-based
model, which is trained to comprehend how a program parses
different types of fields. The field boundary and field type
consist of the format template (i.e., a peach pit file). For each
field, we record its boundary with its start position and size
and its type. The last module will decide which seed is worth
format extraction and will re-assign more fuzzing power to
those less mutated formats.

3.1 Field Boundary Analysis
Identifying the boundary of different fields is a fundamental
task for reverse engineering of input formats. Given Observa-
tion 1, a field consisting of consecutive input bytes is usually
processed as a whole in each BB. We thus propose to split
fields with a minimum cluster (MC) method from the block
level rather than the instruction level as Tupni [4] and Poly-
glot [3] did. The overall process is shown in Algorithm 1.
First, we split the binary code into BBs. As shown in Figure 3,
we will get two BBs from line 4 in Listing 1. Second, we
collect and merge the input bytes processed in one BB. For
instance, the first BB in Figure 3 processes two input bytes
at offsets 18 and 19, and the second BB (BYTE_GET at line

1 ; get_file_header
2 . text : 0x4405B8 mov edx , eax ; (18 , 19)
3 . text : 0x4405BA mov rax , [rbp + filedata]
4 . text : 0x4405BE mov [rax + 52h] , dx ; (18 , 19)
5 . text : 0x4405C2 mov rax , cs : get_byte
6 . text : 0x4405C9 lea rdx , [rbp + ehdr64]
7 . text : 0x4405CD add rdx , 14h
8 . text : 0x4405D1 mov esi , 4
9 . text : 0x4405D6 mov rdi , rdx
10 . text : 0x4405D9 call rax ; get_byte

11 ; get_byte
12 .text : 0x46DCF2 mov rax , [rbp + field]
13 .text : 0x46DCF6 movzx eax , byteptr[rax] ; (16 , 18 , 40 , 42 , 44 , 46 , 48 , 50)
14 .text : 0x46DCF9 movzx eax , al ; (16 , 18 , 40 , 42 , 44 , 46 , 48 , 50)
15 .text : 0x46DCFC mov rdx , [rbp + field]
16 .text : 0x46DD00 add rdx , 1
17 .text : 0x46DD04 movzx edx , byteptr[rdx] ; (17 , 19 , 41 , 43 , 45 , 47 , 49 , 51)
18 .text : 0x46DD07 movzx edx , dl ; (17 , 19 , 41 , 43 , 45 , 47 , 49 , 51)
19 .text : 0x46DD0A shl edx , 8 ; (17 , 19 , 41 , 43 , 45 , 47 , 49 , 51)
20 .text : 0x46DD0D or eax , edx ; (16 , 17 , 18 , 19 , 40 , 41 , 42 , 43 ,
44 , 45 , 46 , 47 , 48 , 49 , 50 , 51)
21 .text : 0x46DD0F mov eax , eax ; (16 , 17 , 18 , 19 , 40 , 41 , 42 , 43 ,
44 , 45 , 46 , 47 , 48 , 49 , 50 , 51)
22 .text : 0x46DD11 jmp locret_46DFC8

Figure 3: Basic blocks to parse e_machine.

Algorithm 1 Field Boundary Analysis
Input: BinaryProgram, TaintTrace
Output: FieldBoundaries ▷ A list of field intervals without overlapping
1: BBs = EXTRACTBB(BinaryProgram)
2: BB_to_taint = Dict[BB, Set] ▷ Map a BB to a set of tainted offsets
3: foreach inst ∈ TaintTrace do ▷ Merge inst-level taint to BB-level
4: BB = ADDRTOBB(inst.addr, BBs)
5: taint_offset = EXTRACTTAINTOFFSETFROMTRACE(inst)
6: BB_to_taint[BB].udpate(taint_offset)
7: FieldBoundaries = []
8: foreach taint_offset ∈ BB_to_taint.values() do
9: interval_lst = SPLITTOCONSECUTIVE(taint_offset)

10: foreach interval ∈ interval_lst do
11: FieldBoundaries.append(interval)
12: SPLITOVERLAPPEDINTERVALS(FieldBoundaries)

▷ Split overlapped intervals with the sorted end-points
13: return SORTED(FieldBoundaries)

1 in Listing 1) processes bytes at offsets 16–19 and 40–51.
The second BB is common in programs since they would
first read different fields in the input as a whole to a buffer in
the memory, then the program will parse them accordingly.
Third, we split fields based on each block’s taint attributes
both in general BBs (e.g., BYTE_GET) and field-specific ones.
For each MC of consecutive bytes, which is processed as a
whole in all BBs, e.g., the bytes at (18, 19) in Figure 3, will
be recognized as a field.

The MC method can find most input fields correctly. How-
ever, there are some exceptions that the field boundaries are
different from the specification. This is because the program
parses the field in its way. For example, the program may
check the magic number byte by byte rather than as a whole.
In such cases, MC may fail to group the bytes into a single
field. We will explain it with an actual example in §5.1.1.

3.2 Field Type Classification
Based on Observation 2, we propose to classify the pattern of
BBs to infer the type of input fields processed by them. Previ-
ous works [16, 17] have proved that neural network models
are effective at extracting hidden features and outperforming
humans in several classification tasks. Thus, here we utilize
neural networks to model BBs that process input fields.

Specifically, given a field type and the code snippets that

loc_4069E0:
movzx edi, word ptr[ole+22h] ; size
xor eax, eax
mov byte ptr [olest+3Dh], 1
lea rdx, [rdi-1] ; size-1
mov [olest+38h], edi
cmp rdx, 0FFFFFFh ; size-1
ja short cleanup

loc_4069FE:
call _malloc

cleanup: ; ptr
mov rdi, rax
call _free
mov rdi, olest ; ptr
xor r12d, r12d
olest = rdi ; OLE2Stream_0 *
call _free

Figure 4: Forward slicing example.

parse and use the fields of this type, we build a CNN model
to map the latter to the former. We, therefore, collect a large
number of training data consisting of code snippets and the
types of fields processed by them. Then we train a CNN
model to predicate the field type from a target code snippet.

3.2.1 Field Types

We consider the semantic types (e.g., offset or checksum)
of fields rather than their program variable type [18, 19] (e.g.,
int or string). Such semantic types are more challenging to
identify than variable types but are more beneficial to fuzzing.
In our prototype, we support six semantic types which can
help the fuzzer mutate the field more efficiently for most
real-world programs.
• Size. This type of field represents the length of a data chunk

consisting of one or multiple fields in the input file. For
example, the e_ehsize field at offset 0x28 in Figure 1 in-
dicates the header size is 0x34 bytes.

• Enumeration. This type of field can only take a limited set
of valid values. For example, the e_type field indicates the
binary type, taking one of the seven valid values defined in
the ELF format [20].

• Magic number. This type of field, in general, serves as the
signature of a file. For example, the first four bytes of an
ELF file is a magic number with the value "\x7fELF".

• String. This type of field indicates a string literal, either in
ASCII, Unicode, or other encodings.

• Checksum. This type of field is used to verify the integrity
of a part of data in the input and is common in media files,
compressed files, and font formats (e.g., PNG, ZIP, or TTF).

• Offset. This type of field indicates the location of another
chunk of data in the input. For example, the e_shoff field
at offset 0x20 in Figure 1 indicates the offset of the section
header.

3.2.2 Training Data Collection

We use the input format knowledge provided by the 010 Editor
tool as the ground truth. We pick some well-known formats
and programs that process them, then perform the taint anal-

Algorithm 2 Data Vectorization
Input: FieldOffset, BinaryProgram, TaintTrace
Output: FeatureOffset
1: IRFEATURE = [‘CmpNEZ’,‘MSubF’, ...]
2: LIBCALL = [‘memcpy’,‘strcpy’, ...]
3: FORMATSTR = [‘%s’,‘%d’, ...]
4: BBs = EXTRACTBB(BinaryProgram)
5: FeatureOffset = [0]*(len(IRFEATURE)+len(LIBCALL)+len(FORMATSTR))
6: foreach BB ∈ BBs do
7: if ISBBPROCESSED(BB) then ▷ Skip if BB has been processed be-

cause of forward slicing
8: continue
9: if ISBBTAINTED(FieldOffset,TaintTrace,BB) then

10: BB = FORWARDSLICING(BB)
11: ir_lst = EXTRACTIR(BB) ▷ Vectorize IR features
12: ir_feature = [0]*len(IRFEATURE)
13: foreach operation ∈ ir_lst do
14: index = IRFEATURE.index(operation)
15: ir_feature[index] += 1
16: str_lst = EXTRACTFS(BB) ▷ Vectorize format string features
17: str_feature = [0]*len(FORMATSTR)
18: foreach str ∈ str_lst do
19: index = FORMATSTR.index(str)
20: str_feature[index] += 1
21: libcall_lst = EXTRACTCALL(BB) ▷ Vectorize libcall features
22: call_feature = [0]*len(LIBCALL)
23: foreach libcall ∈ libcall_lst do
24: index = LIBCALL.index(libcall)
25: call_feature[index] += 1
26: FeatureOffset += (ir_feature,call_feature,str_feature)
27: return NORMALIZE(FeatureOffset)

ysis. Given an input field, we determine its type from the
ground truth, locate its offset, and then filter relevant BBs
that have processed this field from the taint analysis results.
For each relevant BB, we perform a forward slicing (i.e., line
10 in Algorithm 2) to merge consecutive child BBs with an
important semantic dependency on the given field.

