PACMem: Enforcing Spatial and Temporal Memory Safety
via ARM Pointer Authentication

Yuan Li
Tsinghua University
li-y18@mails.tsinghua.edu.cn

Songtao Yang
Tsinghua University
yst18@mails.tsinghua.edu.cn

Wende Tan

Tsinghua University
twd2.me@gmail.com

Mathias Payer
EPFL
mathias.payer@nebelwelt.net

Chao Zhang’
Tsinghua University, BNRist,
Zhongguancun Lab
chaoz@tsinghua.edu.cn

Zhizheng Lv
Tsinghua University
lvzz20@mails.tsinghua.edu.cn

Ying Liu”
Tsinghua University,
Zhongguancun Lab
linuying@cernet.edu.cn

Abstract

Memory safety is a key security property that stops memory corrup-
tion vulnerabilities. Different types of memory safety enforcement
solutions have been proposed and adopted by sanitizers or mitiga-
tions to catch and stop such bugs, at the development or deployment
phase. However, existing solutions either provide partial memory
safety or have overwhelmingly high performance overheads.

In this paper, we present a novel sanitizer PACMem to efficiently
catch spatial and temporal memory safety bugs. PACMem removes
the majority of the overheads by sealing metadata in pointers
through the COTS hardware feature - ARM PA (Pointer Authentica-
tion) and saving the overhead of pointer metadata tracking. We have
developed a prototype of PACMem and systematically evaluated its
security and performance on the Magma, Juliet, Nginx, and SPEC
CPU2017 test suites. In our evaluation, PACMem shows no false
positives together with negligible false negatives, while introducing
stronger bug detection capabilities and lower performance over-
heads than state-of-the-art sanitizers, including HWASan, ASan,
SoftBound+CETS, Memcheck, LowFat, and PTAuth. Compared to
the widely deployed ASan, PACMem has no false positives and
much fewer false negatives, and reduces the runtime overheads by
15.80% and the memory overheads by 71.58%.

CCS Concepts
« Security and privacy — Software security engineering.
Keywords

sanitizer; spatial memory safety; temporal memory safety

“Chao Zhang and Ying Liu are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560598

ACM Reference Format:

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu,
and Chao Zhang. 2022. PACMem: Enforcing Spatial and Temporal Memory
Safety via ARM Pointer Authentication. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22),
November 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3548606.3560598

1 Introduction

Memory safety violations are still the most common root cause of
modern exploits [2, 32]. In practice, there are two types of memory
safety violations [45]: (1) spatial safety violations where a program
performs an out-of-bound memory access, e.g., buffer overflow
and buffer under-read, and (2) temporal safety violations where
a program accesses memory of invalid state (i.e., unallocated or
freed), e.g., use-after-free and double free. Such memory safety
violations break the integrity of memory and program states, which
can further lead to denial of service, sensitive data leakage and
corruption, privilege escalation, or even control-flow hijacking.

Many sanitizers have been proposed to catch memory safety
violation bugs during development or testing. For instance, fuzzers
that aim at discovering bugs in kernels, drivers, blockchains/smart
contracts, or network services often come with sanitizers. Address-
Sanitizer (ASan) [42] is the most widely deployed sanitizer used
in fuzz testing, e.g., by AFL [52]. It detects buffer overflow and
use-after-free bugs, by quarantining freed objects and padding ac-
tive objects with non-accessible redzones and tracking/verifying
the accessibility of each memory byte at runtime. However, these
sanitizers in general have many limitations.

On the one hand, most sanitizers only provide partial memory
safety guarantees. A full memory safety solution should guarantee
that, each memory object can only be accessed within its bounds
(spatial safety) and must be in a valid state when accessed (temporal
safety). But existing solutions fail to enforce this property. For
instance, SoftBound [34] and LowFat [17, 18] only provide spatial
memory safety. CETS [35] and the recently proposed ARM PA-
based solution PTAuth [19] only provide temporal memory safety,
while PTAuth exclusively protects heap objects (ignoring the stack

https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

and global variables). Even for the most widely deployed sanitizer -
ASan, it also has many false negatives, i.e., it fails to detect certain
memory safety violations as demonstrated by MEDS [23].

On the other hand, sanitizers that aim at providing full memory
safety guarantees, in general, have overwhelmingly high perfor-
mance overheads. ASan has 374.29% memory overhead on average.
HWASan [43] utilizes hardware features to lower the memory over-
head, but suffers from 108.39% runtime overhead. Memcheck [36]
yields 1649.97% runtime overhead and 241.09% memory overhead
on average. The overwhelmingly high performance overheads ren-
ders sanitizers inefficient, greatly slowing down the process of
debugging, fuzzing, and other applications.

To enforce full memory safety, as discussed by previous stud-
ies [42, 45], we must track properties (metadata) of each object,
including (1) its base address and size (spatial property) and (2) its
birthmark (temporal property), and perform property checks when
objects are accessed via pointers. The key to the success of such
solutions is how to efficiently track properties (or metadata) and
perform property checks without lowering security guarantees. In
general, overheads of sanitizers come from four types of operations:
creating metadata (at the time of object creation, i.e., alloc), propa-
gating metadata (at the time of pointer operation, i.e., ptr_x=ptr_y),
checking metadata (at the time of object access, i.e., *ptr_x), and
cleaning up metadata (at the time of object deallocation, i.e., free).
The metadata propagation operation is the most time-consuming
one (as shown in LowFat [18]), which could be optimized to improve
the performance. For instance, ASan [42] only tracks metadata per
object instead of per pointer, which shows better performance than
its precedent solutions. But its overhead is still high, and it cannot
provide full memory safety guarantees.

In this paper, we propose a novel sanitizer PACMem to catch
spatial and temporal memory safety bugs at low overheads with
no false positives and negligible false negatives. Since PACMem
is a sanitizer that aims to catch memory safety bugs in programs
during development or testing, it is acceptable to have (very) few
false negatives. PACMem improves performance by eliminating
metadata propagation in a clever way, i.e., encoding the pointers’
metadata into pointers using the COTS hardware feature - ARM
PA (Pointer Authentication [38]).

Specifically, we first create and place objects’ metadata in a linear
table, and utilize ARM PA to generate a PAC (Pointer Authentica-
tion Code) signature for each object, which represents the metadata
as well. The PAC is then stored in the high-order bits of pointers
associated with the object, i.e., the pointers’ metadata are embedded
in pointers. Such pointer metadata will be implicitly propagated no
matter how the pointer is used (e.g., pointer assignment, pointer
arithmetic operation, and function argument passing), thus sav-
ing the overhead of metadata propagation. Furthermore, the PAC
signature in each pointer serves as an index to the metadata ta-
ble, which enables efficient metadata lookup and greatly reduces
the overhead of metadata checking, together with the signature
verification support provided by ARM PA.

Compared to pure-software implementations, PACMem utilizes
the functionalities of hardware PA instructions to efficiently gen-
erate, track, and verify such well-distributed metadata in pointers,
and thus effectively reduces the performance overheads.

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

On the other hand, PACMem provides a strong memory safety
guarantee. It has no false positives, since it precisely tracks the full
memory safety properties and performs precise spatial and temporal
safety checks at each memory access. In addition, PACMem has
negligible false negatives, much lower than existing solutions. The
only source of false negatives comes from sub-object overflow, since
no metadata is tracked for fields within objects due to performance
reason (as most sanitizers did). Specifically, it provides stronger bug
detection capabilities than vanilla solutions built upon ARM PA
and its successor ARM MTE (memory tagging extension).

We have implemented a prototype of PACMem on the ARM64
architecture in a real device. Then, we systematically evaluated its
security on the Magma [24] and Juliet [1] benchmark, and evalu-
ated its performance on SPECspeed 2017 and Nginx. Evaluation
results show that, PACMem provides stronger security guarantees
than state-of-the-art sanitizers, including HWASan, ASan, Soft-
Bound+CETS, Memcheck, LowFat, and PTAuth, while introducing
lower performance overheads. Specifically, PACMem has 68.73%
runtime overhead and 106.39% memory overhead on average. Com-
pared with ASan, PACMem has much lower false negatives and
exhibits 15.80% lower runtime overheads and 71.58% lower memory
overheads. Furthermore, we evaluate the actual performance of
ARM PA instructions on real devices.

In summary, we make the following contributions:

(1) We propose a novel sanitizer PACMem which utilizes the
COTS hardware feature — ARM PA to provide stronger bug
detection capabilities than vanilla ARM PA and ARM MTE.

(2) We propose to use ARM PA instructions to eliminate the
overhead of metadata propagation, and to enable efficient
runtime metadata lookup and safety checks, therefore greatly
reduces the runtime performance overheads.

(3) We implement a prototype in a real hardware device, esti-
mate the performance overheads of PA-related instructions
on Apple M1 mini, and study the overheads of PACMem.

(4) We evaluate PACMem systematically in terms of security,
runtime and memory overhead, and show that it outperforms
state-of-the-art sanitizers.

2 Background
2.1 Memory Safety

Memory safety violations fall into two categories [46]: (1) spatial vi-
olations happen when a pointer accesses out of its referent object’s
bound, e.g., buffer overflow, and (2) temporal violations happen
when a pointer accesses an invalid object (unallocated or freed),
e.g., double free and use after free. In addition to memory safety
bugs, programs may have several other types of bugs, including
uninitialized variables, type cast bugs, misuse of functions with vari-
able arguments (e.g., format string), or integer overflow, command
injection etc., which are out of the scope of this paper.

