
Creating Trust by Abolishing Hierarchies
Charly Castes

∗

EPFL, Switzerland

Adrien Ghosn
∗

Microsoft, UK

Neelu S. Kalani

EPFL, Switzerland

Yuchen Qian

EPFL, Switzerland

Marios Kogias

Imperial College London &

Microsoft, UK

Mathias Payer

EPFL, Switzerland

Edouard Bugnion

EPFL, Switzerland

ABSTRACT

Software is going through a trust crisis. Privileged code is no

longer trusted and processes insufficiently protect user code

from unverified libraries. While usually treated separately,

confidential computing and program compartmentalization

are both symptoms of the same problem, deeply rooted in

hierarchical commodity systems: privileged software’s mo-

nopoly over isolation.

This paper proposes a separation of powers: to decouple

trust and isolation from privilege hierarchies. It introduces

an isolation monitor, which delivers verifiable isolation, con-

fidentiality, and integrity to all software, independent of

existing system abstractions and privilege hierarchies. Ty-

che, our prototype isolation monitor, runs on commodity

hardware without relying on complex and emerging hard-

ware security extensions. It enables any software component

to create, compose, and nest isolation abstractions, including

user and kernel sandboxes, enclaves, as well as confidential

virtual machines.

ACM Reference Format:

Charly Castes, Adrien Ghosn, Neelu S. Kalani, Yuchen Qian, Mar-

ios Kogias, Mathias Payer, and Edouard Bugnion. 2023. Creating

Trust by Abolishing Hierarchies. In Workshop on Hot Topics in Op-
erating Systems (HOTOS ’23), June 22–24, 2023, Providence, RI, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3593856.

3595900

∗
co-equal first author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00

https://doi.org/10.1145/3593856.3595900

1 INTRODUCTION

Trust is gone. In 1984, Ken Thompson warned “you can’t

trust code you did not totally create yourself” [50]. Today, de-

velopers only create a tiny fraction of the software stack. User

applications use thousands of unverified libraries [43, 44]

and give them unrestricted access to their address space.

Applications further have no choice but to trust commod-

ity systems, i.e., operating systems and hypervisors written

by thousands of contributors, with an ever-increasing code

base [31, 36], and executing in the Cloud under the control

of third parties.

Modern application software needs to minimize its trusted

computing base (TCB) and control how its sensitive data and

resources are exposed to other software components. For

example, an application should be able to isolate libraries

coming from untrusted third parties; a kernel should be able

to isolate untrusted device drivers; applications need iso-

lation from potentially compromised operating systems or

hypervisors.

Modern software addresses these challenges through a

combination of compartmentalization, i.e., intra-program iso-

lation, and confidential computing, i.e., isolation from more

privileged code. The industry, including hardware manufac-

turers, and Academia have so far treated them separately.

They provide point solutions (1) tied to privilege levels or

system abstractions (2) that are hard to combine [7] or do

not nest [46]. Compartmentalization mechanisms focus on

either user [10, 19, 22, 39, 53, 55] or kernel [16, 37, 49] code,

and are often incompatible with confidential computing ab-

stractions tied to either processes [5, 8, 11–13, 17, 20, 23,

30, 35, 38, 40, 57] or virtual machines [3, 4, 29, 32, 58]. As

software components combine and nest, so must isolation

mechanisms.

Previous work rely on separate, incompatible mechanisms

to implement compartmentalization and confidential com-

puting. The heterogeneous nature of those mechanisms and

their ties to privilege levels make them hard to nest or com-

bine. An ideal solution should provide configurable policies

that can be recursively applied, enforced by a mechanism

https://doi.org/10.1145/3593856.3595900
https://doi.org/10.1145/3593856.3595900
https://doi.org/10.1145/3593856.3595900

HOTOS ’23, June 22–24, 2023, Providence, RI, USA C.Castes, et al.

 Defines

 Policies

 Measures

Boot

Executive

Isolation Monitor
 Enforces Policies

 Emits Attestations

 Queries Executive

Measurement

Legislative

Any Domain

Requests

 Signature

 Verifies Attestations

Signature

Judiciary

Root of Trust

Figure 1: The separation of powers

that supports recursive-nested isolation, in a system that can

be fully attested and inspected for correctness.

This paper argues that challenges in compartmentalization

and confidential computing stem from a common system

design limitation: commodity systems’ current monopoly

over isolation. The system is the sole provider of isolation

and does so through processes and virtual machines. These

abstractions are coarse-grained, conflate trust and privilege,

and are thus unfit for modern software isolation.

This monopoly can be expressed as an analogy with poli-

tics: commodity systems concentrate (1) legislative power, by

restricting isolation policies based on privileges, (2) executive

power, by having exclusive access to hardware enforcement

mechanisms [14, 28, 45, 52], and (3) have no judiciary over-

sight, i.e., provide no verifiable guarantees that isolation is

correctly enforced.