Take the code snippet in Figure 4 as an example. The size
field is loaded in the first block and is compared against a
threshold, then used by a malloc call in the consecutive child
block. We tend to slice the code forward to merge these two
blocks so that we can learn this field will be used by malloc
and collect more meaningful features.

3.2.3 Data Vectorization

Algorithm 2 shows how AIFORE vectorizes the training data
consisting of pairs of code slices. Several features are consid-
ered when vectorizing the code slices.

First, the semantic information of instructions in the BB is
essential for determining how the program processes the field.
To simplify the analysis, we transform instructions in BBs
to Intermediate Representation (IR, e.g., VEX [21]). We vec-
torize the corresponding IR operation with one-hot encoding
for each instruction that processes the given input field. Since
the number of IR operations in VEX is too large for one-hot
encoding, we select about 100 commonly used IR operations
(line 1 in Algorithm 2).

Besides, we also consider the use of standard library calls
as vital semantic information. We first choose a list of com-
mon standard library functions such as memcpy, strcpy, and
malloc. For each invocation of such a library function, we

Algorithm 3 Power Scheduling Algorithm
Input: Seeds
1: AvgFormatExecCnt = 0
2: foreach seed ∈ Seeds do
3: if ISINITIALSEED() then
4: seed.format = EXTRACTFORMAT(seed)
5: seed.format.exec_cnt = 0
6: if not FUZZERISSTUCK() then
7: MUTATEANDCHECK(seed)
8: else
9: if seed.format.exec_cnt > AvgFormatExecCnt then

10: continue ▷ Skip the seed whose format has been mutated ade-
quately

11: else
12: MUTATEANDCHECK(seed) ▷ Re-assign power to the seed with a

less mutated format
13: procedure MUTATEANDCHECK(seed):
14: new_seed = MUTATEWITHFORMAT(seed)
15: EXECUTEANDCHECK(new_seed) ▷ Execute ’new_seed’ and add to

queue if it brings new coverage
16: new_seed.format = seed.format
17: new_seed.format.exec_cnt = UPDATEEXECCNT()
18: AvgFormatExecCnt = UPDATEAVGCNT()
19: if ISVALUABLE(new_seed) then
20: new_seed.format = EXTRACTFORMAT(new_seed)
21: new_seed.format.exec_cnt = 0

will record it in the one-hot encoding.
Lastly, we record the format strings used in the BB and

count them into the feature of the semantic information. For
example, %x indicates an integer, while %s may imply a field of
a string. This feature is also presented with one-hot encoding.

These three parts of the features above are concate-
nated (right side of line 26 in Algorithm 2) to get the feature
vector of the slice. If a field is processed by multiple code
slices, then these slices’ vectors will be added together (left
side of line 26) to get the overall feature vector of this field.
As a result, we use the (feature vector, field type)
pairs to train the neural network models.

3.2.4 CNN Model Building

We choose the CNN model to infer the field type for two
reasons. First, CNN models are proven effective in many clas-
sification tasks and binary analysis tasks [17, 22, 23]. In our
task, we intend to classify the field types into different cat-
egories based on the extracted code features. Second, CNN
models can naturally filter out the background information
and effectively capture valuable features. In our task, the
background information can be those features in the com-
mon instructions that are activated by multiple types of fields.
In our prototype, we build a CNN model with six embed-
ded hidden layers. We use adam as the optimizer, and use
categorical_crossentropy as the loss function.

3.3 Fuzzing with Power Scheduling
Through the previous steps, we can identify field boundaries
and field types. However, we still have the following two
problems when using the knowledge to help fuzz. First, on
which seed should we perform format extraction (i.e., power
scheduling for format analysis)? Second, how can we bal-

ance the fuzzing power for different format variants produced
during mutation (i.e., power scheduling for mutation)? We
design a power scheduling algorithm as shown in Algorithm 3
, which is built on top of AFL, to solve both problems. First,
AIFORE will try to analyze the initial seed to build its format
model (Line 3 to 5). Then the fuzzer will mutate the seed
with the guidance of format knowledge (Line 7). If the newly
mutated seed is valuable, then we re-analyze its format (Line
19 to 21). When the fuzzer gets stuck (i.e., the fuzzer fails to
get new coverage in a given time), we will assign the fuzzing
power to those formats which are not fully mutated yet (Line
8 to 12).

Power scheduling for format analysis. The fuzzer gener-
ates numerous seeds during fuzzing. Identifying field bound-
aries and types of each seed is unnecessary and impractical,
since not all the seeds are valuable, and analyzing all the
seeds will cost too much power . Several works [13, 15, 24]
have proved that not all seeds are valuable during fuzzing.
So we extract the format knowledge (i.e., field boundary and
field type) only for the initial seed and the seeds which we
consider valuable. "Valuable" seeds in our design mean the
input can reach more new BBs and likely belong to an un-
seen format variant (e.g., a new type of elf architecture in
Figure 1). If a seed is "valuable", we extract its field bound-
aries and field types through the function EXTRACTFORMAT
in Algorithm 3.

Power scheduling for mutation. Not all the formats are
mutated equally during fuzzing. The fuzzer mutates the seed
one by one with MUTATEWITHFORMAT function. Specifi-
cally, it will mutate the bytes of each field as a whole , and
choose a proper mutator based on the field type. For example,
the mutator will try interesting size values instead of bitflip
for a size type field and insert or delete bytes for a string
type field. Besides, for those bytes without format knowledge,
the fuzzer will use the default mutation methods like those
in AFL. We will further analyze how the adaptive mutator
benefits fuzzing in §5.3.2.

During mutation, whenever a valuable seed occurs, the
fuzzer starts mutating the seed based on the re-analyzed for-
mat. However, if two "valuable" seeds show up close , the
previous one is mutated inadequately. We design a power
re-assign mechanism to balance the fuzzing power among the
format variants. When the fuzzer gets stuck, we re-assign the
fuzzing power to those seeds bound with less mutated format
variants and skip those seeds bound with the fully mutated
format variants.

4 Implementation

We build the taint analysis engine in C++ based on
VUzzer [25] and libdft [26] to support 64-bit programs and
byte-level taint analysis. We re-write the taint propagation
component for each kind of instruction with about 5k lines of
code to check if the operands are tainted by the input bytes

Table 2: (format, program) pairs used in our experiments.
Program&Parameter Format Boundary Type1 Fuzz

7za t @@ 7Z ✓ ⊙
ZIP ✓ X* ✓

readelf -a @@ ELF ✓ ⊙ ✓
elfutils-readelf -a @@ ELF X ✓

exiv2 pr @@
GIF X* ✓
JPG ✓ X*
TIFF ⊙

tiffdump @@ TIFF ✓ ⊙ ✓
magick identify @@ GIF ⊙ ✓
gif2tiff @@ GIF ⊙ ✓
gifsicle @@ -o out.gif GIF ✓ ⊙ ✓
jasper –input @@ –output
test.bmp BMP ✓ X ✓

jhead -v -exifmap @@ JPG X ✓
pngtest @@ PNG ✓ X ✓

freetype_parser @@ OTF ✓ X*
TTF ✓ ⊙ ✓

sfinfo @@ WAV ✓ X ✓
tcpdump -nr @@ PCAP ✓ X ✓
xls2csv @@ XLS ✓ X ✓
arping 192.168.1.1 -I eno2 -c 1 ARP2 ✓ X
nslookup example.com DNS2 ✓ X
1 ⊙: the (format, program) pair is in the training set; X: the program

is not in the training set; X*: the program is in the training set but
the (format, program) pair is not.

2 We show the evaluation results of ARP and DNS in §Appendix A.

and get the map of instructions and the input bytes processed
by them. We develop two format analysis modules with 7K
lines of Python code. We use Angr [27] as the backend to
support static analysis. To train the model, we implement the
machine learning component with Keras 2.2.4. To collect the
ground truth data, we write an automation script to export the
template result from 010 Editor with the help of AutoIt [28].
We convert the extracted format knowledge into a Peach pit
file.

5 Evaluation

We evaluate AIFORE to answer four research questions:

• RQ1: What is the performance of each format extraction
module of AIFORE? (§5.1)

• RQ2: What is the format analysis performance of
AIFORE, compared with other SOTA format reverse
engineering works? (§5.2)

• RQ3: What is the performance of AIFORE in terms of
code coverage and bug detection compared with other
SOTA fuzzers? (§5.3)

• RQ4: How does each module of AIFORE contribute to
fuzzing efficiency? (§5.4)

We run all experiments on a machine with a 24-core CPU
(Intel(R) Xeon(R) CPU E5-2650) and 128GB memory. We
train the model with a Tesla P100 GPU. After the model is
trained, AIFORE only uses the GPU when predicting field
types, and it is used infrequently.

5.1 RQ1: Performance of Format Extraction

In this section, we evaluate each of AIFORE’s format extrac-
tion modules to see how well it extracts the format.

Target File Formats and Programs. According to Klees
et al. [29], there are on average 7 real-world programs eval-
uated by 32 unique papers in recent years. In this paper, we
collect 17 programs to evaluate AIFORE, as well as 15 kinds
of formats, of which 13 are file inputs (including image, exe-
cutable, compression file, or compound file) and 2 are network
protocols (§Appendix A). Table 2 shows all formats and pro-
grams (with parameters) we used to evaluate each module of
AIFORE.