Spatial Memory Safety. Spatial corruption refers to out-of-
bounds accesses. Buffer overflow is the most common type of spatial
corruption vulnerabilities. It has a long story of being studied by ad-
versaries and exploited to launch attacks [40]. Bound checking is the
most effective solution to detect (and prohibit) spatial corruptions.
ASan [42] uses redzones around objects to stop out-of-bound viola-
tions by checking if redzones are accessed. HWASan [43] tags each

PACMem: Enforcing Spatial and Temporal Memory Safety

via ARM Pointer Authentication

source
code

Compile-Time Analysis & Instrumentation

object lifetime
analysis

object bound
analysis

)

stack/heap object
allocation instrument.

object deallocation
instrumentation

global object
allocation instrument.

pointer dereference
instrumentation

Runtime Library Support

e Metadata Table Management

e Global object metadata
initialization

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Runtime Tracking & Checks

/

1. Object Allocation:
I] malloc(obj_a)
e Metadata Initialization
e Seal Generation
e Metadata Table Update

&

~

2. Object Deallocation:
free(obj_a)

e Pointer Authentication
e Metadata Table Update

R

>

3. Pointer Dereference: Load & store

e Metadata Table Retrieval
e Memory Safety Check

_ L/

Figure 1: Overview of PACMem. It updates metadata of objects at object allocation and deallocation sites, seals the metadata
into pointers, and checks metadata at each pointer dereference using the seal in pointers to retrieve object metadata.

Figure 2: Illustration of the ARM PA mechanism. The PAC
(pointer authentication code) is generated by PAC*-family in-
structions, using the target pointer, a user-defined modifier
(i-e., the execution context), and a key (stored in kernel).

allocated memory block and its pointer, and utilizes the AArch64
hardware feature to store the pointer tag in the pointer. If the tag
of the pointer mismatches the refered object’s, an access violation
is caught. LowFat [17, 18] also encodes the bound information into
the pointer, with a special encoding scheme. So LowFat can utilize
the pointer to retrieve the bound information before each pointer
dereference, to check if that memory access is within the bound.
Temporal Memory Safety. Generally, temporal memory safety

violations are caused by programs accessing unallocated or deallo-
cated objects. When programs explicitly deallocate an object, the
object becomes invalid, and all pointers to this object become dan-
gling pointers. When a dangling pointer is freed or used again, a
double-free or use-after-free (UAF) bug is yielded. Tag matching
is a common method used by mitigations [9, 35, 37] to catch tem-
poral safety violations. In general, they assign tags to objects and
pointers, and compare them at pointer dereferences. Another com-
mon method is detecting dangling pointers before they are used.
Specifically, such methods will monitor and track pointers passed
to the free function. If a marked pointer is used later, a temporal
memory violation is reported. However, this method cannot han-
dle copies of dangling pointers. Thus, some tools not only mark
pointers to be freed but also maintain an object-to-pointer map to
invalidate copies of dangling pointers when free is called, such as
Undangle [12], DangNull [30], FreeSentry [51], and DangSan [47].

2.2 ARM Pointer Authentication

Armv8.3-A introduces the PA (Pointer Authentication) [38] secu-
rity extension, which has been applied in recent i0S devices [25].
This extension enforces pointer integrity by signing the pointer at
definition points and verifying the signature at dereference points.

As shown in Figure 2, PAC* instructions sign a target pointer and
compute its Pointer Authentication Code (PAC), which is stored in

unused high-order bits of the target pointer. Further, AUT* instruc-
tions authenticate a signed pointer. If the authentication succeeds,
the PAC embedded in the pointer is stripped, and the pointer can
be dereferenced as normal. Otherwise, the pointer will be modified
to an invalid pointer in Armv8.3-A or will trigger an exception in
ARMv8.6-A. We assume PA has the latter behavior in this paper.

Users of ARM PA could choose modifiers as wish to tune sig-
natures, so that a same pointer can yield different signatures in
different execution contexts. The modifier also serves as a bound
between the pointer definition point and verification point, since it
has to be the same in order to pass the check.

3 Methodology

3.1 System Overview

PACMem is designed for efficiently catching memory safety bugs
in target programs at runtime, with negligible false negatives. Fol-
lowing common practice, it also tracks metadata of objects and
pointers, and performs metadata checks before memory accesses.
To enforce full memory safety, PACMem tracks all necessary spatial
and temporal metadata precisely, and checks all memory accesses.
In general, metadata is created when objects are allocated, is
propagated to other pointers during pointer operations, is checked
when pointers are used to access objects, and is cleaned up when ob-
jects are deallocated. Each of these four steps would cause runtime
overheads, among which the metadata propagation and checking
are the most time consuming. PACMem utilizes ARM PA to elimi-
nate metadata propagation and accelerate metadata checking.
Figure 1 demonstrates the overview of PACMem. At compile time,
PACMem analyzes the bound and liveness properties of objects
(including global objects), and instruments at proper locations to
track such metadata or perform memory safety checks. Specifically,
PACMem generates metadata when an object is created, utilizes
ARM PA to generate a PAC signature (denoted as a seal) of this
metadata and embeds it into pointers associated with this object,
and places the metadata in a table indexed by this seal. The seal will
implicitly propagate along with pointers no matter how they are
used, saving overheads of the metadata propagation. Furthermore,
before a pointer is dereferenced, the seal serves as an index to
efficiently lookup the metadata table, enabling efficient metadata
checks with the support of signature verification provided by ARM
PA. Lastly, when an object is deallocated, the integrity and validity

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

i Random
| |
i Number !
p =
Metadata Table
Base Address Y 1 PAC | Base Address !
Birthmark [Object Size " T
conflict? pointer (with seal)

Figure 3: Metadata creation: when a memory object is al-
located, a random birthmark is yielded to compose the ob-
ject’s metadata, which will be (1) placed in the metadata ta-
ble and (2) further signed to generate the pointer’s seal. The
pointer’s seal will be used as the index to the metadata table,
thus reflects the pointer’s metadata too.

of the base address of the object will be checked, and the metadata
will be removed from the metadata table once the check succeeds.

3.2 Metadata Creation

To enforce full memory safety, we have to track all necessary mem-
ory safety metadata. In PACMem, each object’s metadata consists
of (1) its base address, (2) its object size, and (3) its birthmark, while
the former two are used for spatial memory safety checks and the
last one for temporal memory safety checks. Specifically, the meta-
data takes 128 bits, whereas the birthmark and object size take 32
bits respectively.

As shown in Figure 3, the metadata is stored in a metadata table,
i.e., a linear array for performance consideration. To retrieve object
metadata, it is common for sanitizers to directly use the associated
pointer as the index, as ASan does. However, such solutions in
general will yield very high memory overheads, since the table
size is proportional to the pointers’ value space. We propose to
seal metadata into the high-order bits of pointers (via the hardware
feature ARM PA), and use the seal as the index to retrieve objects’
metadata, which greatly reduces the memory size of the metadata
table and also enables efficient runtime metadata retrieval.

As shown in Figure 3, the seal is a PAC signature of the metadata,
and thus has a special bond with the pointer’s metadata, which
can be verified at runtime. Specifically, for each newly allocated
object, we assign it with a pseudo-random birthmark. However, as
there are no lightweight randomness sources on commercial ARM
devices to our knowledge , we again utilize ARM PA to generate
a pseudo-random birthmark, by taking the current dynamic stack
pointer as the pointer and taking a static random number generated
at compile time as the modifier. Since the birthmark is pseudo-
random, adversaries may bypass PACMem with a low probability
(see Section 6), but it is unlikely to be bypassed during program
testing which involves no active adversaries. Then, we utilize ARM
PA to yield the seal for the metadata (i.e., base address and size, and
the birthmark).! At runtime, metadata indexed by this seal should
be consistent with it.

Ideally, two different objects should have different metadata and
seals. Although QARMA [10] can make the PACode well-distributed,

!The seal and metadata initialization should be done when objects are allocated. For
global objects without explicit allocation sites, we utilize custom initializer functions
to generate seal and metadata for them at program startup.

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

due to the limitation of digital signature, two different metadata
could yield a same seal. As a result, two metadata will be stored
at the same slot in the metadata table, and at least one runtime
metadata check will fail and cause false positives when these two
objects are both accessed. To ensure the uniqueness of each object’s
seal, the metadata initialization code instrumented by PACMem
will repeatedly change the modifier to yield different seals until
a non-conflicting one is found. In other words, we implement a
re-hashing strategy upon collisions when new objects are created.
Specifically, if the seal of a newly created object collides with an
existing object’s (i.e., the slot in the metadata table is taken), the
modifier (i.e., birthmark) decreases by one and a new seal will be
yielded. Note that, this collision mitigation overhead only exists
when a new object with a conflicted seal is created. After creating
the object, all seals are conflict-free and can be used (e.g., to retrieve
metadata from the table) without extra overheads. Whenever the
seal is used as the index to retrieve metadata, there are no conflicts
and will not introduce extra overheads. Since the number of seals
equals the number of live memory objects, the length of PA code
should be large enough. On the other hand, the PA code shares the
same space with the pointer, such that a larger PA code size will
shrink the address space available for the program. In general, a
39-bit address space is sufficient for programs (see Section 5.2 for
the microbenchmark evaluation). Thus, PACMem sets the PA code
size to 24 (i.e., 63-39).

Compared to existing works, PACMem’s metadata management
scheme has several advantages. First, it tracks all temporal and
spatial properties, and enables full memory safety enforcement.
Second, it avoids the metadata propagation overheads. The indices
of the metadata table (i.e., seals) are shipped together with pointers,
and are not affected by pointer operations (e.g., pointer arithmetic
operations). Thus, we do not need to perform extra metadata prop-
agation like Watchdog [33] did. Third, the metadata retrieval is
simple and lightweight, i.e., the seal can be used as an index to re-
trieve data from a linear array (i.e., the metadata table). In addition,
PACMem has significantly lower memory overheads than other
methods (e.g., ASan and HWASan) due to the compact design of
metadata and seals.