Inspired by French philosopher Montesquieu [41], we pro-

pose in Figure 1 a separation of powers to abolish commodity

systems’ monopoly on isolation. We believe that a complete

separation of powers would address the software trust crisis

by providing flexible and verifiable isolation, orthogonal to

privilege levels and existing system abstractions.

We introduce an isolation monitor to enforce (executive)

policies defined by any software (legislative) and guarantee

system-wide, remotely-verifiable invariants (judiciary). This

separation of powers unifies compartmentalization and con-

fidential computing, supports more complex trust models,

and can be retrofitted into commodity systems with minimal

disruption.

We present Tyche, a prototype implementation of an iso-

lation monitor, designed to be formally verifiable, with a

unified isolation API that allows to create, combine, and nest

various isolation abstractions, including sandboxes, enclaves,

confidential virtual machines, and more. With an early proto-

type on x86_64 and RISC-V, Tyche demonstrates that our so-

lution is not only possible on commodity hardware, without

using complex hardware security extensions [3, 4, 7, 29, 30],

but also allows for the exploration of isolation policies be-

yond the ones provided by hardware manufacturers and

previous work.

Crypto Engine SaaS Application

Attestable
Shared Memory

SaaS VM Cloud
Provider

Isolated Components

Untrusted Components

Figure 2: Confidential processing of data through an

untrusted SaaS application. Isolated components (en-

claves and GPU) are restricted to solely access their

own (confidential) and explicitly shared memory.

2 THE PRIVILEGE HIERARCHY

Verifiable isolation of a software component is achieved by

the combination of three elements: policies, enforcement, and
attestation. This paper draws a parallel between these three

elements and the three political powers: legislative, executive,

and judiciary. This analogy explains how commodity systems

create rigid hierarchies that conflate trust and privileges, but

also suggests how to provide flexible verifiable isolation on

commodity hardware.

2.1 The Three Powers

In computer systems, the legislative power defines the isola-
tion policies for a given piece of software: (1) the resources,

i.e., memory, CPU cores, and PCI devices, available to the

software, (2) their corresponding access rights, but also (3)

controlled sharing: isolation conditions for resources to be

shared with other components.

Figure 2 illustrates how crucial controlled sharing is to

allow mutually distrustful entities to collaborate. The cus-

tomer is only willing to process sensitive data through the

SaaS application under the guarantee that its data can not be

leaked. For this purpose, the SaaS application is isolated from

the rest of the system with the exception of shared mem-

ory regions with a similarly isolated GPU and a confidential

crypto engine, i.e., an encryption enclave. After attesting the

identity of the crypto engine and the proper isolation and

shared memory configuration of both the SaaS application

and GPU, the customer can provision the crypto engine with

its key to ensure encryption of all outgoing traffic.

The executive power enforces isolation: it restricts access
to the machine’s resources. On commodity hardware, en-

forcement is the prerogative of privileged code that derives

its power from privileged hardware instructions [45]. Privi-
leged instructions configure access control mechanisms, such
as segments [14, 45], page-tables [28, 52], and I/O-MMU [28]

for memory, to restrict unprivileged user code’s access to the

machine’s resources.

Creating Trust by Abolishing Hierarchies HOTOS ’23, June 22–24, 2023, Providence, RI, USA

The judiciary power ensures that policies are correctly

enforced. It provides oversight of the executive power, pre-

venting privileged code from arbitrarily violating isolation

policies. Judiciary power can take different forms, but usu-

ally comprises a root of trust and a way to derive a chain

of trust. In Figure 2, the judiciary power provides attestable

verifiable assurance that the SaaS application and GPU are

completely isolated and only share memory with the crypto

engine throughout the entire execution.

2.2 The Monopoly on Isolation

Commodity systems have a monopoly on isolation: they con-

centrate legislative (policies) and executive (enforcement)

powers in a single entity without judiciary oversight. This

concentration of powers creates a rigid trust hierarchy tied to

privileges, and impedes upon their ability to satisfy modern

software’s need for isolation.

First, the lack of attestable verifiable guarantees leaves no

choice but to blindly trust all privileged code which allows

arbitrary modifications to access control mechanisms by any
privileged code. As such systems often comprise millions of

lines of code [31, 36] and are trusted based on reputation

rather than verifiable correctness, they cannot provably pro-

vide confidential guarantees or compartmentalize privileged

code, even when attested.

Second, commodity systems overly restrict the set of sup-

ported isolation policies, violating the principle of separation

between mechanisms and policies [34]. They only provide

processes and virtual machines, two coarse-grain abstrac-

tions with rigid trust models.

Processes mirror hardware’s privilege hierarchy, i.e., they
protect privileged code from user code, but not the other way

around. Processes are meant to isolate full programs, not in-

dividual libraries. As a result, developers must either extend

their trust to thousands of unverified libraries [43, 44] or iso-

late them in separate processes, with all associated overheads

in creation, synchronization, and management. Meanwhile,

privileged code can easily bypass process isolation and thus

has no choice but to run untrusted drivers in user mode at

the cost of extra context switches for privileged operations.