We choose target inputs and programs based on the follow-
ing considerations. First, these formats are diverse and widely
used. Second, the program could parse as many fields as pos-
sible when given one type of input, since AIFORE analyzes
input format based on the dynamic taint trace, and cannot
recognize input fields that are not processed4. We compile
these programs with different optimization levels (from -O0
to -Os) to assess the robustness of AIFORE.

Ground Truth. First, given an input to test, we use the
public format template from the 010 Editor to parse the file
and export all field records with boundary and type informa-
tion. These templates are written by experts and verified by
the community.

Then, we manually preprocess the records to get the ground
truth of field boundaries in two steps: (1) Delete redun-
dant definitions from the ground truth. For example, Table 3
shows the signature field of the ELF format. Field records
file_identification[0] to [3] should be removed since
file_identification[4] exists as a whole field. (2) Re-
move field records that are not parsed by the target program.
For example, readelf does not process the ei_pad field of
the ELF format in Figure 1. We skip these fields because all
approaches that reverse the input format based on the behavior
of the program cannot figure them out.

Finally, we manually check the records to correct am-
biguous semantic types of fields. For example, the char
cname[4] field in the template for the PNG file indicates the
type is string. However, it is used as a magic number type
in the program pngtest. Another example, some formats
may contain a version field, which could be confusingly
marked as a string or an integer. To solve the problem,
we manually analyze the semantic type of every field in the
template, and remove those with confusing semantic type
labels, increasing the accuracy of model training.

5.1.1 Field Boundary Accuracy

We denote the ground truth of boundary information as
BoundaryT . We choose 5 samples from the Internet or from

4This limitation is shared among all solutions that utilize dynamic taint
analysis [4, 8].

Table 3: Signature field of ELF from 010 Editor.
Name Value Start Size

char file_identification[4] ‘\x7fELF’ 0 4
char file_identification[0] 127‘\x7f’ 0 1
char file_identification[1] 69‘E’ 1 1
char file_identification[2] 76‘L’ 2 1
char file_identification[3] 70‘F’ 3 1

the test suite of the target programs which have various fea-
tures like different file sizes, different compression levels, or
different enumerations in specific formats. For each sample,
we manually craft the ground truth of boundary information as
described in Ground Truth. For each format, we choose one
program which parses input files most completely as shown
in column "Boundary" of Table 2. Then we use AIFORE to
infer their field boundaries (denoted as BoundaryA).

We use accuracy as the metric, i.e., the number of fields
correctly identified by AIFORE divided by the total number
of fields in the ground truth.

Note that BoundaryT might be coarse-grained, i.e., the tem-
plate from 010 Editor misses some fine-grained fields. For
example, the template for PCAP only describes fields from the
data link layer to the transport layer (i.e., TCP/UDP), without
knowledge of fields in the application layer (e.g., HTTP/DNS).
Nevertheless, the target program tcpdump parses the packet
in more detail, making AIFORE produce more fine-grained
boundary information. We skip these fields when calculating
the accuracy. To ensure the fairness of the experiment, we
also remove them when counting the accuracy for all other
solutions in §5.2. Although AIFORE may perform worse (or
even better) in the fields we manually removed, we consider
the results will only be affected slightly since such cases are
rare during our analysis. Further, our result in §5.2 shows the
accuracy of AIFORE is much higher than other solutions.

The results are shown in Table 4 and we draw 2 conclusions.
First, the accuracy is irrelevant to the compiler optimization
level. That is because the MC method is considered from the
view of semantic block, which is seldom affected by compiler
optimizations. For the target of 7z and zip, the total number
of fields in the input is small, and thus even one incorrect
field may cause a large accuracy fluctuation (about 10%).
Second, we manually investigated the targets which are with
low accuracy and found the reason is that the program parses
the fields in its way. For example, readelf compares the
first four bytes (i.e., magic number) in 4 BBs respectively,
as shown in Figure 5. With the MC approach, we will split
the magic number into four single-byte fields, as they are
parsed in different BBs. However, they are defined as a whole
in the specification. Although the result is different from
the specification, we consider this will not affect (or even
benefit) the fuzzing efficiency since fuzzing is to test the
implementation of the program rather than extract accurate
field boundaries compared to the specification.

Table 4: Accuracy of field boundary analysis. The table shows the average number of fields and file size in BoundaryT , as well
as the accuracy for different optimization levels of target programs.

Format Program Avg. Field Count Avg. Size (bytes) Optimation Levels
-O0 -O1 -O2 -O3 -Os

7Z 7za 9 425 55.56% 55.56% 55.56% 55.56% 55.56%
BMP jasper 1,243 1,702 88.81% 89.38% 88.58% 89.14% 89.14%
ELF readelf 77 324 96.10% 93.51% 93.51% 93.51% 93.51%
GIF gifsicle 217 821 96.77% 96.77% 97.23% 97.23% 94.00%
JPG exiv2 24 424 50.00% 50.00% 55.00% 53.58% 50.00%
OTF freetype_parser 258 226,772 75.44% 76.64% 61.06% 61.06% 58.58%

PCAP tcpdump 22 114 90.90% 90.90% 90.90% 88.64% 86.36%
PNG pngtest 42 239 63.12% 64.31% 63.12% 63.12% 63.12%
TIFF tiffdump 73 22,700 82.19% 82.19% 76.71% 76.71% 82.19%
TTF freetype_parser 110 7,876 76.36% 76.36% 76.36% 76.36% 76.36%
WAV sfinfo 18 37,524 77.77% 72.22% 72.22% 72.22% 72.22%
XLS xls2csv 288 19,968 41.67% 41.67% 36.81% 36.81% 36.81%
ZIP 7za 12 906 58.33% 58.33% 58.33% 58.33% 58.33%

Average 184 24,600 73.31% 72.91% 71.18% 70.94% 70.48%

mov rax, [rbp+header]
movzx eax, byte ptr [rax] ; [0]；
cmp al, 7Fh；[0]；[0]
jnz short loc_41856C

mov rax, [rbp+header]
movzx eax, byte ptr [rax+1]；[1]
cmp al, 45h；‘E’；[1]
jnz short loc_41856C

mov rax, [rbp+header]
movzx eax, byte ptr [rax+2]；[2]
cmp al, 4Ch；‘L’；[2]
jnz short loc_41856C

mov rax, [rbp+header]
movzx eax, byte ptr [rax+3]；[3]
cmp al, 46h；‘F’；[3]
jz short loc_41858D

EXIT(0)

Figure 5: Basic block to parse magic number.

5.1.2 Field Type Accuracy

We now evaluate the performance of the CNN model based
on 4 experiments.

• Experiment 1: Can the CNN model perform well on
the training set and the validation set? We collect 10,582
fields from 8 formats, and we choose corresponding programs
to parse these inputs to train the model. The training set is
marked as ⊙ in column "Type" of Table 2. The ratio between
the training set and the validation set we use is 4:1. Then we
mark the six semantic types as labels and the corresponding
(vectorized) taint traces as input data to train the CNN model.
It takes, on average, 2-3 hours of manual effort to label the
training data for one format. This only needs to be done once
for each format and we consider this reasonable.

To validate whether the model can perform well under dif-
ferent compiler optimizations, we trained the model from -O0
to -Os as training data respectively. To further investigate if
the model applies to real-world cases (i.e., where the selected
compiler optimization of the target is not known), we also
evaluate the accuracy of the model with mixed optimizations.
We spend 12 hours collecting the taint traces for all samples
in the training set, and the training time for the models is on
average 20 minutes. After training the model, we evaluate
their Top-1 accuracy, i.e., whether the top-score prediction
result is correct.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scale

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy accuracy

1.0
growth rate

0.00

0.05

0.10

0.15

0.20

0.25

Gr
ow

th
 R

at
e

Figure 6: Mean validation accuracy (with 95% confidence
interval error band) and growth rate among different scales of
training set.

Figure 14 shows these results. We conclude that (1) the
performance with different compiler optimization levels (i.e.,
-O0 to -Os) behave differently, and the average accuracy is
over 85% ; (2) the accuracy results are stable even with mixed
compiler optimizations, which means the model applies to
real-world cases.

• Experiment 2: How much data do we need to train
a sufficiently reliable CNN model? To further analyze how
much data is needed to train the CNN model, we also calcu-
late the accuracy achieved by the model trained on different
amounts of data. We set 10,582 fields as the unit (i.e., 1.0)
scale and use different scales (i.e., 0.2 to 2.0) to train the
model accordingly. For each group, we randomly choose the
training data and repeat the experiment 5 times. The result
is shown in Figure 6. From the result, we can conclude that
a larger amount of training data results in higher model ac-
curacy. However, the growth rate stagnates quickly when the
scale is larger than 1.0.

• Experiment 3: For trained programs, can the model
predict field types of unseen formats? We define a format
is unseen by a program if the pair of (program, format) is not
in the training set of AIFORE. In this experiment, we apply
AIFORE to programs that have been trained with certain for-
mats, and verify whether AIFORE could recognize unseen
formats for these programs (marked as X* in Table 2). Specif-

Table 5: Field type classification accuracy. The results represent the Top-1 / Top-2 accuracy respectively, where the latter indicates
whether the type of either the top two results is correct.