3.3 Metadata Tracking and Checking

Once the metadata (or seal) is created for an object (or pointer), the
seal will propagate along with the pointer automatically. When the
pointer is dereferenced (i.e., memory access or object deallocation),
its metadata will be checked.

3.3.1 Memory Access Checking

In this phase, each pointer dereference will be checked to enforce
full memory safety. Figure 4 outlines what the instrumentation of
PACMem does.

Whenever a memory address is loaded through a pointer, a full
memory safety check must be enforced. As shown in Figure 4,
PACMem adopts a bound check to enforce spatial memory safety.
Specifically, it uses the pointer’s seal as the index to retrieve base
address and size of the intended object from the metadata table.
With this base address, we can calculate the offset of the pointer
being dereferenced, and verify that the access is in valid bounds.

PACMem: Enforcing Spatial and Temporal Memory Safety
via ARM Pointer Authentication

obj pointer (withseal)
Base Address L ____PAC___ . _______Address ___:
Birthmark | Object size N H offset I
(. PAc i BaseAddress |}
base pointer
Metadata Table bound check:

offset>0 &&
access_size>0 &&
offset+access_size
<= obj_size
raw pointer (without seal)

Figure 4: Metadata checking: when a pointer is dereferenced,
PACMem retrieves metadata from the metadata table, calcu-
lates the pointer’s offset to its base address, and performs a

delicate bound checks to enforce full memory safety.

Note that this bound check also provides temporal safety guar-
antees. If the pointer being dereferenced is a dangling pointer, the
aforementioned bound check will (likely) fail. Since the dangling
pointer’s intended object has been freed, its metadata entry in the
metadata table is cleared. In the first case, the cleared entry has not
been taken by other objects yet, then the retrieved base address and
object size are all 0, and the bound check will fail. Furthermore, the
probability of a hash collision for use-after-free is approximately
5.96 % 1078, i.e., violations are detected with over 99.9999999% prob-
ability. Even though the corresponding entry is taken by another
object which accidentally has the same seal, the retrieved base ad-
dress and object size are unlikely the same as the freed object’s,
and the bound check will fail too. As a result, this bound check is
sufficient to catch temporal safety bugs, including use-after-free
(UAF) bugs.

3.3.2 Object Deallocation Checking

When a heap or stack object is freed (explicitly deallocated or
implicitly purged), we need to remove its outdated metadata from
the metadata table, i.e., set the table entry to zeros.

If the object to be freed is a heap object, then the pointer used
to deallocate an object should be the base address of a valid object,
i.e., the pointer is not a dangling pointer and does not point inside
the object. Therefore, we need to do an extra check before clearing
the metadata table of the heap object.

Specifically, PACMem retrieves the birthmark and object size
(i.e., the modifier) from the metadata, and uses it to authenticate
the seal of the pointer using ARM PA instruction AUTDA. If the
authentication succeeds, PACMem sends the raw pointer to the
heap allocator to free.

The AUTDA can successfully authenticate the signed pointer and
strip the seal of the pointer if and only if the pointer is the base
address of the object signed by PACDA and the modifier is the correct
one used to sign the object.

In this way, it stops the heap allocator from freeing illegal point-
ers including the dangling pointers and pointers that are not the
base address of an object. Thus, PACMem can catch double-free
and invalid-free bugs.

Figure 5 outlines what the instrumentation of PACMem does
when deallocating objects.

3.4 Compatibility with Unprotected Modules

Like most sanitizers, e.g., ASan, PACMem only catches bugs in the
modules which are hardened by PACMem. Since PACMem utilizes

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

pointer (with seal)

Base Address —-___PAC___: _Address _ |
Birthmark | Object size l
Metadata Table @
Y B U
ol TAddress
0 pointer (raw)
0 <

I free(pointer)

Metadata Table Heap allocator

Figure 5: Object deallocation phase: clear the metadata table,
and authenticate the pointer if it is a heap object.

upper bits of pointers to store seals, it would cause compatibil-
ity issues if pointers are used across protected and unprotected
modules. Therefore, PACMem takes extra steps to deal with such
compatibility issues.

First, when a signed pointer is passed to a unprotected module,
PACMem will do a safety check for it (i.e., verify the pointer and re-
move PAC). This will eliminate compatibility issues, and by the way
stops potential dangling pointers from being used in unprotected
modules.

Second, when an non-signed pointer is yielded by unportected
modules and returned to protected modules,? PACMem will gen-
erate a conservative metadata (i.e., minimum base address and
maximum object size) for it, since it does not know how the ob-
ject is created. This addresses the compatibility issue but leaves
an attack surface for adversaries. However, this is inevitable for
unprotected modules. To provide full protection, developers are
strongly encouraged to protect all modules with PACMem.

4 System Implementation
4.1 Implementation Details

The PACMem system prototype includes (i) a custom compiler ex-
tension for analysis and instrumentation and (ii) a runtime support
library for creating the metadata table and initializing metadata for
global objects. The current prototype supports C and C++ programs.
It supports all common memory allocation APIs such as malloc,
free, new, and delete.

Our compiler extension is based on LLVM 14.0.0, which already
supports ARM PA instructions. We first analyze the target program
using a new LLVM pass, and insert the security checks mentioned
in Section 3.3 at proper locations. It has to work with the -fPIC
compiler option to make target programs position-independent,
so that global objects are all referenced via the GOT (global offset
table) and easy to recognize. Our runtime library mainly allocates
a metadata table in shadow memory before the protected program
starts. We use a constructor function which will run at program
startup to initialize the metadata of all global variables and put
seals of the pointers in the GOT. Then, we make the GOT read-only
to prevent the GOT from being corrupted by attackers.

Each capability corresponds to a total of 16 bytes of metadata, in-
cluding 8-bytes signed base address and 8-bytes modifier (including
4-bytes birthmark and 4-bytes object size).

2If there are recursive pointers in the objects, PACMem could follow the API definition
to get all those pointers and sign them recursively.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

4.2 Performance Optimizations

To lower the overheads of PACMem, we have made the following
optimizations without lowering security guarantees.

Loop-Independent Memory Operations. If a memory op-
eration in a loop accesses a same memory range no matter how
many times the loop has iterated, PACMem just checks once for it
before the loop entry. In that case, there is no need to repeat the
same check in all loop iterations.

Loop Bound Pointers. If a pointer only increases or de-
creases linearly within a loop, and we can statically determine
its upper bound and lower bound at compile time, then PACMem
will skip checks for dereferences to the pointer within this loop
and safely performs checks for the upper bound and lower bound
before the loop entry.

Redundant Check Elimination. If one memory access in-
struction dominates or post-dominates another one, and their ac-
cessed address ranges are the same, the checks for the second
instruction are considered redundant and could be removed. For
those accesses that can be statically verified, the runtime security
check will also be eliminated.

Write-only Check. By default, PACMem checks all pointer
dereferences, no matter read or write access. In practice, a read
access violation in general has much lower security implications,
while a write access violation is the foundation of launching further
exploits. Thus, we provide an optional working mode of PACMem
that focuses on integrity (but not confidentiality) and only enforces
memory safety checks for memory write accesses, similar to exist-
ing sanitizers.

5 Evaluation

This section evaluates the PACMem prototype in terms of security
and performance, and answers the following questions:
e What types of vulnerabilities can PACMem detect?
o Are there any types of vulnerabilities that PACMem can
detect but other sanitizers cannot?
e How much runtime performance and memory overheads
does PACMem introduce?

5.1 Environment and Comparison Targets

Environment. There are very few environments supporting ARM
PA yet. In addition to the official emulator ARM FVP [3], the new
Apple M1 machines have support for ARM PA. But macOS does not
provide ARM PA support for third-party applications yet. Therefore,
we build and run a Linux kernel v5.14.0 on an Apple M1 Mac mini,
and apply some custom patches to make it support more memory
architectures. On the other hand, we follow ARM’s documenta-
tion [7] to build the FVP environment for testing ARM PA, and use
the default memory configuration of FVP and apply it to the Linux
kernel too, i.e., 39-bit for pointers and 24-bits for ARM PAC code.
Besides, Apple claimed that M1 includes 4 high-performance
cores and 4 high-efficiency cores. But we found that there are 3
types of cores in M1 mini by measuring the execution time of the
ADD instruction. Specifically, on core 0, an ADD instruction requires
0.714 ns; on cores 1-3, an ADD instruction requires 0.485 ns; on cores
4-7, an ADD instruction requires 0.335 ns. All security tests and
performance tests were run on the Apple M1 Mac mini. To be fair,

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

Table 1: Clock cycles of ARM PA instructions on Apple M1
and AWS Graviton3

Apple M1 Graviton3

PACDA 2.344 ns 1.926 ns

Signature PACDZA 2.344ns 1.926 ns

ARM PA* PACGA 2.344 ns 1.926 ns

Instructions Authentication AUTDA 2.344ns 1.926 ns

AUTDZA 2.344 ns 1.926 ns

Stripping XPACD 2.344ns 0.770 ns

. ADD 0.335ns 0.385ns

ALU Operations AND 0.335ns 0385ns
PAC* Instructions : ALU Operations 7:1 5:1
AUT* Instructions : ALU Operations 7:1 5:1
XPACD Instructions : ALU Operations 7:1 2:1

we used the numactl to ensure that the target programs only run
on cores 4-7.

Comparison Targets. Moreover, we carefully choose several
state-of-the-art (SOTA) open sourced solutions to conduct compari-
son experiments. Among SOTA solutions, we only found HWASan
and ASan integrated in the clang compiler support the ARM ar-
chitecture®, while most other sanitizers, e.g., LowFat [18], Mem-
check [36, 44], and SoftBound [34] and CETS [35], only support
the x86 architecture. So, we evaluate the security and performance
of PACMem, ASan, and HWASan on the ARM architecture, and
evaluate that of ASan, LowFat, Memcheck, and SoftBound+CETS
on the x86 architecture, then use the evaluation results of ASan as
a bridge to compare PACMem with other x86-based sanitizers.