Virtual machines duplicate hardware privilege levels and

grant full control to virtual-privileged code over virtual-user

software [45]. This creates a rigid trust hierarchy that forces

software to blindly trust all intermediate privileged levels,

and leads to an uncontrolled explosion of the TCB.

Third, commodity systems isolation abstractions do not

support verifiable controlled sharing. They are meant to

virtualize and multiplex physical resources and as such, do

not provide full visibility into how these are shared among

software components, and more importantly, do not provide

proof that they are not shared with unauthorized ones.

2.3 Breaking the Monopoly

Montesquieu suggests a separation of the three powers into

independent branches so that no single entity can abuse its

power [41]. Solutions in both compartmentalization and con-

fidential computing can be interpreted as partial attempts to

reduce commodity systems’ monopoly on isolation through

a limited redistribution of powers.

Compartmentalization: Compartmentalization is the abil-

ity to let any piece of software divide itself into isolated sub-

components with different access rights to the program’s

resources. It relies on program-specific knowledge to derive

isolation policies following the principle of least privilege,

e.g., to enable the protection of applications from untrusted

libraries [19, 22, 53] or operating systems from kernel dri-

vers [15, 49].

Compartmentalization solutions typically involve two priv-

ilege levels: the software that needs to be compartmental-

ized dictates policies and relies on more privileged code

to enforce them. Policies are expressed via new system ab-

stractions [10, 24, 39], compiler instrumentation [21], or pro-

gramming constructs [9, 19, 22, 53] and enforced by more

privileged software with existing or new hardware mecha-

nisms [27]. For example, operating system code relies on a

hypervisor to isolate untrusted system libraries [16, 37], and

user code relies on OS abstractions, such as LWC [10, 39] or

SMV [24], to create the desired isolated compartments.

Compartmentalization solutions attenuate commodity sys-

tems’ monopoly on isolation. They implement a partial sep-

aration of legislative (policies) and executive (enforcement)

powers. Unfortunately, they duplicate mechanisms by han-

dling kernel and user compartmentalization separately, and

preserve the conflation of trust and privileges.

Confidential computing: Confidential computing is the

ability to construct attestable trusted execution environ-

ments (TEEs) that preserve a program’s confidentiality and

integrity, even in the presence of compromised privileged

software. This allows a drastic reduction of a program’s TCB.

Confidential computing solutions build a root of trust

that (1) prevents illegal access to TEEs and (2) provides a

remotely-verifiable attestation that the TEE is correctly con-

figured and isolated from the rest of the system. The root

of trust is a third party, separate from the untrusted OS or

hypervisor, implemented in hardware [3, 4, 29, 30] or soft-

ware [13, 40, 57]. Hardware solutions use a mix of firmware

and silicon to prevent illegal access to TEEs, while software

solutions introduce a security monitor [6, 35, 40, 57] below

the untrusted privileged software. Trust in the security moni-

tor is derived from a combination of hardware measurement,

e.g., with a TPM [25, 51], and formal verification [17, 42] or

HOTOS ’23, June 22–24, 2023, Providence, RI, USA C.Castes, et al.

...

Cloud Provider (Hypervisor)

SaaS VM ...

Crypto Engine SaaS Application

Isolation Monitor

Driver

Figure 3: Deployment of Figure 2 on an isolation mon-

itor. Black boxes denotes traditional system abstrac-

tions (hypervisor, VM, and processes), while colored

boxes represent trust domains.

code inspection [13, 23, 40, 57] of the monitor’s implementa-

tion.

Confidential computing solutions implement judiciary

oversight of isolation on traditional systems. They provide a

measurement of isolation policies that apply to a TEE and

prevent their violation by privileged code. Similar to compart-

mentalization, they however provide distinct complex [7]

solutions tied to existing system abstractions, i.e., enclaves
and confidential VMs, that seem hard to combine and nest.

3 THE ISOLATION MONITOR

We introduce an isolation monitor, a security monitor that

implements a complete separation of powers to democratize

isolation on commodity hardware.

Figure 1 shows how the isolation monitor enables a com-

plete separation of powers. The isolation monitor itself is

only the executive branch (§3.3), exposing isolation via a sim-

ple yet expressive API for all software to specify their poli-

cies (legislative, §3.2), orthogonal to existing privilege levels

and system abstractions. A third-party root-of-trust provides

verifiable oversight on the system through attestable system-

wide invariants (judiciary, §3.4).

3.1 Domains and resources

The isolation monitor provides a new abstraction to uniquely

identify security contexts: trust domains. A trust domain is

an identity associated with a set of access rights to physical

resources, i.e.,memory, CPU cores, and PCI devices. Domains

can be sealed, so that their resources cannot be extended or

further shared with others. The monitor enforces the desired

isolation, confidentiality, and integrity properties for each

trust domain, without considering how protection is further

implemented inside the domain itself.