Program Format Samples Optimization Levels
-O0 -O1 -O2 -O3 -Os Mixed

exiv2 GIF 202 73.20%/80.00% 84.62%/100.00% 100.00%/100.00% 94.12%/100.00% 100.00%/100.00% 95.14%/100.00%
exiv2 JPG 109 77.78%/88.89% 90.00%/100.00% 66.67%/77.78% 80.00%/80.00% 72.73%/81.82% 76.66%/85.28%

freetype_parser OTF 361 74.13%/86.42% 71.30%/85.19% 76.47%/87.50% 80.00%/90.00% 67.86%/89.29% 70.56%/92.23%
7za ZIP 364 89.01%/96.98% 93.37%/97.79% 94.90%/99.06% 91.23%/98.25% 92.99%/97.19% 91.70%/98.18%

Average 78.53%/88.07% 84.82%/95.75% 84.51%/91.09% 84.51%/92.06% 83.40%/92.07% 83.52%/93.92%
elfutils-readelf ELF 5385 62.66%/74.59% 73.93%/78.67% 61.11%/87.50% 54.99%/64.33% 71.69%/72.21% 67.33%/75.77%

jasper BMP 1068 83.11%/97.30% 92.00%/99.43% 90.06%/99.42% 91.98%/100.00% 90.48%/98.10% 93.46%/100.00%
jhead JPG 913 84.00%/88.00% 86.36%/86.36% 86.36%/90.91% 86.96%/86.96% 84.00%/92.00% 85.92%/86.92%

tcpdump PCAP 1412 74.70%/91.42% 84.13%/85.72% 78.04%/91.77% 89.81%/91.40% 75.44%/81.43% 73.04%/85.83%
pngtest PNG 1004 80.12%/87.77% 86.88%/91.10% 82.35%/85.88% 88.34%/89.11% 83.31%/88.96% 80.11%/82.31%
sfinfo WAV 434 88.89%/100.00% 97.91%/100.00% 97.37%/100.00% 98.80%/98.80% 98.99%/100.00% 97.92%/99.74%

xls2csv XLS 1339 71.00%/84.93% 75.36%/81.88% 68.00%/71.20% 71.94%/71.94% 65.56%/77.46% 66.95%/71.76%
Average 77.78%/89.14% 85.22%/89.02% 80.47%/89.53% 83.26%/86.08% 81.35%/87.17% 80.68%/86.05%

ically, for programs in the training set, we collected some new
file formats supported by them, and apply our trained model
to predict the field types of the new formats.

The upper part of Table 5 shows the evaluation result. We
consider Top-2 accuracy because the Top-K suggestions from
the model are still valuable for fuzzing. To be concrete, the
Top-K field type knowledge can help the fuzzer reduce the
mutation space and find high-quality test cases faster.

We have two findings from this table: (1) AIFORE can
predict the field type in unseen formats with high accuracy,
while the Top-1 accuracy is over 80% on average and the
Top-2 accuracy is over 90%; (2) the model performance is
irrelevant to the programs’ optimization levels. Although
compiler optimizations might change the features of the code,
our model learns stable patterns across optimizations.

• Experiment 4: For untrained programs, can the model
predict their (unseen) input formats? We apply the afore-
mentioned trained model to analyze untrained programs
(marked as X in Table 2) and predict their input formats. We
choose 7 untrained programs (and 2 protocols shown in Ap-
pendix) and corresponding formats to test the accuracy of
AIFORE. These untrained programs are chosen based on two
criteria: (1) they should be able to parse the chosen formats,
and (2) they do not share libraries, which process the chosen
formats, with programs in the training set. The latter require-
ment is applied for a fair comparison. Note that, the chosen
formats (e.g., ELF) may be processed by other trained pro-
grams (e.g., readelf) in the training set. But still, they are
unseen to the untrained program (e.g., elfutils-readelf).

The bottom of Table 5 shows the evaluation result. We
learn that AIFORE can predict the field type with a Top-1
accuracy of 81% and a Top-2 accuracy of 88% on average.
Even when we use mixed test data from different compiler
optimizations, AIFORE can also predict the field type based
on how the program parses the field.

5.2 RQ2: Comparison of Format Extraction

In this section, we compare AIFORE with the CNN model
trained from programs with mixed optimizations (i.e., -O0 to

-Os) against existing input format reverse engineering works,
like Polyglot [3], Protocol Informatics (PI) project [30], Pro-
Fuzzer [8], AFL-Analyze [14], and TIFF-fuzzer [6] to mea-
sure the format reversing performance.

We collect the field boundary and the type results of
AIFORE as described in §5.1.1 and §5.1.2, and compare the
results with ProFuzzer, AFL-Analyze, and TIFF-fuzzer. There
are also other tools like WEIZZ [9] that can extract input
formats. However, we did not compare the field boundary
accuracy of AIFORE with them since they cannot extract all
the field boundaries even though the target program parses
the fields already. We analyze concrete cases to explain the
reason for such false negatives in §Appendix B.

Metrics. For the field boundary analysis, we calculate dif-
ferent solutions’ accuracy as described in §5.1.1, i.e., the num-
ber of correctly identified fields divided by the total number
of fields in the ground truth.

We delicately process the results for the field type analysis
since different solutions focus on different field types. For
example, ProFuzzer classifies the field types into 6 categories
while AFL-Analyze recognizes only 3 semantic types. We
manually check the result produced by different solutions
and calculate the accuracy accordingly. For AFL-Analyze, we
only check if its results match the 3 semantic types they define
(i.e., raw data, magic number, and length). For ProFuzzer,
we similarly check its results. For AIFORE, we manually
check if the Top-1 result matches the 6 semantic types we
define in §3.2.1.

In addition, we also measure the average time cost of ana-
lyzing one input format for each solution.

Test Targets. To be fair, we choose 4 formats and programs
with different accuracy levels from the training set (Table 4)
and from unseen formats and programs (Table 5) respectively.
We intend to investigate what is the performance of other
solutions regarding the targets with different accuracy levels
under AIFORE. The chosen targets are shown in Table 6. For
the programs, we compile all the targets with their default
compiler optimizations. Regarding input samples, we choose
the ones that are not in the training set for the trained programs
and randomly choose some input samples for the untrained

Table 6: Field boundary/type accuracy comparison between different input format reverse engineering solutions.
Format Program Large Seeds Small Seeds

Size(bytes) AIFORE ProFuzzer AFL-Analyze TIFF-fuzzer Size(bytes) AIFORE ProFuzzer AFL-Analyze TIFF-fuzzer

Trained

ELF readelf 808 96.43%/87.73% 37.40%66.25% 43.73%/40.00% 94.30%/(N/A) 324 98.91%/91.23% 74.26%/66.67% 55.70%/38.60% 97.40%/(N/A)
GIF gifsicle 695 97.64%/87.31% 12.59%/52.94% 6.44%/11.76% 71.96%/(N/A) 198 97.64%/72.23% 50.29%/60.00% 31.96%/12.00% 65.30%/(N/A)
TIFF tiffdump 448 82.23%/89.33% 27.13%/42.11% 13.19%/21.05% 81.30%/(N/A) 166 84.33%/88.45% 37.01%/40.00% 21.05%/21.67% 82.33%/(N/A)
TTF freetype 542 67.43%/83.22% 30.28%/65.69% 9.93%/20.44% 5.56%/(N/A) 148 72.23%/85.32% 2.20%/0.00% 1.35%/21.21% 40.00%/(N/A)

Untrained

PCAP tcpdump 894 88.64%/82.34% 28.84%/71.14% 0.00%/39.04% 81.20%/(N/A) 114 93.18%/84.23% 73.18%/77.78% 39.66%/44.44% 85.60%/(N/A)
WAV sfinfo 572 100.00%/95.55% 63.85%/66.67% 48.77%/57.69% 100.00%/(N/A) 44 100.00%/91.22% 56.25%/63.64% 56.25%/45.45% 100.00%/(N/A)
BMP jasper 630 45.34%/83.54% 12.11%/91.18% 1.35%/32.35% 24.24%/(N/A) 58 45.34%/84.33% 75.00%/82.35% 28.12%/23.53% 22.22%/(N/A)
XLS xls2csv 6656 81.25%/74.56% (N/A)/(N/A)* 22.16%/0.56% 25.50%/(N/A) 5632 94.40%/78.32% (N/A)/(N/A)* 0.00%/51.02% 33.33%/(N/A)

Average 1406 82.37%/85.45% 26.53%/57.00% 18.20%/27.86% 60.51%/(N/A) 836 85.75%/84.42% 46.02%/48.81% 29.26%/32.24% 65.77%/(N/A)

* The tool fails to get the result within 24 hours

Table 7: Average time to parse a file (seconds).
Input Program Large Seeds Small Seeds

Size(bytes) AIFORE (B/T) ProFuzzer AFL-Analyze TIFF-fuzzer2 Size(bytes) AIFORE (B/T) ProFuzzer AFL-Analyze TIFF-fuzzer2

Trained

ELF readelf 808 29(24/5) 14,224 14 8 324 28(22/6) 977 6 7
GIF gifsicle 695 24(19/5) 84,123 42 91 198 23(17/6) 11,392 5 18
TIFF tiffdump 448 43(39/4) 1,529 9 13 166 44(40/4) 145 4 11
TTF freetype 542 19(12/7) 2,967 8 13 148 17(11/6) 100 2 6

Untrained

PCAP tcpdump 894 24(19/5) 26,241 18 8 114 20(14/6) 95 2 8
WAV sfinfo 572 21(17/4) 2,993 11 8 44 23(19/4) 27 1 8
BMP jasper 630 21(15/6) 2,004 10 6 58 9(3/6) 110 0.1 6
XLS xls2csv 6,656 61(56/5) (N/A)1 255 22 5,632 52(47/5) (N/A)1 17 94

1 The tool fails to get the result within 24 hours
2 The time only includes field boundary extraction

programs. The details of the training set and validation set for
field type prediction are described in the first part of §5.1.2.