5.2 Microbenchmark Testing

Clock cycles of ARM PA. We have evaluated the performance
of PA instructions on the Apple M1 Mac mini. To the best of our
knowledge, we are the first to evaluate the overheads of ARM PA-
based solutions on real hardware. The results are listed in Table 1. A
PA instruction roughly takes 7x time as an ALU operation on real
devices. A software implementation of similar algorithms would
take much longer. SipHash [8], a MAC algorithm, takes about 123
cycles to process 8 bytes. The evaluation demonstrates the superior
performance of the ARM PA.

To compare against servers, we also evaluated the performance
of PA instructions on an AWS Graviton3 instance*. According to
Table 1, the PA instructions run faster on AWS Graviton3 than
Apple M1. All PA instructions take the same amount of time on
Apple M1 mini, but the XPACD instruction is much faster than other
PA instructions on AWS Graviton3.

Whether the PAC length is sufficient for use? Since the
PAC is 24-bits in our setting, then the metadata table has at most
2%4 = 16,777, 216 slots. If a program has more objects than this num-
ber, then the metadata table will overfill and PACMem will have
false positives. Therefore, we have evaluated the maximum num-
ber of simultaneous live objects (including heap variables, global
variables, and stack variables) in several long-running and large
real world programs. It is worth noting that the reported object
count is the peak instead of the cumulative number. As shown in
Table 2, they have less than 100 thousand live objects, which is far

3 Another solution PARTS [31] provides pointer integrity guarantee rather than mem-
ory safety guarantee. So it is not a proper target to compare with.

“Through an anonymous reviewer, we learned that AWS Graviton3 also supports ARM
PA.

PACMem: Enforcing Spatial and Temporal Memory Safety
via ARM Pointer Authentication

Table 2: Number of live objects in long-running programs.
For Nginx, Apache, and Node.js, we used ApacheBench for
stress testing, making 10,000 requests with 2,000 concur-
rent threads. For Redis, we used Redis-benchmark to make
1,000,000 requests with 3,000 concurrent threads.

Programs Maximum number of objects

Nginx 5,635

Apache 7,886

Node.js 89,873

Redis Redis-server 7,544
Redis-benchmark 17,731

from the aforementioned maximum threshold. Thus, we believe the
PAC length is sufficient for use in practice.

5.3 Security Evaluation

5.3.1 Test Suites of Vulnerabilities

Magma [24] provides a benchmark of ground truth security-critical
ground truth bugs in commonly-used open-source libraries. We
used the Magma test suite to evaluate the detection capability of
PACMem and ASan on real-world programs.

To further systematically evaluate the security and functionality
correctness of PACMem, we utilize test sets from the Juliet test
suite consisting of many memory safety vulnerabilities to conduct
experiments. Among those test sets, we have selected the test sets
pertaining to spatial and temporal memory safety. These selected
test sets are listed in Table 3.

Both the Magma and Juliet test suites have C benchmarks and
C++ benchmarks. Poppler and php in Magma are C++ benchmarks,
sqlite3 and 1ibtiff also contain C++ files, and the rest are all
C benchmarks. The Juliet test suite has more C++ benchmarks.
As shown in Table 5, there are 889 C++ benchmarks that Soft-
bound+CETS fails to compile.

5.3.2 Selected Cases

As listed in Table 3, a small number of test cases are not selected
to test, because they cannot trigger the intended vulnerabilities, in
order to measure the false-negative rates accurately. We analyzed
the test cases and found that some test cases can cause fake false
negatives, which fall into the following categories:

First, some type-confusion test cases do not trigger buffer over-
flows, such as Heap_Based_Buffer_Overflow__sizeof_doublex.
Specifically, these test cases allocate memory to an object with
the pointer size rather than the object size, while the object’s size
should be 64 bits (such as a double type). And then, it accesses the
target object using the object size rather than the allocated size. On
a 64-bit system like ARM64, the pointer size and the object size
are both 64 bits, and there is no buffer overflow. Second, some test

Table 3: The test sets selected in the Juliet test suite.

Test Sets Vulnerability Type All Cases Selected Cases
CWEI121 Stack-based Buffer Overflow 6200 6104
CWE122 Heap-based Buffer Overflow 7740 7260
CWE124 Buffer Underwrite 2336 2240
CWE126 Buffer Overread 1740 1644
CWE127 Buffer Underread 2336 2240
CWEA415 Double Free 1636 1636
CWE416 Use After Free 786 786
CWE476 NULL Pointer Dereference 612 576
CWE761 Invalid Free 576 576

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 4: Security evaluation results on Magma. The second
column lists the number of proof-of-concept (poc) samples
provided by Magma (from the AFL++ directory), the last two
columns show the number of PoCs that can be caught by
PACMem and ASan respectively.

open-source libraries PoCs PACMem ASan

libpng 634 0 0
LibTIFF 3716 115 115
Libxml2 19614 0 0
Poppler 7343 1329 1329
OpenSSL 655 194 194
SQLite 1777 0 0

PHP 1443 1128 1083
Lua 0 0 0
libsndfile 0 0 0

cases rely on a random number to trigger the vulnerability and may
not trigger out-of-bounds access during testing.

Moreover, there are 18 test cases in the CWE476 class called
NULL_Pointer_Dereference__null_check_after_deref=.

The only difference between the BAD and GOOD programs of these
test cases is that each BAD program has an extra null-pointer check
after the target pointer has been dereferenced. There are annota-
tions of the source code of these test cases, which said: “This NULL
check is unnecessary” We believe that these 18 test cases are used
to evaluate the accuracy of static analysis tools and cannot trigger
the vulnerability in practice. Therefore, we omit the results of these
18 BAD programs when calculating false-negative rates.

Since all these cases do not have out-of-bound access on the test-
ing platform, we do not count them as false negatives for memory
safety sanitizers.

5.3.3 Metrics and Configuration

To evaluate the security performance, we select five classic and
commonly-used open-source sanitizers, i.e., HWASan, ASan, Low-
Fat, Memcheck, SoftBound+CETS, and compare their performance
with PACMem.

Metric. For each test case, the Juliet test suite generates two
test programs, GOOD and BAD. Each GOOD program is not vulnerable,
and each BAD program has an exploited memory corruption. There-
fore, it is a false positive for a sanitizer to report a GOOD program as
anomalous. Also, it is a false negative for a sanitizer not to report a
BAD as anomalous.

Sanitizer configuration. To provide a fair comparison, we
made every effort to reduce the false negatives and false positives of
other sanitizers caused by implementations. For example, in some
test cases of the Juliet, some memory objects are used without
proper deallocation and therefore detected by the LeakSanitizer
embedded in ASan, which causes ASan to report a false positive.
The same situation exists in Memcheck. So we disable the memory
leak detection mechanism of both ASan and Memcheck.

In addition, LowFat may put objects in aligned but larger memory
blocks (e.g., a 10-bytes object takes 16 bytes memory). As a result,
an illegal input that causes out-of-bound access (e.g., accessing 11 to
16 bytes) may get silently mitigated, and LowFat will not report an
alarm. To avoid this type of unintended false negatives, we increase
the input values of BAD programs in the Juliet test suite, enabling
LowFat to report an alarm when such objects are overflowed.

5.3.4 Security Evaluation Results on Magma

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

We evaluated the security performance of both PACMem and
ASan on the real-world vulnerability benchmark Magama, to check
whether they can catch bugs in the benchmark. Results showed
that, PACMem has better detection capability than ASan on the real-
world bugs. Proof of concept (PoC) exploits are used to reveal the
security weaknesses within software. Magma [24] collects some
open-source libraries with real-world vulnerabilities and provides
sufficient PoCs. We used PoCs provided by Magma to evaluate
target programs instrumented by PACMem or ASan, respectively.

As we can see from Table 4, PACMem and Asan detect the same
number of PoCs for most programs. For PHP, PACMem found 45
more PoCs than ASan, all of which were PoCs from CVE-2018-
14883, a heap-based buffer over-read caused by an integer overflow.
ASan fails to detect 45 PoCs because the illegal memory access
crosses the RedZone instrumented by ASan and access another
valid object. However, since PACMem can accurately obtain the
base address and the object size of the memory object to which the
pointer corresponds, PACMem can effectively detect these PoCs.

Specifically, these 45 PoCs had a total of three cases of out-of-
bounds access, i.e., memory violation was acted by three different
instructions. Two situations of the out-of-bounds access were in
the php_ifd_get32u function, which used the vulnerable pointers
for array accesses. The other situation is a call instruction of the
memcpy function, which uses the vulnerable pointer to copy 6 bytes
of the targeted object. Note that, Magma contains not only just
memory corruption vulnerabilities, and the PoCs may not trigger
all the vulnerabilities. So it is expected that some target programs
do not detect an exception once. The evaluation focuses on the
comparison with the common-used ASan.

5.3.5 Security Evaluation Results on Juliet

PACMem has no false positives. The results of the Juliet
test suite are shown in Table 5. FP represents the False-Positive
rate, and FN represents the False-Negative rate. As mentioned be-
fore, PACMem has no false positives because it uses rehashing to
avoid the only source of positives — collision of two different active
metadata (i.e., taking a same table slot).

PACMem provides better memory safety guarantees.
ASan has the lowest false-negative rates among existing open-
source sterilizers, PACMem has even fewer false negatives than
ASan, thus provides better memory safety guarantees. PACMem
cannot detect sub-object overflow, which is a common problem of all
these sanitizers, including ASan, HWASan, LowFat, and Memcheck,
due to the trade-off with metadata tracking overhead. SoftBound
claims to detect sub-object overflow, but it does not detect any of
the sub-object overflow test cases in the Juliet test, as we will
discuss the root cause later. Additionally, PACMem covers more
types of vulnerabilities than HWASan and LowFat.