Figure 3 depicts trust domains, independent of existing

privilege levels and system abstractions, that provide the

SaaS VM

Crypto Engine SaaS Application

11 24 21

Confidential Memory Shared Memory

Driver

1

Figure 4: View of a subset of the physical memory for

the deployment in Figure 3, with domain-to-regions

mappings and regions reference counts.

desired isolation guarantees (§2.1). They can be as large as

a full confidential VMs (SaaS VM), as small as a program

library or driver, or I/O domains running on devices with

restricted access to main memory (e.g., GPU), thus allowing
fine-grained control over the TCB.

The isolation monitor enforces discretionary access con-

trol over resources. The monitor maintains a per-domain

resource configuration that associates each resource with

access rights, i.e., a set of valid operations, and exposes a

system-wide reference count, as shown in Figure 4. The ref-

erence count is maintained by the monitor to reflect the

number of domains with access to the resource. It ensures

attestable controlled sharing of resources. In Figure 3, the

customer only shares the decrypted data with the SaaS appli-

cation and GPU if their resources are either shared among

themselves (ref. count 2) or exclusively owned (ref. count

1), i.e., if they are sealed and do not share resources (e.g.,
memory or registers) with the rest of the system.

The monitor mediates and validates all control transfers

between domains. Domains have a fixed entry point and are

only allowed to run on CPU cores or I/O devices that are

part of their resource configuration.

3.2 Expressing policies via the API

Software running in any trust domain can access the isolation

monitor API. The API is made of two parts: one part to create

new trust domains, seal them, perform domain transitions, as

well as enumerate and attest a domain’s resources; another

part for resource management policies.

The monitor draws inspiration from microkernels [33, 37],

in that it tries to be minimal and exposes a flexible configura-

tion of access policies via a narrowAPI. Unlike a microkernel,

policies operate on physical name spaces (e.g.,memory, CPU

cores), which (1) permit reasoning about sharing and ex-

clusive ownership without having to consider aliasing, and

(2) favors the implementation of higher-level abstractions,

similar to the exokernel [16].

Creating Trust by Abolishing Hierarchies HOTOS ’23, June 22–24, 2023, Providence, RI, USA

The monitor API provides operations for sharing or grant-

ing exclusive control over resources with a specified revoca-

tion policy. Both sharing and granting of resources are revo-

cable operations, i.e., the resource can be taken back from

the domain. This keeps management code (OS or hypervisor)

in control despite making policy configuration available to

all software on the machine. A revocation policy specifies a

“clean-up” operation, e.g., zeroing-out memory or flushing

CPU cache, that is guaranteed to execute upon revocation.

Additionally, the monitor can produce a hash of domain

configurations and selected initial resources (e.g., memory

content) for attestation purposes.

3.3 Hardware-based policy enforcement

The isolation monitor enforces policies. This entails (1) a di-

rect (secured) communication channel between a domain and

the monitor to configure policies and (2) the monitor’s over-

sight of access control mechanisms to enforce them. Both

requirements can be satisfied on major modern architectures

(x86_64,ARM,RISC-V), either through virtualization or lever-
aging higher privilege modes, and without complex [7] new

hardware security extensions [3, 4, 29, 30].

Previous work [40, 57] implemented security monitors

on top of hardware support for virtualization [1, 52] or in

programmable machine mode [35]. Memory virtualization

provides a second level of page tables to enforce memory

access control at page granularity while other resources,

e.g., devices, can be partitioned using SR-IOV and isolated

using I/O-MMUs. Intel VT-x’s VMCall instruction provides

a direct communication channel to the monitor. On RISC-
V, “machine mode” is the most privileged programmable

execution level and can protect physical memory segments

through PMP [47].

3.4 Trust through remote attestation

The isolation monitor needs (1) to be attested by a root-of-

trust, (2) trusted to correctly enforce policies, and (3) sup-

ply verifiable attestations of system-wide invariants to third

parties. The monitor should not accept invalid policies, arbi-

trarily reconfigure access control mechanisms, or misreport

domain configurations, and must guarantee the ability to

revoke resources while preventing information leakage.

First, a hardware root of trust, such as an industry-standard

TPM [25, 51], measures the machine’s boot-process and pro-

vides a signed remotely-verifiable attestation that the ma-

chine is under the complete control of a specific monitor

implementation.

Second, trust in the monitor is derived from the attestation

by comparing the measurement to a known expected value

that corresponds to an implementation that is either provided

by a trusted supplier, is open-source and can be inspected

and tested, or, ideally, provides strong correctness guarantees

through model-checking or formal verification.

Third, the monitor, now trusted, implements a two-tier

attestation protocol [40] to attest individual domains. A do-

main’s attestation, signed by the monitor, enumerates its

physical resources, their reference counts, and the measure-

ment of selected memory regions. Resource enumeration and

reference counts make sharing and communication paths

between domains explicit and enables remotely-attestable

controlled sharing, confidentiality, and integrity guarantees.