Input Size. The input size will affect the run-time perfor-
mance of format reverse engineering. AIFORE, ProFuzzer,
and AFL-Analyze all rely on dynamic analysis to predict the
field type, but with different methods. Both ProFuzzer and
AFL-Analyze mutate each input byte and rerun the program to
get the coverage bitmap as the profile of the current execution.
Based on the variation of this profile, they can analyze the
type features of each byte and combine consecutive bytes of
similar features as a field with the corresponding type. Thus, a
larger file may consume more time to get the result. AIFORE
is based on the taint trace and the CNN model to infer the
field boundaries and field types. Although the model is only
trained once, the taint analysis requires a time-consuming
analysis. To better understand how the input size affects the
performance of each work, we split the input files into dif-
ferent groups according to their size and observe the time to
complete the analysis in each group.

Results. Table 6 demonstrates the accuracy of field bound-
ary and type analysis, and Table 7 shows the average cost of
time to parse an input, respectively.

From Table 6, we can learn that AIFORE achieves higher
accuracy both in field boundary recognition and field type
prediction. Besides, AIFORE performs better in trained pro-
grams than those in untrained. This is consistent with our
experience since the model has learned the pattern of how
those programs parse different field types accurately.

The average time to parse a file with AIFORE (and TIFF-
fuzzer) does not differ significantly for different size classes,
while ProFuzzer and AFL-Analyze spend much more time
parsing larger files. In Table 7, B represents boundary identifi-
cation, the count includes the required time for taint analysis
(which requires most of the total time). T represents type
prediction, its time cost remains stable during the test since

we have a trained model with a stable prediction time. We
find that in Profuzzer and AFL-Analyze, the profiling phase
consumes most of the time, which is strongly related to the
input size. However, the taint analysis in AIFORE (and TIFF-
fuzzer) is not very sensitive to the input size. Since AFL-
Analyze and TIFF-fuzzer perform some rough analysis, they
have better execution time but achieve lower accuracy than
AIFORE on average.

Moreover, we also conduct reverse engineering on two
protocols. The detailed results are presented in Appendix
A. Compared with other tools [3, 30, 31], AIFORE can give
not only more accurate format knowledge in terms of field
boundary and type but also with more details.

5.3 RQ3: Comparison of Fuzzing Performance
There are already some fuzzers [2, 6, 8, 13, 15, 32] that try to
extract format knowledge and perform power scheduling to
optimize the fuzzing process. We compare AIFORE against
them to investigate how much our format analysis and power
scheduling can improve fuzzing efficiency. Note that for the
field type classification, once the model has been built, we do
not need to retrain the model during the fuzzing process.

Target Programs and Seeds. For the programs, we use 15
programs to parse files as shown in Table 2, of which 6 are
trained and 9 have not been seen by AIFORE. For each file
type, we randomly choose one input file as the initial seed for
all fuzzers.

Fuzzers. We compare AIFORE with 6 fuzzers, includ-
ing format-aware fuzzers, format-unware but popular fuzzers,
and power scheduling optimization fuzzers, i,e, AFL [33],
AFLFast [15], ProFuzzer [8], TIFF-fuzzer [6], WEIZZ [9],
and EcoFuzz [13]. AFL is one of the most popular grey-box
fuzzing tools, and there are many fuzzers built on top of AFL.
AFLFast and EcoFuzz optimize AFL by prioritizing the seeds
that may lead to new coverage. ProFuzzer has a dynamic

Table 8: Basic block coverage after 24 hours.
Format Program1 AIFORE (B)2 AIFORE (B+T)2 AIFORE (B+T+P)2 AFL AFLFast EcoFuzz ProFuzzer TIFF-fuzzer WEIZZ
BMP jasper 7123 7705 7887 6694 5926 7777 7437 5331 6344

ELF readelf* 9880 13798 17985 9652 12020 13791 17872 2426 15720
elfutils-readelf 7213 7541 8308 6995 5873 6608 7978 2180 6519

GIF

gifsicle* 4702 5062 5435 4528 4634 4675 5315 4146 4578
magick* 14221 14414 16685 13529 13684 12335 14512 8351 10002
gif2tiff* 2458 2451 2576 2372 2466 2500 2580 2014 2383

exiv2 16529 17500 19245 14117 14417 16602 18952 7637 11437
JPG jhead 1228 1258 1281 1244 1244 1244 1253 856 1246

PCAP tcpdump 16772 19201 22963 14535 13743 19823 22930 1561 11837
PNG pngtest 3219 3223 3629 3217 3239 3268 3617 2846 4802
TIFF tiffdump* 1145 1155 1177 1054 1073 1104 1135 522 1128
TTF freetype_parser* 9893 10520 10370 6362 6309 10030 7278 4513 7316
WAV sfinfo 2477 2501 2632 2326 2326 2379 2498 2019 2566
XLS xls2csv 2476 2699 2706 2512 2510 2619 2424 1841 2470
ZIP 7za 24696 25266 28159 21429 22089 25226 27979 13299 21833

1 * for trained pairs of formats and programs.
2 B for Field Boundary; T for Field Type; P for Power Scheduling Algorithm.

probing stage to infer the field boundary and field type for
improving fuzzing efficiency. TIFF-fuzzer and WEIZZ use
format knowledge to increase fuzzing efficiency.

5.3.1 Code Coverage Result

For each target program, we run all fuzzers for 24 hours with
5 repetitions. Then we measure the average BB coverage
instead of path coverage since not all the fuzzers use the same
metric to calculate the path.

We can draw the following conclusions from the result
in Table 8. First, AIFORE increases the coverage signifi-
cantly for most targets except pngtest for which WEIZZ
performs the best. The reason is that WEIZZ can not only
detect the checksum field in the file, but it can also correct
the checksum values. However, AIFORE does not support
checksum value correction even though it can be aware that
the field is a checksum field. For all the targets, AIFORE
(B+T+P) (i.e., enable the field boundary, type analysis, and
utilize the power scheduling algorithm) has an average 6%
and 26% increment on average compared with ProFuzzer and
WEIZZ respectively, as shown in Figure 7.

Second, the coverage increment with AIFORE is signifi-
cant, even though the target program and the file format are
unseen.

Third, AIFORE achieves the best performance. For TIFF-
fuzzer, since it aims at maximizing the likelihood of triggering
a bug, we find it is not good at increasing the code coverage.
Although ProFuzzer also performs better than format-unaware
fuzzers like AFL and AFLFast in most cases, its analysis time
is proportional to the input size, which makes it not scaleable
to large inputs. Observe that ProFuzzer performs the worst
in XLS except TIFF-fuzzer. The reason is that the minimum
size of the XLS seed is above 1k bytes which is too large for
ProFuzzer.

5.3.2 Bugs Found by AIFORE

Coordinated Vulnerability Disclosure. To explore
AIFORE’s ability of bug finding, we fuzz the real-world

(BTP)
ProFuzzer

(BTP)
WEIZZ

−20%

0%

20%

40%

60%

80%

Re
la

tiv
e

In
cr

em
en

t

mean

(B)
AFL

(BT)
(B)

(BTP)
(BT)

Figure 7: Coverage comparison between AIFORE and other
SOTA fuzzers, and coverage increment by each module of
AIFORE.

programs from Table 4 for 7 days. With the help of format
knowledge, AIFORE finds 34 bugs (20 are uncovered by
other fuzzers) in total after manual deduplication, including
10 buffer overflow bugs (CWE-122), 18 NULL pointer deref-
erence bugs (CWE-476), and 6 double-free bugs (CWE-617).
Among the 20 bugs that are uncovered by other fuzzers, 18
of them have been known to vendors before. AIFORE finds
2 vulnerabilities in the newest version of xls2csv, and we
have responsibly reported both bugs to the Launchpad, and
the track IDs are 1901462 and 19014635. Here we analyze 2
of 34 bugs to illustrate how AIFORE finds them.

Sfinfo. Sfinfo is a program for parsing WAV files and show-
ing their properties or metadata to users. AIFORE reports a
heap overflow bug during the testing. The bug locates in a
function for parsing an enumeration field called FormatTag.
The field represents the way the wave data is stored and affects
how the following bytes will be processed. If the FormatTag
field in the input file is mutated to WAVE_FORMAT_ADPCM, then
the length data might be calculated incorrectly, which then
causes a heap overflow. The key to triggering this bug is

5https://launchpad.net/ The bugs have not been opened to the pub-
lic when we submit the paper.

https://launchpad.net/

setting FormatTag equal to WAVE_FORMAT_ADPCM, which is
easier to achieve if the fuzzer is aware of the boundary and
type of this field. The FormatTag is an enumeration field and
AIFORE identifies the boundary and the type of this field
correctly. Then it mutates the field accordingly and triggers
this bug.