Summary. Overall, PACMem has better detection ability than
ASan, HWASan, LowFat, Memcheck, and SoftBound+CETS. PACMem
performs well in detecting spatial and temporal memory vulnera-
bilities. Specifically, PACMem performs the authentication for the
pointer passed to the free function before deallocating a mem-
ory object, so PACMem can effectively detect double free and in-
valid free bugs. Since the memory safety check is required for each
memory operation, PACMem can also detect out-of-bounds access,
use-after-free, and null pointer dereference.

While

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

5.3.6 Root Cause Analysis of False Negatives

In general, as shown in Table 5, existing sanitizers have much
more false negatives, i.e., they would miss real vulnerabilities at
runtime. The reasons for the false negatives of these sanitizers are
analyzed and discussed in detail in the following paragraphs, both
in terms of implementation and design.

PACMem. The false negatives come from test cases with sub-
object overflow. Since the metadata of PACMem just contains the
size of the entire object and has no information about the sub-
objects in the target object, PACMem cannot detect such violations.

HWASan. In terms of design, on the one hand, HWASan only
matches tags on memory accesses and therefore cannot detect dan-
gling pointers passed to third-party libraries; on the other hand, if
a pointer passed to the free function does not point to the begin-
ning of an object, HWASan cannot detect it because its tag does
match the tag of the object. In other words, HWASan cannot detect
invalid free bugs. Besides, HWASan also cannot detect sub-object
overflow. Moreover, HWASan relies on 8-bits tags and, in practice,
many tags conflicted. We ran CWE415 three times and found that the
conflicting tags caused false negatives for some cases. Therefore,
false negatives for HWASan are the average of the three results. In
terms of implementation, HWASan cannot handle stack variables
allocated by the ALLOCA function, so no buffer overflows of such
memory objects can be detected by HWASan. In addition, HWASan
does not handle some common memory access functions such as
the snprintf and strncat functions.

ASan. In terms of design, ASan cannot detect cross-object
overflow that skips redzones, or access an object that has been freed
for a while, as shown in MEDS [23]. But PACMem can effectively
detect such cases. However, PACMem and ASan both cannot detect
sub-object overflow. In terms of implementation, we found that the
function __asan_alloca_poison used by ASan to set the redzones
does not work in some cases, causing false negatives.

LowFat. LowFat, a sanitizer for detecting spatial memory vul-
nerabilities, cannot detect any temporal memory vulnerabilities. In
terms of design, a reason for the high false-negative rates in CWE121
is that some test cases use indexes to access arrays. LowFat uses
the pointer itself to find the corresponding metadata, so it ignores
such cases that a memory operation using pointer offsets accesses
another memory object. In such cases, the access length does not
exceed the boundary of the victim object, LowFat considers the
operation as legitimate. Array access is the most common cause of
such cases, and we provide cases for further analysis and discussion
in the Section 5.3.7. Moreover, LowFat also cannot detect sub-object
overflow. In terms of implementation, since LowFat rounds up the
allocated size of an object to a proper number to facilitate metadata
(i.e., the bounds) retrieval, it cannot detect memory access that is
beyond the object size but within the allocated size, which is a rea-
son for high false-negative rates in some test sets. Besides, similar
to HWASan, LowFat does not handle the snprintf functions.

Memcheck. In terms of design, Memcheck has a high false-
negative rate in some test sets due to its inability to detect memory
overflows in global or local objects. Apparently, Memcheck also
cannot detect sub-object overflow.

SoftBound+CETS. SoftBound+CETS [34, 35] is believed to be
a good combination providing full memory safety. However, it has
a much higher false positive rate and false negative rate. Regarding

PACMem: Enforcing Spatial and Temporal Memory Safety
via ARM Pointer Authentication

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 5: Security evaluation results on the Juliet test suite. The evaluation runs for 3 times. In each test set (of a specific
vulnerability type), there are multiple GOOD and BAD test cases, as presented in the brackets. Since SoftBound+CETS [34, 35]
does not support C++ programs completely, they are evaluated on fewer test cases, as shown in the third to last column.

PACMem HWASan ASan LowFat Memcheck SoftBound+CETS
(without LSan)

Vulnerability FP~ N FPEN TP EN FP~ EN TP IN FCASES P EN
CWE121 (3052+3052) 0 1.180% 0 16.972% 0 8.159% 0 46.888% 0 74.935% 2817+2817 2.520% 25.240%
CWE122 (3630+3630) 0 0.992% 0 0.992% 0 2.314% 0 42.369% 0 27.053% 3331+3331 46.142% 13.990%
CWE124 (1120+1120) 0 0 0 7.202% 0 8.75% 0 0 0 34.375% 1030+1030 23.301% 10.971%
CWE126 (822 + 822) 0 0 0 6.650% 0 14.842% 0 12.409% 0 57.664% 760 + 760 19.079% 7.105%
CWE127 (1120+1120) 0 0 0 14.435% 0 11.25% 0 14.911% 0 31.161% 1030+1030 23.301% 11.165%
CWEA415 (818 + 818) 0 0 0 2.445% 0 0 0 1 0 0 748 + 748 2.273% 0
CWE416 (393 + 393) 0 0 0 17.303% 0 0 0 1 0 0 392 + 392 67.347% 10.204%
CWEA476 (288 + 288) 0 0 0 0 0 0 0 0 0 0 270 + 270 16.296% 0
CWE761 (288 + 288) 0 0 0 1 0 0 0 1 0 0 264+ 264 2.273% 0

false negatives, likely HWASan, SoftBound+CETS does not han-
dle some common memory access functions such as the strncat
functions and it also cannot detect the dangling pointers passed to
third-party libraries. Regarding false positives, there are some flaws
in the prototype implementation of SoftBound+CETS, and thus
it has a high false positive rate. Besides, it currently cannot sup-
port C++ programs, reducing the number of supported test cases.
Moreover, even though SoftBound claims it can detect sub-object
overflow in theory, the security tests have shown that the imple-
mentation cannot. We extensively analyze the current prototype
using the intermediate LLVM bitcode. If the overflowing sub-object
is the first sub-object of a structure, then it uses the boundary in-
formation of this structure for the bound check. The SoftBound
paper does not elaborate on distinguishing boundary information
when the program uses an object pointer to load the bound infor-
mation, and the implementation falls back to the first sub-object
to access the memory. Specifically, SoftBound uses the addresses
in pointers to retrieve their bound information and cannot dis-
tinguish an object pointer and the first sub-object pointer of this
object, who have the same addresses but different bounds. While
the approach works for some cases, it is not generalizable. Take
*char_type_overrun_memcpy_01 in CWE121 for example, where
the memcpy function is called to assign value to a 16-byte array, i.e.
the first sub-object of the global value ‘charVoid". In the bad case, the
memcpy function uses the size of global value ‘charVoid* instead of
16 bytes. SoftBound calls __softboundcets_memcpy_check before
calling the memcpy function, which uses the bounds information of
the global value ‘charVoid' rather than that of the first sub-object,
so SoftBound cannot detect the sub-object overflow.

5.3.7 Comparison between Sanitizers
PACMem outperforms other sanitizers in detecting out-of-bounds
access, UAF, and invalid free vulnerabilities.

e For out-of-bounds access, if attackers can control the index
used to access an array object to access another valid object
out-of-bounds, ASan, Memcheck, and LowFat cannot detect
such out-of-bounds access.

e For UAF, if the quarantine used by Asan is exhausted, Asan
cannot detect UAF effectively; Memcheck cannot detect such
UAF cases that the freed object is reallocated.

e For invalid free, since the pointer used to be freed still points
to the middle of the object, its tag still matches the object’s
tag and can pass the HWASan security checks. So HWASan
cannot detect invalid free vulnerabilities.

The above vulnerabilities can be detected by PACMem effectively.
Next, we will use specific examples to demonstrate the advantages
of PACMem.

Out-of-Bounds Access. As Listing 1 shows, if attackers can
control the index used to access the buf1 array, they can access the
memory of buf2 and cause a security violation. Many sanitizers,
including ASan, Memcheck, and LowFat, cannot detect such out-
of-bounds access.

Although ASan uses redzones to detect out-of-bounds access, it
can only detect a memory operation accessing illegal memory areas,
but cannot detect a memory operation jumping over the redzones
and accessing another object. Memcheck only checks whether the
accessed address is valid and whether there is an initialized object
at the address. Therefore, it cannot catch out-of-bounds access to a
valid and initialized object. Besides, LowFat utilizes the pointer itself
to retrieve the bounds, i.e., LowFat retrieves the bounds using (buf1
+ ptr_offset). It is clear that the bounds retrieved by LowFat is
that of buf2, when ptr_offset is larger than the offset between
buf2 and buf1 (i.e.,, buf2 - buf1). Thus, such out-of-bounds access
can also pass the bound check of LowFat.

Since PACMem utilizes base addresses of objects as parts of
seals and the seals can propagate along with pointers in a program,
PACMem can calculate the accessed offset of the actual referent
object for a pointer. When ptr_offset is larger than buf2 - buf1,
the accessed offset is larger than the size of buf1, thus PACMem
can detect such spatial safety violations.