For example, exclusive access to a resource (i.e., a reference
count of 1) coupled with an obfuscating revocation policy

guarantees integrity (while in use) and confidentiality.

3.5 Comparison with existing designs

The design of the isolation monitor borrows from previous

work [16, 18, 32, 35, 37, 40, 58]. It differs from monolithic

operating systems and hypervisors in that it focuses on iso-

lation and avoids resource management, device emulation,

and does not expose high-level abstractions. The monitor

does not choose resources to allocate to a domain, but rather

validates allocation, i.e., sharing, granting, and revocation

operations.

The isolation monitor’s design is very close to the micro-

kernel one as it strives to be minimal and provide a tight

but flexible API for resource management. An isolation mon-

itor or microkernel is expected to be orders of magnitude

smaller, e.g., thousands of lines of code instead of millions,

than a typical monolithic kernel or hypervisor. However,

unlike microkernels, the isolation monitor’s goal is not to

replace monolithic kernels or hypervisors, but rather to exe-

cute at a higher privilege level, only manage physical names,

and provide an isolation mechanism orthogonal to the ones

provided by the OS. For example, the OS still provides the

process abstraction, while the monitor transparently allows

sub-compartments within a process.

Previous security monitor implementations [17, 35, 40], as

well as hardware extensions for either confidential comput-

ing or compartmentalization, only provide a single high-level

abstraction, tied to pre-existing systems one, e.g., an enclave

within a user process or a confidential virtual machine. The

isolation monitor takes a holistic approach to isolation: it

provides a single, unified API for both compartmentalization

and confidential computing that supports arbitrary nesting.

4 THE TYCHE ISOLATION MONITOR

Tyche is our prototype isolation monitor, written in Rust,
designed to be minimal (<10K LOC), formally verifiable, re-

motely attestable, and thus trusted. Tyche boots on bare

metal and runs an unmodified Ubuntu distribution and Linux

kernel as an initial domain.

HOTOS ’23, June 22–24, 2023, Providence, RI, USA C.Castes, et al.

Tyche comprises: (1) a platform-independent capability

model that implements § 3.2’s API, and (2) a platform-specific

backend. The capability model allows software libraries to

implement higher-level programming abstractions for iso-

lation, such as sandboxes, enclaves, and confidential VMs,

while the backend configures commodity hardware mecha-

nisms (§ 3.3) to enforce the desired policies.

On Intel x86_64, Tyche is attested using TXT [25] and iso-

lates domains with Intel VT-x [52] and I/O-MMUs. On RISC-
V, it runs in machine mode and demonstrates the generality

of our approach by relying on a more limited mechanism

than virtualization: PMP [47]. PMP only supports a fixed

number of segments, which requires a careful memory lay-

out of trust domains and validation by the monitor. A more

flexible segmentation mechanism could however appear on

open platforms in the future [54], potentially in the form

of CHERI [56] capabilities for physical memory and under

exclusive control of machine mode.

4.1 Tyche’s capabilities

The platform-independent capability model, which imple-

ments Tyche’s API, is written in safe Rust [48], and meant to

be formally verified. It defines a capability model for which

grant, share, and revoke operations modify a tree structure

that represents a capability’s lineage, maintains per-resource

reference counts, and facilitates cascading revocations, even

in the presence of circular sharing.

Operations on capabilities are validated and translated

into platform-specific hardware configurations by Tyche’s

backend. At the moment, Tyche’s capabilities handle phys-

ical memory, PCI devices, and CPU cores. They define the

access rights and revocation policies associated with the

corresponding resource.

Tyche’s capabilities safely expose hardware and addition-

ally enrich it with new access rights and revocation poli-

cies. For example, transitions between domains are enabled

by operations on domain and CPU capabilities. This allows

domains to implement policies that mitigate side-channel

attacks, e.g., by ensuring exclusive access to a CPU core or re-

vocation policies that flush micro-architectural state (caches)

during a transition. We are also exploring how to extend

capabilities to provide scheduling guarantees, cross-domain

interrupt routing, and expose denial of service attacks, or

accelerate existing operations with hardware, such as fast

(100 cycles) domain transitions using VMFUNC [22] and

hardware interrupt routing via remapping [28].

4.2 Building higher-level abstractions

Tyche’s isolation API only provides the notion of trust do-

mains tied to a set of resources. This differs from previous

security monitor implementations that provide fixed pro-

gramming abstractions, namely enclaves [13, 23, 40] or con-

fidential VMs [57]. With Tyche, higher-level abstractions,

including but not limited to sandboxes, enclaves, and confi-

dential VMs, are implemented on top of the monitor’s isola-

tion API by libraries running within the trust domains.

Our prototype libtyche explores compartmentalization

and confidential computing abstractions. The library loads an

ELF binary as a domain using amanifest that describes which

segments should run in which privilege ring, whether they

are shared or confidential, and if their content is part of the

attestation or not. The library further supports generating

a binary’s hash offline to be compared with the attestation

provided by Tyche. Using libtyche, we prototyped user and

kernel compartments, as well as Tyche-enclaves.