Readelf. During the testing of readelf, AIFORE finds a
stack overflow bug. The bug can be triggered when a 4-bytes
offset field is mutated to an invalid value. The offset field
serves as indicating the location of a string. When the string’s
size is bigger than 256 bytes. a call of sprintf will cause
the stack buffer overflow. The root cause of this bug can be
concluded as (1) the offset field must be set to point to an
invalid string region, and (2) the string field pointed to must
be long enough to trigger the stack overflow. We backtrack
the log and find that AIFORE identifies the 4-bytes offset
field correctly, and mutates the field as a whole to an invalid
value. The invalid offset points to a string field and AIFORE
mutates the string field with a longer length. So it can trigger
the bug.

5.4 RQ4: Contribution of Each Module

In this section, we analyze how each module of AIFORE con-
tributes to the fuzzing performance. We investigate the BBs
covered by different components during fuzzing in §5.3. The
result is shown from column 3 to column 5 in Table 8, and
we draw a boxplot in Figure 7. We have the following con-
clusions. First, the module of boundary identification helps
AIFORE to mutate the bytes which have the same semantic
and belongs to one field, and it boosts AIFORE to cover 9.3%
more BBs than AFL. Besides, AIFORE uses the AI model
to predict the field type, which helps the fuzzer know how
to mutate. Benefiting from the field type prediction module,
AIFORE increases another 6.9% code coverage on average
for all the targets. At last, AIFORE utilizes a novel power
scheduling algorithm to help the fuzzer assign more energy
to those formats which are not mutated adequately. It brings
an 8.8% increment in coverage. Different from AFLSmart,
our approach does not rely on the constraints in the pit file.
We further analyze how it works with a case study in Ap-
pendix §B.3.

6 Related Work

6.1 Format-Aware Fuzzing

Format-aware fuzzers try to understand the format of inputs
to increase the fuzzing efficiency. TIFF-fuzzer [6] performs
bug-directed mutation by inferring some program variable
types (e.g., int, char*) of input fields. ProFuzzer [8] uses
predefined rules to deduce fields and corresponding types.
However, adding more data types is labor-intensive. Besides,
the rules may not be accurate enough to cover all the cases.

Steelix [34] identifies magic numbers in the input to pass
value validation. But it does not analyze fields of other types.
Intriguer [2] utilizes light-weighted taint analysis to find multi-
byte fields processed by instructions in the program, then uses
the field-level knowledge to optimize symbolic execution.
From the perspective of file format, it can only extract a small
part of the fields because of its incomplete traces. WEIZZ [9]
splits the input into fields according to dependencies between
input bytes and comparison instructions, which ignores the
bytes not affecting the control flow of the program.

AIFORE extracts more accurate, concrete, and complete
format knowledge of field boundaries and semantic types,
which improves fuzzing. Besides, AIFORE utilizes a novel
power scheduling algorithm to balance the power for different
formats.

6.2 Input Format Reverse Engineering

Input format reverse engineering works can be classified into
two main categories regarding the problem they solve.

Field Boundary Identification. Identifying the boundary
of different fields in the input is fundamental to reversing the
format. Several works try to split the input into fields based on
taint analysis [3, 4, 35–38] or trace analysis of a few network
messages [5, 30, 39–41]. The closest work to AIFORE is
Tupni [4], which uses the weighted taint information in the
instruction, as long as a greedy algorithm to identify different
fields. However, the instruction-level taint information may
produce false positives since it does not consider the semantic.
Besides, Tupni [4] is a coarse-grained method in which the
record it identifies may contain several fields, rather than
a single field. AIFORE considers the BB as the minimum
functional unit instead of the instruction. AutoFormat [35]
combines dynamic taint analysis and call stack to build a
field tree. It relies much on the tokenization and the operation
of the tree itself, rather than on how the program processes
different fields. MIMID [42] and AUTOGRAM [43] also rely
on dynamic taint analysis and call stack analysis. They are
used to extract context-free grammar for text-based inputs
rather than context-sensitive ones like binary-based inputs
which are more complex. Reverx [44] splits the input into
fields by predefined delimiters and it cannot be used for binary
messages. There are some other works [30, 45] that try to
identify the field by analyzing a large number of high-quality
inputs. Nevertheless, AIFORE can extract the field knowledge
with only one input.

Field Type Identification. Identifying the type of distinct
fields is also an important problem. Current works [3, 34, 46,
47] mainly utilize dynamic program analysis and predefined
rules to classify the input field into types. Dispatcher [48] iden-
tifies the field type by leveraging taint analysis and heuristics
rules similar to TIFF-fuzzer. Polyglot [3] tries to identify the
keywords and separators in the protocol message. It also tries
to identify the length field by heuristics rules. However, the

identified field types are limited, and the heuristic rules have
limitations when the message is not strict. For example, a
protocol may allow multiple delimiters.

Different from the existing works, AIFORE utilizes a
machine-learning model to extract the feature and predicts the
field types automatically. We feed multi-dimension seman-
tic features from the tainted instructions, format strings, and
library calls in related BBs to train the model. In this way,
AIFORE does not require extra manually-defined rules and
therefore it is more general.

6.3 Binary Analysis with AI

The closest works in AI-based binary analysis include bi-
nary similarity detection [23, 49] and semantic information
recovery [50, 51]. For the binary similarity detection, [23]
utilizes BERT and CNN to find similar code. [52] uses Struc-
ture2vec to vectorize the CFGs. Different from existing works,
AIFORE aims at classifying the input fields into different
categories, which is a classification problem instead of an
embedding problem. There are also some works [50, 51] that
try to recover the semantic information (e.g., function names,
variable types) from the binary program with AI. However,
the program variable type is simpler than the field type. For
example, a variable of int type may represent an offset or
a size field. AIFORE aims to recover the semantic type of
an input field, which is harder but more useful.

7 Limitation

While AIFORE has good accuracy for field boundary detec-
tion and type analysis, some limitations remain. As described,
our method fundamentally relies on dynamic taint analysis.
Thus, the key limitation of AIFORE is that how the program
parses the input highly affects the result. For example, if a
program does not parse some fields, AIFORE cannot extract
the format knowledge. Further, if a program parses individ-
ual bytes of a field separately, AIFORE may produce false
positives. However, we can overcome this issue by feeding
the input to several programs that can parse this format. The
second limitation is that our analysis runs at byte granularity,
which means bit-level fields cannot be analyzed. Supporting
bit-level analysis is technically possible but requires further
engineering and optimization. The byte-level analysis also
indicates that AIFORE does not support text-based input. The
minimum unit of text-based input is a keyword rather than
a byte. Third, it is hard for AIFORE to analyze the cases
of input encryption or code obfuscation (e.g., in malware or
ransomware). There is no obvious format information in en-
crypted input, and the developer may also use obfuscation
code to hide the operation pattern to parse the file. There are
several orthogonal works, for example, Reformat [38] that try
to reverse the format of encrypted input.

8 Conclusion

Input format knowledge is useful for fuzzing to discover vul-
nerabilities in programs. Existing approaches struggle at cor-
rectly recognizing or applying the input format. We introduce
AIFORE to automatically reverse engineer input format and
later guide the fuzzing process. Specifically, we propose to
utilize taint analysis to infer basic blocks responsible for pro-
cessing each input byte, and group input bytes with a mini-
mum cluster algorithm. Further, we utilize a neural network
to infer the type of input fields based on the behavior of basic
blocks. Based on the input knowledge, we present a novel
power scheduling algorithm for fuzzers. A systematic eval-
uation shows that this solution has better effectiveness and
efficiency than existing baselines.

Acknowledgements

This work was supported by the National Key Research and
Development Program of China (2021YFB2701000), Na-
tional Natural Science Foundation of China (61972224), Bei-
jing National Research Center for Information Science and
Technology (BNRist) under Grant BNR2022RC01006.

References
[1] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson, “Host

of Troubles: Multiple Host Ambiguities in HTTP Implementations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. Vienna Austria: ACM, Oct. 2016, pp.
1516–1527.

[2] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving
for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 515–530.

[3] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analy-
sis,” in Proceedings of the 14th ACM conference on Computer and
communications security, 2007, pp. 317–329.

[4] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in Proceedings of
the 15th ACM conference on Computer and communications security,
2008, pp. 391–402.

[5] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic proto-
col reverse engineering from network traces.” in USENIX Security
Symposium, 2007, pp. 1–14.

[6] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “Tiff: using input type
inference to improve fuzzing,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 505–517.

[7] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium, 2010, pp. 1–1.

[8] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
“Profuzzer: On-the-fly input type probing for better zero-day vulnera-
bility discovery,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 769–786.

[9] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2020, pp. 1–13.

[10] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, 2019.

[11] “The peach project,” https://www.peach.tech/.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097–1105, 2012.

[13] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou,
“{EcoFuzz}: Adaptive {Energy-Saving} greybox fuzzing as a vari-
ant of the adversarial {Multi-Armed} bandit,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 2307–2324.

[14] “Automatically inferring file syntax with afl-analyze,” 2016, https://
lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html.

[15] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, vol. 45, no. 5, pp. 489–506, 2017.

[16] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[17] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A
unified framework for multi-label image classification,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2285–2294.

[18] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engi-
neering of types in binary programs,” 2011.

[19] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures.” in NDSS, 2011.

[20] “Tool interface standard (tis) executable and linking format (elf) speci-
ficatione,” 1995, https://refspecs.linuxfoundation.org/elf/elf.pdf.

[21] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Vex,”
https://github.com/angr/pyvex.