Use After Free. As Listing 2 shows, after deallocating datal,
a 256 MB object is allocated and freed. Then, data2 is allocated.
data2 has the same size as datal and is located at the same ad-
dress. Immediately afterward, the program uses datal_copy, which
is a copy of datal, to store A’ to the memory. The sanitizers ASan,
Memcheck, and LowFat fail to detect such UAF vulnerabilities. ASan

i| char *buf1l = new char[100];

2| char xbuf2 = new char[1000];
5] int ptr_offset = 0;

1| // Leak the address of buf1.
5| printf ("%p\n", (void *x)buf1);
6| // Leak the address of buf2.
printf("%p\n", (void *)buf2);
s| scanf ("%d", &ptr_offset);
bufi[ptr_offset] = 'A';

w|// 'A'" may end up somewhere in buf2.
11| delete [] buf1;

12| delete [] buf2;

Listing 1: An example of out-of-bounds access.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

i| char xdatal = (char x)malloc(1@ x sizeof(char));
2| char *datal_copy = datal;

;| free(datal);

4| char xa = (char *)malloc(sizeof(char) << 28);
5| free(a);

6| char *data2 = (char x)malloc(10 * sizeof(char));
7| datal_copy[@] = 'A'; // Use after free.

s| free(data2);

// 256MB

Listing 2: An example of use-after-free.

utilizes a quarantine to prevent a just freed object from being imme-
diately reallocated. However, the quarantine size is limited, which is
256MB in the default configuration. Thus, ASan cannot detect such
UAF vulnerabilities if the quarantine is exhausted and the memory
of a previously freed object is reallocated. Since Memcheck only
checks whether the accessed address is valid and whether there is
an initialized object at the address, it is also unable to detect such
vulnerabilities. LowFat also fails to detect UAF violations since it
focuses only on spatial memory safety.

PACMem clears the metadata of the object pointed by datal_copy
after the deallocation of the object. Therefore, the seal in datal_copy
has no corresponding metadata in the metadata table and datal_copy
cannot be used to access the referent object (i.e., data2). Besides,
thanks to the unique birthmark for each allocation, both the seals
of datal_copy and data2 and the metadata of referent objects are
different, though the base addresses and the size of them are the
same. Thus, datal_copy cannot reuse the metadata of data2.In a
word, the birthmark check of datal_copy will fail, and the attacker
cannot use datal_copy to store ’A’ to the target memory.

Invalid Free. In Listing 3, buff firstly points to a newly al-
located object, and then it is increased and does not point to the
beginning of that object. Finally, buff is used to deallocate some
object. Such vulnerabilities are called Invalid Free.

For HWASan, since buff still points to the middle of the object,
its tag still matches the tag of the object and can pass the HWASan
security checks. Similar issues may exist in other tag-based mecha-
nisms including ARM Memory Tagging Extension (MTE). LowFat
cannot detect Invalid Free vulnerabilities as it is designed for de-
tecting spatial safety violations. PACMem checks whether a pointer
used to deallocate some object points is a valid object pointer. In this
case, buff does not point to the beginning of the object, so the check
will fail. In this way, PACMem can detect such vulnerabilities.

5.4 Performance Evaluation

Test Suite and Inputs. Regarding the performance evaluation,
we use all C benchmarks from the SPEC CPU2017 (of the SPECspeed
2017 suite) and Nginx to evaluate the overheads. Four test cases do
not work correctly with the reference input on some sanitizers we
compare with. In order to conduct a fair comparison, only these
targets are changed to utilize the training input (which is more
complex than the test input). For example, gcc_s compiled with
LowFat cannot run through the reference input. Therefore we use

1| char xbuff;

2| buff = (char *)malloc(10);

3| buff++;

+| free(buff); // Invalid free.

Listing 3: An example of invalid free.

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

the training input to test all gcc_s binaries with different sanitizers.
Specifically, the reference input of 602 causes a segmentation fault
in LowFat; the reference input of 605 causes HWASan to report
the error: “Unable to allocate memory”; the reference inputs of 638
and 644 cause MemCheck to enter an endless loop (running for
1~3 days without stopping). Except for these special cases, all other
benchmarks use the reference input.

Besides, since the compiler used by Softbound+CETS is too old
to compile SPEC CPU2017, we use SPEC CPU2006 to compare
the performance of PACMem with that of Softbound+CETS. For
SPEC CPU2006, SoftBound+CETS fails to compile 400. perlbench,
403.gcc,429.mcf,and 462. libquantum. In addition, the 445. gobmk
and 456 . hmmer benchmarks crash at runtime. Therefore, only 6
SPEC CPU2006 C benchmarks can be used to measure performance
overhead. Note that reference inputs were used.

Experimental Setup. PACMem, ASan, and HWASan all de-
tect global variable overflow for the 1decoder of x264_s bench-
mark and gcc_s benchmark. We manually confirmed that these
are not false alarms. But, LowFat indeed has some false positives.
However, we need to run the program completely to measure the
performance overheads. Thus, we modify the default configuration
to allow the program to run normally until completion, even if the
sanitizer detects some violation.

Runtime Overhead. Table 6 shows the runtime overhead
for PACMem, HWASan, and ASan on the ARM architecture. The
average runtime overheads for ASan and HWASan are 81.63%
and 108.39%, respectively. And the average runtime overhead of
PACMem is 68.73%, which is lower than ASan and HWASan (while
providing stronger security guarantees). We also tested the runtime
overhead of the weaker form of PACMem, which only enforces
memory safety checks for memory write accesses. The results are
shown in Table 6 as well (denoted as PACMem w.o0.). The runtime
overhead of PACMem w.o. is 31.83%, which is much lower than
others. To explore the PA Code collision’s impact on runtime over-
head, we counted the total number of memory objects allocated and
the number of objects with collisions, thus calculating the collision
rate. Combining the collision rate and runtime overhead results, we
can find that the overhead is lower for the cases with no collisions.
If the number of objects with collisions is high (such as perlbench
and gcc), the runtime overheads of PACMem are more than ASan
in such cases.

Other open-source sanitizers do not support the ARM architec-
ture, so we tested their performance on the x86 architecture, as
shown in Table 6 and Table 8. Compared to other open-source sani-
tizers on x86 architecture, ASan has the lowest runtime overhead.
LowFat has an outlier when running perlbench_s, but the average
runtime overhead after subtracting this outlier is still higher than
ASan. Through the above comparison, we believe that PACMem will
have a significant runtime overhead advantage if these sanitizers
can be evaluated on the same experimental platform.

Memory Overhead. The memory usage of all sanitizers is
shown in Table 7 and Table 9. The memory consumption of PACMem
is much lower than that of ASan and Memcheck. Although the mem-
ory consumption of PACMem is higher than HWASan and LowFat,
LowFat only detect spatial safety violations and the runtime over-
head of HWASan is higher than that of PACMem.

PACMem: Enforcing Spatial and Temporal Memory Safety

via ARM Pointer Authentication

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 6: Runtime overheads of PACMem and PACMem write-only, HWASan, ASan, LowFat, and Memchck. Since LowFat has
an outlier, the average overhead when including the outlier and excluding the outlier are calculated separately.

Test Case L . < AArchod X86

Collision Ratio Collision Num PACMem PACMem (+w.0) ASAN HWASAN ASAN LOWFAT Memcheck
600.perlbench_s 0.96% 54930652 200.83% 101.63% 159.10% 360.79% 163.62% 20647.38% 3526.00%
602.gcc_s 1.48% 920485 201.27% 120.25% 135.44% 270.31% 114.14% 188.70% 2334.16%
605.mcf_s 0.02% 36 107.20% 57.69% 52.82% 36.13% 128.53% 62.83% 1840.636%
619.1lbm_s 0 0 2.90% 1.69% 10.97% 14.45% 75.02% -3.67% 311.56%
625.x264_s 0 0 5.55% -11.43% 88.18% 105.80% 151.73% 370.46% 3673.84%
638.imagick_s 0 0 95.78% 30.08% 154.80% 80.62% 69.53% 79.94% 2124.29%
644.nab_s 0.23% 883 112.93% 28.10% 131.51% 116.94% 4.44% 21.65% 683.93%
657.x2_s 0 0 15.75% 10.28% 9.93% 18.87% 62.06% 72.78% 1796.04%
nginx 0 0 12.65% 3.74% 70.43% 190.84% 65.41% * *
Geometric Means 68.73% 31.83% 81.63% 108.39% 86.26% 237.21% / 87.20% 1649.97%

&: Compilation failed. *: Crashed at runtime

Table 7: Memory usage of PACMem, HWASan, ASan, LowFat, and Memchck. Since LowFat has an outlier, the average overhead
when including the outlier and excluding the outlier are calculated separately.

Test Case AArch64 X86

Origin PACMem PACMem (+w.0) ASAN HWASAN Origin ASAN LOWFAT Memcheck
600.perlbench_s 158296 KB 167.94% 166.73% 608.13% 69.72% 158976 KB 435.50% 117422.86% 181.50%
602.gcc_s 95464 KB 331.20% 323.27% 455.41% 83.74% 96924 KB 409.06% 26.90% 183.16%
605.mcf_s 558784 KB 9.01% 8.95% 52.88% 7.23% 559024 KB 52.54% 22.83% 39.69%
619.1bm_s 3302496 KB -0.01% -0.01% 6.92% 6.291% 3305228 KB 12.71% 0.04% 34.06%
625.x264_s 120038 KB 11.45% 10.94% 36.21% 15.07% 120107 KB 24.98% 647.48% 95.60%
638.imagick_s 22500 KB 37.10% 34.29% 146.01% 0.30% 16436 KB 204.02% -1.87% 1753.78%
644.nab_s 11540 KB 927.59% 925.61% 7060.09% 372.66% 16658 KB 4081.68% 7.25% 2570.13%
657.xz2_s 4529600 KB 0.03% 0.03% 4.59% 6.66% | 17291512 KB 1.58% -0.09% 26.77%
nginx 3256 KB 243.61% 219.16% 7428.87% 404.18% 1884 KB 380.89% * *
Geometric Means 106.39% 103.55% 374.29% 67.59% 221.19% 230.99% / 43.05% 241.09%

&: Compilation failed. *: Crashed at runtime

Table 8: Runtime overheads of PACMem, compared with
ASan and SoftBound+CETS on the SPEC CPU2006.