Tyche-enclaves present notable improvements over SGX

ones [30]. First, they limit accidental leakage of informa-

tion by requiring untrusted memory regions to be explic-

itly shared. Second, they allow virtual address reuse thus

enabling an arbitrary layout and number of enclaves in the

same process. Third, they support nesting and sharing among

enclaves. Our enclaves can map libtyche in their domains to

spawn nested enclaves, and share exclusively owned pages

with them to create secured communication channels.

libtyche is still at an early development stage but we have

plans to explore various system extensions, including sand-

boxing unsafe code downloads in the kernel [16], safely mul-

tiplexing (with and without SR-IOV) PCI devices, e.g., GPUs,
among TEEs, extending Linux Kernel-based Virtual Machine

(KVM)with a Tyche backend for confidential VMs, providing

RDMA support for Tyche-based TEEs running on separate

machines, extend attestation to multi-domain deployments

with the insurance that all communication paths are secured

and attested, and building physical attack resistance with

multi-key memory encryption technologies [2, 26].

5 CONCLUSION

The isolation monitor creates trust by breaking commodity

systems’ monopoly on isolation and abolishing trust hier-

archies based on privileges. It enables the creation, nesting,

and combination of confidential computing and compart-

mentalization abstractions. Our early prototype suggests the

isolation monitor can be built with standard architectural

support for virtualization or physical memory protection.

ACKNOWLEDGMENTS

The authors thank James R. Larus, our shepherd Donald

E. Porter, and the anonymous reviewers for their feedback.

This project is supported in part by the Microsoft-EPFL Joint

Research Center and a VMware faculty award.

Creating Trust by Abolishing Hierarchies HOTOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES

[1] AMD. Secure virtual machine architecture reference manual, 2005.

[2] AMD. Secure Encrypted Virtualization (SEV). https://developer.amd.

com/sev/, 2018.

[3] AMD. Sev-snp: Strengthening vm isolation with integrity protection

and more. White Paper, January (2020).

[4] ARM. Building a secure system using trustzone technology. White
Paper, April (2009).

[5] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,

Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell, M.,

Goltzsche, D., Eyers, D. M., Kapitza, R., Pietzuch, P. R., and Fetzer,

C. SCONE: Secure Linux Containers with Intel SGX. In Proceedings of
the 12th Symposium on Operating System Design and Implementation
(OSDI) (2016), pp. 689–703.

[6] Bahmani, R., Brasser, F., Dessouky, G., Jauernig, P., Klimmek, M.,

Sadeghi, A.-R., and Stapf, E. CURE: A Security Architecture with

CUstomizable and Resilient Enclaves. In Proceedings of the 30th USENIX
Security Symposium (2021), pp. 1073–1090.

[7] Baumann, A. Hardware is the new Software. In Proceedings of The
16th Workshop on Hot Topics in Operating Systems (HotOS-XVI) (2017),
pp. 132–137.

[8] Baumann, A., Peinado, M., and Hunt, G. C. Shielding Applications

from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26.

[9] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E.,

Becker, D., Chambers, C., and Eggers, S. J. Extensibility, Safety and

Performance in the SPIN Operating System. In Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP) (1995),
pp. 267–284.

[10] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge:

Splitting Applications into Reduced-Privilege Compartments. In Pro-
ceedings of the 5th Symposium on Networked Systems Design and Im-
plementation (NSDI) (2008), pp. 309–322.

[11] che Tsai, C., Arora, K. S., Bandi, N., Jain, B., Jannen, W., John,

J., Kalodner, H. A., Kulkarni, V., Oliveira, D., and Porter, D. E.

Cooperation and security isolation of library OSes for multi-process

applications. In Proceedings of the 2014 EuroSys Conference (2014),

pp. 9:1–9:14.

[12] che Tsai, C., Porter, D. E., and Vij, M. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In Proceedings of the
2017 USENIX Annual Technical Conference (ATC) (2017), pp. 645–658.

[13] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Wald-

spurger, C. A., Boneh, D., Dwoskin, J. S., and Ports, D. R. K. Over-

shadow: a virtualization-based approach to retrofitting protection in

commodity operating systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XIII) (2008), pp. 2–13.

[14] Corbató, F. J., and Vyssotsky, V. A. Introduction and overview of the

multics system. In AFIPS Fall Joint Computing Conference (1) (1965),
pp. 185–196.

[15] Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., and Adve,

V. S. Nested Kernel: An Operating SystemArchitecture for Intra-Kernel

Privilege Separation. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XX) (2015), pp. 191–206.

[16] Engler, D. R., Kaashoek, M. F., and Jr., J. W. O. Exokernel: An

Operating System Architecture for Application-Level Resource Man-

agement. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP) (1995), pp. 251–266.

[17] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Ko-

modo: Using verification to disentangle secure-enclave hardware from

software. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (2017), pp. 287–305.