[22] H. Lee and H. Kwon, “Going deeper with contextual cnn for hyper-
spectral image classification,” IEEE Transactions on Image Processing,
vol. 26, no. 10, pp. 4843–4855, 2017.

[23] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order mat-
ters: Semantic-aware neural networks for binary code similarity detec-
tion,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, 2020, pp. 1145–1152.

[24] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection for
fuzzing,” in 23rd USENIX Security Symposium (USENIX Security
14). San Diego, CA: USENIX Association, Aug. 2014, pp.
861–875. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[25] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[26] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, 2012, pp. 121–132.

[27] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[28] Lonami, “Autoit scripting language,” 2018, https://www.autoitscript.
com/site/.

[29] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[30] M. A. Beddoe, “Network protocol analysis using bioinformatics algo-
rithms,” Toorcon, 2004.

[31] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network
protocol analyzer toolkit. Elsevier, 2006.

[32] D. She, A. Shah, and S. Jana, “Effective Seed Scheduling for Fuzzing
with Graph Centrality Analysis,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Apr. 2022, pp. 1558–1558.

[33] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2014.

[34] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 627–637.

[35] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format
reverse engineering through context-aware monitored execution.” in
NDSS, vol. 8. Citeseer, 2008, pp. 1–15.

[36] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 2009, pp. 110–125.

[37] B. Cui, F. Wang, T. Guo, G. Dong, and B. Zhao, “Flowwalker: a fast
and precise off-line taint analysis framework,” in 2013 Fourth Interna-
tional Conference on Emerging Intelligent Data and Web Technologies.
IEEE, 2013, pp. 583–588.

[38] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat: Auto-
matic reverse engineering of encrypted messages,” in European Sympo-
sium on Research in Computer Security. Springer, 2009, pp. 200–215.

[39] S. Kleber, H. Kopp, and F. Kargl, “{NEMESYS}: Network message
syntax reverse engineering by analysis of the intrinsic structure of
individual messages,” in 12th {USENIX} Workshop on Offensive Tech-
nologies ({WOOT} 18), 2018.

[40] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M. Mu-
nafò, “Towards automatic protocol field inference,” Computer Commu-
nications, vol. 84, pp. 40–51, 2016.

[41] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal, “Semi-automated
discovery of application session structure,” in Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, 2006, pp. 119–
132.

[42] R. Gopinath, B. Mathis, and A. Zeller, “Mining input grammars from
dynamic control flow,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 172–183.

[43] M. Höschele and A. Zeller, “Mining input grammars with AUTO-
GRAM,” in 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion (ICSE-C), 2017, pp. 31–34.

[44] J. Antunes, N. Neves, and P. Verissimo, “Reverx: Reverse engineering
of protocols,” 2011.

[45] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M. Mu-
nafo, “Automatic protocol field inference for deeper protocol under-
standing,” in 2015 IFIP Networking Conference (IFIP Networking).
IEEE, 2015, pp. 1–9.

[46] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,”
in 2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp.
497–512.

[47] Z. Lin and X. Zhang, “Deriving input syntactic structure from ex-
ecution,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, 2008, pp. 83–93.

[48] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in Proceedings of the 16th ACM conference on Computer
and communications security, 2009, pp. 621–634.

https://www.peach.tech/
https://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html
https://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://github.com/angr/pyvex
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.autoitscript.com/site/
https://www.autoitscript.com/site/
http://lcamtuf.coredump.cx/afl/

[49] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural ma-
chine translation inspired binary code similarity comparison beyond
function pairs,” arXiv preprint arXiv:1808.04706, 2018.

[50] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin: Pre-
dicting debug information in stripped binaries,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1667–1680.

[51] Y. David, U. Alon, and E. Yahav, “Neural reverse engineering of
stripped binaries using augmented control flow graphs,” Proceedings of
the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–28,
2020.

[52] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity de-
tection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 363–376.

[53] P. V. Mockapetris, “Rfc1035: Domain names-implementation and spec-
ification,” 1987.

[54] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

Appendices
A Comparison of Protocol Reverse Engineer-

ing

Beyond the file inputs, we also choose two protocols, ARP
and DNS, to test and compare the result with Wireshark [31],
Polyglot [3], and PI [30]. The program we choose to parse
ARP is arping which is provided by the system of Ubuntu
18.04, and the parameter is arping 192.168.1.1 -I eno2
-c 1. This command produces an ARP request and then
parses an ARP reply packet. The program to parse DNS
is nslookup from BIND 9, and the parameter we use is
nslookup example.com.

In this experiment, we only focus on reversing the format
of the response part (i.e., ARP reply and DNS response packet).
Given only one response packet, AIFORE can successfully
reverse the format via taint analysis and related analysis. How-
ever, during the test against PI, it fails to reverse the format
given only one response packet, so we change the testing
command from -c 1 to -c 10 to collect 10 response packets
for PI to analyze. During the execution of the command, we
capture the packets so that we can later compare the results.

We use the format knowledge taken from Wireshark as the
ground truth. Wireshark identifies protocol formats by tem-
plate scripts written carefully by community experts. How-
ever, we find AIFORE can extract more detailed format knowl-
edge in some cases, like the DNS target. Thus, we also use
the RFC 1035 [53], which defines the DNS protocol format
specification as complementary to the ground truth. The or-
ange parts represent the wrong results. AIFORE can not only
identify the field boundaries but also identify the field types.
AIFORE predicts the field type correctly for 4 fields out of 5.

The results of DNS and ARP format reverse engineering are
shown in Figure 8 and Figure 9 respectively. The orange parts
represent the wrong results. From the result, we can learn that
AIFORE extracts more detailed and correct information than
Wireshark in the green parts of DNS. From the RFC speci-
fication [53] of DNS, we know that the QNAME field contains
several labels, and each label consists of a byte representing
the length followed by a number of octets representing data.
Wireshark marks the QNAME as a whole and is not able to split
it into individual labels. AIFORE extracts more detailed field
boundaries than Wireshark, as shown in the result. AIFORE
also identifies the field type correctly.

B Case Study

In this section, we analyze some concrete examples to help
understand how AIFORE outperforms other state-of-art works
from the view of field boundary recognition and field type
classification. We take the ELF as an example to illustrate.

B.1 Field Boundary Case

We take 2 format-aware fuzzing tools that can identify fields
in the input as examples. The field extraction result during
fuzzing is shown in Figure 10.

From the result, TIFF-fuzzer and AIFORE split the first
four bytes (i.e., magic_number field) into single-byte fields.
However, since the program parses the bytes one by one, then
it is better to fuzz each of the bytes rather than as a whole.
For WEIZZ, there are a few false negatives. The reason is that
WEIZZ relies on cmp instruction when extracting the fields,
which is not sufficient.

In AIFORE, we perform a complete taint analysis on valu-
able inputs, rather than WEIZZ, which achieves a higher accu-
racy on field identification and thus can increase the fuzzing
efficiency better than other fuzzers, as shown in Table 8.

B.2 Field Type Case

For field type identification, state-of-art works generally de-
pend on specific rules, and the field types they identified are
usually program types rather than the semantic type of a
field. For example, TIFF-fuzzer infers field types based on
APIs (strcmp,strcpy) in libraries and then splits the field
into several program variable types such as char* and int.
However, such rules and types may not be sufficient. Take
the section name, s_name, in the ELF file as an example.
Such fields are string type. However, TIFF-fuzzer considers
them as consecutive int bytes. The reason is that readelf
uses repe cmpsb instruction rather than strcmp call to parse
s_name. In AIFORE, it marks this field as a magic number,
which is also reasonable, since the program tries to compare
the section name with hardcoded strings. We then investigate

Hardware type: Enumeration

Protocol type: Enumeration

Hardware size: Size
Protocol size: Size

Opcode: Enumeration

Sender MAC address: Address

Sender IP address: Address

Target MAC address: Address

Target IP address: Address

0

ARP

Wireshark 3.4.0 PI 0.0.2

Enum

Enum

Size
Size

String

N/A for type

N/A for type

N/A for type

N/A for type

Zeroed data

Binary data

Zeroed data

Binary data

Zeroed data
Binary data
Binary data
ASCII data

Binary data

Zeroed data

Binary data

Binary data

Zeroed data

Binary data

Binary data

ASCII data

G data

Binary data

G data

AIFORE

2

4

5
6

8

14

18

24

28

Figure 8: Results of the ARP reverse engineering.