Benchmarks AArch64 \ X86
ASan PACMem | ASan Softbound+CETS
401.bzip2 63.92% 116.94% 57.78% 274.15%
433.milc 102.16% 48.71% 48.58% 282.78%
458.sjeng 76.60% 97.73% 107.24% 212.30%
464.h264ref 276.66% 228.94% 153.28% 1192.95%
470.Ibm 28.25% 2.73% 115.47% 139.05%
482.sphinx3 51.19% 69.56% 76.84% 654.47%
Geometric Means 86.99% 82.17% ‘ 89.89% 367.43%

Table 9: Memory overheads of PACMem, compared with
ASan and SoftBound+CETS on the SPEC CPU2006.

Benchmarks AArch64 | X86
ASan PACMem | ASan Softbound+CETS
401.bzip2 12.35% 0.38% 8.76% 104.79%
433.milc 41.38% 0.23% 40.86% 99.17%
458.sjeng 3.97% 15.81% 2.22% 5.29%
464.h264ref 804.48% 367.16% 691.17% 53.91%
470.lbm 13.94% 0.09% 13.20% 0.11%
482.sphinx3 928.15% 588.46% 801.88% 479.93%
Geometric Means 136.50% 82.96% ‘ 124.05% 83.66%

Since PA Code is well-distributed, for cases with a small heap (e.g.
nab), the memory overhead of PACMem is not optimistic. However,
due to the limited size of metadata tables, the memory overhead of
PACMem is optimistic for the test cases with large heap memory.

Summary. Overall, PACMem has lower runtime overhead
than HWASan and ASan. Its memory overhead is significantly
lower than ASan’s but higher than HWASan’s. However, PACMem

provides stronger security guarantees than HWASan. Specifically,
PACMem has reduced the runtime overheads by 15.80% and the
memory overheads by 71.58% than ASan. Considering all perfor-
mance overheads and security detection capabilities, PACMem is a
better choice for balancing performance and security.

6 Limitation

Limited PACs. Table 2 demonstrates that the 24-bit PA length
is sufficient for regular programs. For instance, a long-running
Apache server with 10,000 requests and 2,000 threads will consume
at most 7,886 slots in the metadata table. But the metadata table of
PACMem has 16,777,216 slots, which is way more than necessary.
However, in theory, there may be extreme cases that the metadata
table is exhausted. In that case, the metadata table needs to grow,
otherwise the PAC collision issue cannot be resolved. PACMem can
use techniques like linked lists to address this problem. Specifically,
when the metadata table is full, we can use a linked list to store
conflicted metadata (i.e., with the same PAC). At the time of the
security check, the linked list will be retrieved and iterated to find
the matching metadata. It brings higher performance overheads.
False Negatives Caused by Sub-object Overflow. Same as
other common sanitizers (such as ASan, LowFat and BaggyBounds),
PACMem cannot detect overflows within objects, i.e., sub-object
overflow. SoftBound [34] provides a best-effort approach, which
uses static type information (i.e., from the source code) to narrow
bounds to detect sub-object overflow in nearby location. It requires
the object fields’ metadata to be associated with pointers. In its
current implementation, SoftBound cannot detect sub-object over-
flows if pointer casting is involved or some LLVM optimizations

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

are applied. Besides, SoftBound cannot detect the cases discussed in
Section 5.3.6. In summary, it is hard to track object fields’ metadata
efficiently. We therefore leave it as future work.

Birthmark and Temporal Safety. Commercial ARM devices
lack a straight-forward lightweight source of randomness. Instead,
we used a static random number generated at compile time and
the dynamic stack pointer (i.e., the SP) to represent the context
of the allocation site and stack, respectively. Even if the SP is the
same, different allocation sites will generate different birthmarks.
However, PACMem still can be bypassed with a low probability,
when the spraying object is allocated at the same allocation site
and SP as the freed object and they have the same object size and
base address. However, its probability is so low that we did not ob-
serve a clash in any of our experiments. When future ARM devices
introduce a lightweight source of randomness, we can change the
static random number generator to the new randomness source,
which will provide better supports to UAF detection and perhaps
reduce the overheads.

7 Related Work

7.1 Memory Safety Sanitizer

Security researchers use sanitizers to detect security vulnerabilities
dynamically. Different sanitizers target different classes of vulnera-
bilities, e.g., spatial safety violations [17, 18, 29, 34], temporal safety
violations [12, 30, 47, 51], type confusion [21, 26], or undefined
behavior [14]. Some sanitizers [16, 27, 30, 41, 47] only focus on
spatial safety violations or temporal safety violations. We further
discuss some classical and commonly-used sanitizers.

Memcheck [36, 44] is a memory corruption detector. It maintains
a valid-address table to determine whether a pointer being derefer-
enced is valid and maintains a valid-value list to check whether the
accessed object has been initialized. However, Memcheck cannot
detect memory overflow in global variables and stack variables
and cannot detect UAF since the freed object could be taken by
another valid and initialized object. Besides, Memcheck introduces
excessive-performance overheads.

SoftBound+CETS [34, 35] provides a full memory safety solu-
tion. SoftBound+CETS utilizes the pointer-based bounds-checking
and identifier metadata associated with pointers. However, Soft-
Bound+CETS introduces high runtime overheads.

AddressSanitizer (ASan) [42] has a better performance which uti-
lizes the redzones to detect buffer overflows and uses a quarantine
to catch Use-After-Free vulnerabilities. Utilizing the redzones can
quickly detect memory vulnerabilities, but the redzones introduce
high memory overheads. Besides, ASan cannot effectively detect
UAF vulnerabilities after the quarantine has been exhausted.

LowFat [17, 18] further reduces overhead, which utilizes the
bound check to detect out-of-bounds errors. It uses a special en-
coding scheme to encode the bounds into the pointers themselves
for fast retrieval. However, LowFat just can detect spatial memory
safety vulnerabilities. And if a malicious pointer accesses another
object beyond the bounds and the access length does not exceed
the bounds of the victim object, LowFat cannot effectively detect
such spatial safety violations.

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

7.2 Metadata Management

Sanitizers, in general, will use metadata (such as bound information
or tags) to track memory safety states and catch memory access
violations at runtime. Metadata management is strongly related to
sanitizers’ runtime overheads and memory overheads.

ASan [42] and HWAsan [43] use the direct-mapped shadow to
store the metadata for a block of 8 bytes. It is very efficient, but it
wastes the memory occupied by metadata.

TypeSan [21], Intel MPX [39], and METAlloc [22] use a multi-
level shadow to index metadata. Compared with the direct-mapped
shadow, this method can effectively reduce the memory of metadata,
but significantly degrades the runtime performance of programs
with frequent memory accesses.

Oscar [13] and PTAuth [19] increase the allocation size of each
object and append the metadata to the data of the objects. This
metadata indexing approach called Embedded Metadata can effec-
tively reduce the memory overhead caused by metadata. However,
when the object’s size is large enough, this approach may have
false positives or excessive performance overheads.

Many efforts [15, 33, 48, 49] propagate a pointer with the cor-
responding metadata, i.e., a fat pointer, and implement different
forms of fat pointers by extending registers or language imple-
mentations. However, the approach needs to change the processor
hardware and increases runtime overheads. CHERI [48] is a new
architecture extension in which pointers become capabilities. This
extension is used to store information such as the capability to
support memory safety checks at runtime. The metadata of CHERI
is propagated at the same time as the pointer, and the overhead of
accessing metadata during safety checks is low. However, CHERI
requires modifications to the hardware and overall system archi-
tecture, which makes it difficult to deploy on commercial devices
in a short time. ARM Morello [6] is the only physical implemen-
tation of CHERI, which implements the temporal memory safety
mitigation derived from Cornucopia [20]. However, Morello is an ex-
perimental CHERI-extended implementation. Apple Firebloom [5]
utilizes a structure to represent a pointer with the corresponding
metadata [4], such as the lower and upper bounds. Firebloom can
use the boundary information to check for out-of-bounds access.
Compared to PACMem, Firebloom requires additional instructions
to manage the metadata, and each new pointer or new structure
requires 0x20 bytes, which requires more memory space.

LowFat [17, 18] encodes the object-bound information into the
pointer itself via a special encoding scheme and has good com-
patibility. However, it modifies the heap allocator to round up the
allocated sizes of objects to facilitate metadata (i.e., the bounds) re-
trieval, and stores objects with different sizes into different memory
pages, causing significant memory fragmentation problems.

Some mechanisms [12, 35] use disjoint metadata to improves
the compatibility. The disjoint metadata often corresponds to each
pointer, so during the pointer propagation process, it is necessary
to maintain the propagation and copy of its metadata.

In contrast to the above schemes, PACMem leverages unused
bits of the original pointer as labels, and the tags for indexing the
metadata. This type of technique has better compatibility than fat
pointers and does not introduce additional cache pressure. Also, the
method does not need to maintain metadata propagation during

PACMem: Enforcing Spatial and Temporal Memory Safety
via ARM Pointer Authentication

pointer propagation, has faster metadata queries relative to multi-
level tables and embedded metadata, and does not waste excessive
memory overhead relative to direct-mapped shadow.

7.3 Hardware Expansions

HWASan [43] and ARM MTE [11] use the higher-order bits of the
pointer to store the tag, and memory access is only possible if the
tag of the pointer and the memory are identical. The memory tag
in HWASan is 8 bits, and ARM MTE is a 4-bit integer associated
with each 16-byte aligned memory region. Due to the length of the
tag, the probability of tag collision is 6.25%. So MTE and HWASan
can only probabilistically detect memory corruption.