[18] Ford, B., Hibler, M., Lepreau, J., Tullmann, P., Back, G., and Claw-

son, S. Microkernels Meet Recursive Virtual Machines. In Proceedings
of the 2nd Symposium on Operating System Design and Implementation
(OSDI) (1996), pp. 137–151.

[19] Ghosn, A., Kogias, M., Payer, M., Larus, J. R., and Bugnion, E. Enclo-

sure: language-based restriction of untrusted libraries. In Proceedings
of the 26th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XXVI) (2021),
pp. 255–267.

[20] Ghosn, A., Larus, J. R., and Bugnion, E. Secured Routines: Language-

based Construction of Trusted Execution Environments. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC) (2019), pp. 571–
586.

[21] Gudka, K., Watson, R. N. M., Anderson, J., Chisnall, D., Davis, B.,

Laurie, B., Marinos, I., Neumann, P. G., and Richardson, A. Clean

Application Compartmentalization with SOAAP. In Proceedings of
the 2015 ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2015), pp. 1016–1031.

[22] Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M. L.,

Shen, K., and Marty, M. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In Proceedings of the 2019 USENIX
Annual Technical Conference (ATC) (2019), pp. 489–504.

[23] Hofmann, O. S., Kim, S., Dunn, A. M., Lee, M. Z., and Witchel,

E. InkTag: secure applications on an untrusted operating system. In

Proceedings of the 18th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XVIII)
(2013), pp. 265–278.

[24] Hsu, T. C.-H., Hoffman, K. J., Eugster, P., and Payer, M. Enforcing

Least Privilege Memory Views for Multithreaded Applications. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2016), pp. 393–405.

[25] Intel. Trusted execution technology. https://www.

intel.com/content/www/us/en/developer/articles/tool/

intel-trusted-execution-technology.html, 2014.

[26] Intel. Multi-key total memory encryption. https://edc.intel.com/

content/www/us/en/design/ipla/software-development-platforms/

client/platforms/alder-lake-desktop/

12th-generation-intel-core-processors-datasheet-volume-1-of-2/

002/intel-multi-key-total-memory-encryption/, 2017.

[27] Intel. Intel memory protection keys (intel mpk). https:

//www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html, 2020.

[28] Intel. Intel®64 and IA-32 Architectures Software Developer’s Man-

ual. https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-sdm.html, 2022.

[29] Intel. Architecture specification: Intel trust domain extensions (in-

tel tdx) module. https://software.intel.com/content/dam/develop/

external/us/en/documents/intel-tdx-module-1eas.pdf, 2023.

[30] Intel. Intel software guard extensions (intel sgx).

https://www.intel.com/content/www/us/en/developer/tools/

software-guard-extensions/overview.html, 2023.

[31] Israeli, A., and Feitelson, D. G. The Linux kernel as a case study in

software evolution. J. Syst. Softw. 83, 3 (2010), 485–501.
[32] Keller, E., Szefer, J., Rexford, J., and Lee, R. B. NoHype: virtualized

cloud infrastructure without the virtualization. In Proceedings of the
37th International Symposium on Computer Architecture (ISCA) (2010),
pp. 350–361.

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-trusted-execution-technology.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-trusted-execution-technology.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-trusted-execution-technology.html
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/002/intel-multi-key-total-memory-encryption/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/002/intel-multi-key-total-memory-encryption/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/002/intel-multi-key-total-memory-encryption/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/002/intel-multi-key-total-memory-encryption/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/002/intel-multi-key-total-memory-encryption/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

HOTOS ’23, June 22–24, 2023, Providence, RI, USA C.Castes, et al.

[33] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D. A.,

Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,

M., Sewell, T., Tuch, H., andWinwood, S. seL4: formal verification of

an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) (2009), pp. 207–220.

[34] Lampson, B. W., and Sturgis, H. E. Reflections on an Operating

System Design. Commun. ACM 19, 5 (1976), 251–265.
[35] Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., and Song, D.

Keystone: an open framework for architecting trusted execution en-

vironments. In Proceedings of the 2020 EuroSys Conference (2020),

pp. 38:1–38:16.

[36] Lehman, M. M., and Parr, F. N. Program Evolution and Its Impact on

Software Engineering. In Proceedings of the 2nd International Confer-
ence on Software Engineering (ISCE) (1976), pp. 350–357.

[37] Liedtke, J. On micro-Kernel Construction. In Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP) (1995),
pp. 237–250.

[38] Lind, J., Priebe, C., Muthukumaran, D., O’Keeffe, D., Aublin, P.-L.,

Kelbert, F., Reiher, T., Goltzsche, D., Eyers, D. M., Kapitza, R.,

Fetzer, C., and Pietzuch, P. R. Glamdring: Automatic Application

Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC) (2017), pp. 285–298.