ID : Integer

Flags : Size

Questions RR : Size

Answer RR : Size

Authority RR : Size

Additional RR : Size

QNAME(String)

QTYPE : Enumeration

QCLASS : Enumeration

0

2

4

12

27

Header

29

Wireshark 3.4.0
PI 0.0.2

Bind 9.16.16
AIFORE

Bind 9.16.16

6

8

10

Queries

N/A for type

Size

Size

Size

Size

Size

Size

String

Size

String

N/A for type

Enum

Enum

Binary data

Binary data

Zeroed data
Binary data
Zeroed data
Binary data

Zeroed data

Ascii data

Ascii data

G data

Binary data

G data

Ascii data

G data

G data

Ascii data
G data

ID : Integer

Flags : Size

QDCOUNT : Size

ANCOUNT : Size

NSCOUNT : Size

ARCOUNT : Size

QNAME:
Labels(Length+String)

QTYPE : Enumeration

QCLASS : Enumeration

RFC 1035

Unused

Fixed

Fixed

Fixed

Fixed

Fixed

Direction

Variable

Direction

Variable

0

Fixed

Fixed

Polyglot
Bind 9.3.4

25

Figure 9: Results of the DNS format reverse engineering.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: [7F] [45] [4C] [46] [01] [01] [01] [00] [00] [00] [00] [00] [00] [00] [00] [00]

0x10h: [02 00] [03 00] [01 00 00 00] [74 80 04 08] [34 00 00 00]

0x20h: [A4 00 00 00] [00 00 00 00] [34 00] [20 00] [02 00] [28 00]

0x30h: [04 00] [03 00]

(a) TIFF-fuzzer

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: [7F 45 4C 46] [01 01 01 00] 00 00 00 00 00 00 00 00

0x10h: [02 00] [03 00] 01 00 00 00 74 80 04 08 [34 00] [00 00

0x20h: A4 00 00 00] 00 00 00 00 34 00 [20 00] [02 00] [28 00]

0x30h: [04 00] [03 00]

(b) WEIZZ

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: [7F] [45] [4C] [46] [01 01 01 00] 00 00 00 00 00 00 00 00

0x10h: [02 00] [03 00] 01 00 00 00 74 80 04 08 [34 00] [00 00

0x20h: A4 00 00 00] 00 00 00 00 34 00 [20 00] [02 00] [28 00]

0x30h: [04 00] [03 00]

(c) AIFORE

Figure 10: Field identification results. Bytes in red brackets
indicate they are different than the specification, while the
shallow parts indicate the target fails to extract the fields.

why the model in AIFORE predicts the field as a magic num-
ber. We leverage the Grad-cam [54], which is used to explain
why a model makes a specific decision. It helps humans to
understand the internal working principle of a classification
model.

To explain the decision of the model, we feed the vector-
ized semantic feature (IR operation, library call, and format
strings) of the magic field to Grad-cam. Then we observe
which feature plays the most important role in the decision.
We choose the top 5 features of Grad-cam to observe: [‘Cm-
pLT32U’, ‘128to64’, ‘CmpLE64S’, ‘And8’, ‘CmpLE32U’].
As the result shows, the cmp feature plays the most important
role when the model predicts the field as a magic number,
which is reasonable.

; char *__cdecl get_file_type(unsigned int e_type)
…
…
mov rcx, 0F3DDh
call __afl_maybe_log ; bitmap changes here
mov rax, [rsp + 98h + var_88]
mov rcx, [rsp + 98h + var_90]
mov rdx, [rsp + 98h + var_98]
lea rsp, [rsp + 98h]
mov edi, edi
mov edx, 5 ; e_type
jmp ds:off_77DA00[e_type*8] ; switch jump

loc_40DFF0: ; jumptable case 0
mov esi, offset aNoneNone
xor edi, edi ; domainname
jmp _dcgettext

loc_40DFE0: ; jumptable case 4
mov esi, offset aCoreCoreFile
xor edi, edi ; domainname
jmp _dcgettext

… case 2 …

Figure 11: ProFuzzer failure case.

Another work that can identify the semantic type of a field
is ProFuzzer. We take the field e_type locates at offset 0x10
in Figure 10 as an example. It represents the file type (e.g.,
ET_EXEC), which is an enumeration. During the probing
stage, ProFuzzer considers it an incorrect offset type. We
then investigate the reason and find this is due to the limitation
of code coverage bitmap. ProFuzzer mutates each of the bytes
in e_type to observe the similarity of the bitmaps. But from
Figure 11, we can learn that different switches share the same
bitmap, which leads ProFuzzer to make the wrong decision.
However, in AIFORE, it predicts the field type based on how
the program parses the specific field, and we also use forward
slicing to merge BB to get more code features, which makes
it able to recognize this field correctly.

B.3 Power Scheduling Case Study

To better understand how the power scheduling works in
AIFORE, we choose tcpdump as a target to answer two ques-
tions. First, do valuable seeds really bring new formats? Sec-
ond, can AIFORE assign more power to those formats which
are mutated less?
tcpdump is a program to parse pcap files. The pcap file

consists of several data structures (e.g., pcap header, frame)
which are composed of several fields. Before analyzing the

result, let us illustrate the frame structure first. As shown in
Figure 12, the frame has some fields with consecutive bytes
(e.g., Incl Len consisting of bytes at offsets from 0x08 to
0x0B) and some fields with single-byte (e.g., L4 Prot) val-
ues. Take L4 Prot at offset 0x27 as an example, it indicates
the data type (TCP, UDP, etc.) of Layer 4, which is high-
lighted in yellow. tcpdump will dispatch different codes to
parse various kinds of L4 layer data.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: FF E6 B9 60 01 35 08 00 2A 00 00 00 6A 00 00 00

0x10h: 02 42 38 48 79 F0 02 42 AC 11 00 0D 08 00 45 08

0x20h: 00 5C 91 77 40 00 40 06 C3 E4 AC 11 00 0D 73 1B

0x30h: C5 FE 00 16 76 98 7D 55 2E F4 FF E6 B9 60 5F

Orig LenTs Sec

Source IPTotal Length

Ts Usec

Destination MAC Source MAC Layer3 Protocol Ver Len DiffServ

Identification Flags L4 ProtTTL Checksum

Dest IP Source Port Dest Port SEQ ACK Tcp Len

Incl Len

(a) Frame with TCP packet.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x00h: 36 00 00 00 96 D3 09 00 BD 01 00 00 BD 01 00 00

0x10h: FF FF FF FF FF FF 10 A1 CD 11 00 0D 08 00 45 00

0x20h: 01 AF 00 00 00 00 40 11 79 3F 00 00 00 0D FF FF

0x30h: FF FF 00 44 00 43 01 9B CA 88

Orig LenTs Sec

Source IPTotal Length

Ts Usec

Destination MAC Source MAC Layer3 Protocol Ver Len DiffServ

Identification Flags L4 Prot.TTL Checksum

Dest IP Source Port Dest Port

Incl Len

Data Length Checksum

(b) Frame with UDP packet.

Figure 12: Frame structure definition.

To answer the first question, we investigate how many valu-
able seeds bring new structures. We consider the seeds valu-
able if they can reach more BBs (e.g., 3%) than others. We
run AIFORE to fuzz tcpdump for 5 hours and investigate how
many new structures are produced. The result is shown in
Table 9. From the result, we have 30 valuable seeds in total,
and for each of the seeds, if it brings new structures, we then
count the number. For example, there are 11 seeds bring new
format variants of Layer 2 data. In summary, there are 20
valuable seeds that produce new structures out of 30.

To further understand the performance of the power
scheduling in AIFORE, we also record the execution times for
each of the new structures during fuzzing. We have two groups
of experiments. The only difference is that the first group is
equipped with the power scheduling algorithm, while the other
is not. We feed tcpdump with the same seeds, and we fuzz
them for 3 hours with AIFORE. The result is shown in Fig-
ure 13. As it can be seen, if AIFORE is equipped with power
scheduling, some of the fuzzing power can be re-assigned
to those new structures, which are mutated less. However,
the fuzzer focus most of its power on one structure without
the power scheduling. Noted that there is a structure that is
mutated with large execution times in both of the groups. The
reason is that the power scheduling starts to work after the
fuzzer gets to run for a while, rather than at the beginning.

0 1 2 3 4 5 6 7 8 9 10 11
Structure Index

0%

10%

20%

30%

40%

50%

Re
l.

Ex
ec

. T
im

es

(a) Power scheduling equipped.

0 1 2 3 4 5 6 7 8
Structure Index

0%

10%

20%

30%

40%

50%

60%

70%

80%

Re
l.

Ex
ec

. T
im

es

(b) Power scheduling unequipped.

Figure 13: Execution times analysis for power scheduling
algorithm.

Table 9: New formats produced by valuable seeds.
Layer2 Layer3 Layer4 No Variant

Origin
Seed Id

88, 267, 287,
296, 310, 360,
368, 549, 618,
725, 765

15, 207, 713,
728, 759, 784,
1928

306, 593

27, 51, 300,
420, 526, 551,
594, 924, 937,
1785

Total 11 7 2 10

C Other Tables and Figures

Figure 14 shows the field type accuracy results of models
trained on programs with different compiler optimization lev-
els. The detailed explanation is in Question 1 of §5.1.2.

(a) O0 Performance (b) O1 Performance

(c) O2 Performance (d) O3 Performance

(e) Os Performance (f) Mixed Performance

Figure 14: Field type accuracy of models trained on different
programs (red/blue lines: accuracy on training/validation set).

	Introduction
	Motivational Example
	Design
	Field Boundary Analysis
	Field Type Classification
	Field Types
	Training Data Collection
	Data Vectorization
	CNN Model Building

	Fuzzing with Power Scheduling

	Implementation
	Evaluation
	RQ1: Performance of Format Extraction
	Field Boundary Accuracy
	Field Type Accuracy

	RQ2: Comparison of Format Extraction
	RQ3: Comparison of Fuzzing Performance
	Code Coverage Result
	Bugs Found by AIFORE

	RQ4: Contribution of Each Module

	Related Work
	Format-Aware Fuzzing
	Input Format Reverse Engineering
	Binary Analysis with AI

	Limitation
	Conclusion
	Comparison of Protocol Reverse Engineering
	Case Study
	Field Boundary Case
	Field Type Case
	Power Scheduling Case Study

	Other Tables and Figures