[39] Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D., Bhat-

tacharjee, B., and Druschel, P. Light-Weight Contexts: An OS

Abstraction for Safety and Performance. In Proceedings of the 12th
Symposium on Operating System Design and Implementation (OSDI)
(2016), pp. 49–64.

[40] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V. D., and

Perrig, A. TrustVisor: Efficient TCB Reduction and Attestation. In

IEEE Symposium on Security and Privacy (2010), pp. 143–158.

[41] Montesqieu. The Spirit of Laws (De l’esprit des lois). 1748.
[42] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., and

Wang, X. Scaling symbolic evaluation for automated verification of

systems code with Serval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP) (2019), pp. 225–242.

[43] Nikiforakis, N., Invernizzi, L., Kapravelos, A., Acker, S. V., Joosen,

W., Kruegel, C., Piessens, F., and Vigna, G. You are what you include:

large-scale evaluation of remote javascript inclusions. In Proceedings
of the 2012 ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2012), pp. 736–747.

[44] Nikola Ðuza. JavaScript Growing Pains: From 0 to

13,000 Dependencies. https://blog.appsignal.com/2020/05/14/

javascript-growing-pains-from-0-to-13000-dependencies.html, 2020.

[45] Popek, G. J., and Goldberg, R. P. Formal Requirements for Virtual-

izable Third Generation Architectures. Commun. ACM 17, 7 (1974),
412–421.

[46] Project Oak. Oak (SEV). https://github.com/project-oak/oak, 2019.

[47] RISC-V Foundation. RISC-V SBI specification. https://github.com/

riscv-non-isa/riscv-sbi-doc, 2023.

[48] Rust Foundation. The rustonomicon - meet safe and unsafe. https:

//doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html, 2023.

[49] Swift, M. M., Martin, S., Levy, H. M., and Eggers, S. J. Nooks:

an architecture for reliable device drivers. In ACM SIGOPS European
Workshop (2002), pp. 102–107.

[50] Thompson, K. Reflections on Trusting Trust. Commun. ACM 27, 8
(1984), 761–763.

[51] Trusted Computing Group. Trusted Platform Module (TPM) –

ISO/IEC 11889. https://www.iso.org/standard/66510.html, 2015.

[52] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C. M.,

Anderson, A. V., Bennett, S. M., Kägi, A., Leung, F. H., and Smith,

L. Intel Virtualization Technology. Computer 38, 5 (2005), 48–56.
[53] Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler,

M., Druschel, P., and Garg, D. ERIM: Secure, Efficient In-process

Isolationwith Protection Keys (MPK). In Proceedings of the 28th USENIX
Security Symposium (2019), pp. 1221–1238.

[54] Van Strydonck, T., Noorman, J., Jackson, J., Dias, L., Vander-

straeten, R., Oswald, D., Piessens, F., and Devriese, D. Cheri-

tree: Flexible enclaves on capability machines. In EuroS&P-8th IEEE
European Symposium on Security and Privacy (2023), IEEE.

[55] Vilanova, L., Ben-Yehuda, M., Navarro, N., Etsion, Y., and Valero,

M. CODOMs: Protecting software with Code-centric memory Do-

mains. In Proceedings of the 41st International Symposium on Computer
Architecture (ISCA) (2014), pp. 469–480.

[56] Woodruff, J., Watson, R. N. M., Chisnall, D., Moore, S. W., Ander-

son, J., Davis, B., Laurie, B., Neumann, P. G., Norton, R. M., and

Roe, M. The CHERI capability model: Revisiting RISC in an age of

risk. In Proceedings of the 41st International Symposium on Computer
Architecture (ISCA) (2014), pp. 457–468.

[57] Zhang, F., Chen, J., Chen, H., and Zang, B. CloudVisor: retrofitting

protection of virtual machines in multi-tenant cloud with nested vir-

tualization. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP) (2011), pp. 203–216.

[58] Zhou, Z., Shan, Y., Cui, W., Ge, X., Peinado, M., and Baumann, A.

Core slicing: closing the gap between leaky confidential VMs and bare-

metal cloud. In Proceedings of the 17th Symposium on Operating System
Design and Implementation (OSDI) (2023).

https://blog.appsignal.com/2020/05/14/javascript-growing-pains-from-0-to-13000-dependencies.html
https://blog.appsignal.com/2020/05/14/javascript-growing-pains-from-0-to-13000-dependencies.html
https://github.com/project-oak/oak
https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv-non-isa/riscv-sbi-doc
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://www.iso.org/standard/66510.html

	Abstract
	1 Introduction
	2 The Privilege Hierarchy
	2.1 The Three Powers
	2.2 The Monopoly on Isolation
	2.3 Breaking the Monopoly

	3 The Isolation Monitor
	3.1 Domains and resources
	3.2 Expressing policies via the API
	3.3 Hardware-based policy enforcement
	3.4 Trust through remote attestation
	3.5 Comparison with existing designs

	4 The Tyche Isolation Monitor
	4.1 Tyche's capabilities
	4.2 Building higher-level abstractions

	5 Conclusion
	References