AOS [28] is a heap memory safety guard. This scheme imple-
ments a set of variant instructions based on PA and some addi-
tionally needed hardware extensions. PACMem and AOS also use
tags to index metadata, but there are critical differences between
these two schemes. On the one hand, AOS uses one tag for multiple
metadata sets to resolve hash collisions, which perhaps increases
the number of queries at the time of visit. When the metadata table
is full, AOS needs to increase the number of sets for each tag to
extend the metadata table, which is expensive because of the copy
of all the entries. PACMem ensures the uniqueness of tags during
tag generation, thus avoiding hash collisions. On the other hand,
AOS uses SP to generate the pointer signature, uses the object size
to generate the 2-bits address hashing code (AHC), and may fail to
detect use-after-realloc vulnerabilities (with the same base address,
object size, and SP). PACMem uses SP and a static random number
to yield a random and conflict-free birthmark, which further con-
tributes to the pointer authentication code, and thus avoids such
FNs. In addition, this scheme only strips pointers when memory
objects are deallocated and does not verify the integrity of point-
ers, so it cannot detect invalid free vulnerabilities. Moreover, AOS
requires changes to the processor, ISA, and the OS kernel. These
extra required hardware extensions increase hardware costs and
make its adoption challenging. However, PACMem takes advantage
of existing hardware features without any hardware modifications.
Compared with AOS, PACMem is more practical (compared to AOS
and does not require hardware modifications), secure, and efficient.

BOGO [53] utilizes Intel MPX to implement the spatial and tem-
poral security. Specifically, the scheme finds dangling pointers by
scanning the MPX table and invalidating their bound information
stored in the MPX Table. However, Intel claims that MPX has been
deprecated and both GCC and Linux kernel no longer support Intel
MPX. The method of No-FAT [54] indexing metadata is similar to
LowFat in that it uses the pointer itself to compute the object’s
base address and thus check if memory accesses are out of bounds.
The difference with LowFat is that No-Fat’s base address calcula-
tion and memory access checking functions are implemented in
hardware rather than software. The difference with LowFat is that
No-Fat’s base address calculation and memory access checking are
implemented in hardware. Furthermore, No-Fat also uses tags to
catch temporal safety violations.

In-Fat [50] indexes metadata for heap, stack, and global variables,
using embedded metadata, additional registers, and direct-mapped
shadow, respectively. However, In-Fat only implements detection
for spatial memory safety bugs, not for temporal security.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

7.4 Memory Safety based on ARM PA

PARTS [31] provides pointer integrity for programs using the ARM
PA feature. It utilizes type information of the target pointers and
other auxiliary information as modifiers to sign and authenticate
pointers. Since PARTS uses static type information as the modifier
to sign pointers, attackers can bypass it by reusing signed point-
ers with the same static modifier. Besides, PARTS is a mitigation
against control flow hijacking attacks. PACMem can detect memory
corruption bugs to fix, thus stopping such potential attacks.

PTAuth [19] proposes an effective runtime protection scheme for
heap-based temporal safety using the ARM PA extension. PTAuth
assigns a unique ID for each object to sign the object’s base address.
PTAuth can use the unique ID to do a pointer authentication during
every pointer dereference, and report a temporal violation when
the authentication fails. However, this scheme does not protect
against spatial violations, e.g., heap overflows, which can overwrite
the rest of the heap memory while keeping the ID stored on the
heap unchanged. Besides, PTAuth considers the memory overhead
of metadata, so it uses the embedded metadata method to store the
ID at the beginning of the object, but this method increases the
overhead of querying metadata. It is necessary to search backward
iteratively to find the valid ID when a pointer inside a heap object is
being authenticated. Compared with PTAuth, PACMem’s security
check is more efficient. According to PTAuth’s evaluation, PTAuth
tested three test sets from the Juliet test, which are Double-Free,
Use-After-Free, and Invalid-Free. According to Table 5, PACMem is
effective in detecting not only these three vulnerabilities types, but
also six others.

8 Conclusion

Existing memory safety sanitizers either provide partial memory
safety guarantees or have excessive performance overheads. Our
novel sanitizer PACMem enforces full memory safety by precisely
tracking all necessary memory safety metadata of objects and en-
forcing complete mediation on all pointer dereferences. Further,
PACMem utilizes the hardware feature ARM PA to seal metadata
directly into pointers and places metadata in a global table indexed
by the seal. This mechanism saves the metadata (seal) propaga-
tion overhead and enables efficient runtime metadata retrieval
and checks. Experiments demonstrate that PACMem has no false
positives and negligible false negatives (i.e., missing checks for
sub-object overflows) and provides a stronger security guarantee
than state-of-the-art sanitizers, including HWASan, ASan, Soft-
Bound+CETS, Memcheck, LowFat, and PTAuth, while introducing
lower performance overheads.

Acknowledgement

We would like to thank David Chisnall and all anonymous review-
ers for their insightful comments and feedback. This project has
received funding, in part, from the National Key Research and De-
velopment Program of China (2021YFB2701000), National Natural
Science Foundation of China (61972224), Beijing National Research
Center for Information Science and Technology (BNRist) under
Grant BNR2022RC01006, Alibaba Group through Alibaba Innova-
tive Research Program, and SNSF PCEGP2_186974 and ERC grant
number 850868.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

References

[1] 2017. Juliet Test Suite for C/C++. https://samate.nist.gov/SRD/testsuites/juliet/

[11

(12

[13

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

]

]

]

]

]

]

Juliet_Test_Suite_v1.3_for_C_Cpp.zip.

2019. Google queue hardening. https://security.googleblog.com/2019/05/queue-
hardening-enhancements.html.

2020. Fixed Virtual Platforms. https://developer.arm.com/tools-and-software/
simulation-models/fixed-virtual-platforms.

Saar Amar. [n.d.]. Introduction to Firebloom. https://saaramar.github.io/iBoot_
firebloom/.

Apple. [n.d.]. Memory safe iBoot implementation. https://support.apple.com/en-
il/guide/security/sec30d8d9ec1/web.

ARM. [n.d.]. ARM Morello Program. https://www.arm.com/architecture/cpu/
morello.

ARM. [n.d.]. Getting started with your FVP. https://community.arm.com/
developer/tools-software/oss-platforms/w/docs/509/fvps.

Jean-Philippe Aumasson and Daniel J Bernstein. 2012. SipHash: a fast short-input
PRF. In International Conference on Cryptology in India. Springer, 489-508.
Todd M Austin, Scott E Breach, and Gurindar S Sohi. 1994. Efficient detection
of all pointer and array access errors. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation. 290-301.
Roberto Avanzi. 2017. The QARMA block cipher family. Almost MDS matrices
over rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Transactions on Symmetric Cryptology (2017), 4-44.

Steve Bannister. 2019. Memory Tagging Extension: Enhancing memory
safety through architecture. https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/enhancing-memory-safety.

Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis. 133-143.

Thurston HY Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A prac-
tical page-permissions-based scheme for thwarting dangling pointers. In 26th
{USENIX} Security Symposium ({USENIX} Security 17). 815-832.

LLVM Developers. 2017. Undefined behavior sanitizer.

Joe Devietti, Colin Blundell, Milo MK Martin, and Steve Zdancewic. 2008. Hard-
bound: architectural support for spatial safety of the C programming language.
ACM SIGOPS Operating Systems Review 42, 2 (2008), 103-114.

Dinakar Dhurjati and Vikram Adve. 2006. Backwards-compatible array bounds
checking for C with very low overhead. In Proceedings of the 28th international
conference on Software engineering. 162-171.

Gregory J Duck and Roland HC Yap. 2016. Heap bounds protection with low
fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction. 132-142.

Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. 2017. Stack Bounds
Protection with Low Fat Pointers.. In NDSS.

Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Tempo-
ral Memory Safety via Robust Points-to Authentication. In 30th USENIX Security
Symposium (USENIX Security 21).

Nathaniel Wesley Filardo, Brett F Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, et al. 2020. Cornucopia: Temporal safety
for CHERI heaps. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
608-625.

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Her-
bert Bos, and Erik Van Der Kouwe. 2016. TypeSan: Practical type confusion
detection. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 517-528.

Istvan Haller, Erik Van Der Kouwe, Cristiano Giuffrida, and Herbert Bos. 2016.
METAlloc: Efficient and comprehensive metadata management for software se-
curity hardening. In Proceedings of the 9th European Workshop on System Security.
1-6.

Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik Shin.
2018. Enhancing memory error detection for large-scale applications and fuzz
testing. In Network and Distributed Systems Security (NDSS) Symposium 2018.
Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49
(Dec. 2020), 29 pages. https://doi.org/10.1145/3428334

APPLE INC. 2018. iOS Security — iOS 12. https://www.apple.com/business/site/
docs/iOS_Security_Guide.pdf.

Yuseok Jeon, Priyam Biswas, Scott A. Carr, Byoungyoung Lee, and Mathias Payer.
2017. HexType: Efficient Detection of Type Confusion Errors for C++. In ACM
Conference on Computer and Communication Security. https://doi.org/10.1145/
3133956.3134062

Richard WM Jones and Paul HJ Kelly. 1997. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs.. In AADEBUG, Vol. 97. Citeseer,
13-26.

Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and Chao Zhang

[28

[29

[30

[31

(32]

@
&

(34

[35

[36

[37

[39

[40]

[41

[42

[43

[44

~
)

[49

[50

Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. 2020. Hardware-based Always-On
Heap Memory Safety. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1153-1166.

Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory safety
for shielded execution. In Proceedings of the Twelfth European Conference on
Computer Systems. 205-221.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification.. In NDSS.

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ek-
berg, and N Asokan. 2019. {PAC} it up: Towards Pointer Integrity using {ARM}
Pointer Authentication. In 28th {USENIX} Security Symposium ({USENIX} Secu-
rity 19). 177-194.

M. Miller. 2019. Trends challenges and strategic shifts in the software
vulnerability mitigation landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-
%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf.

Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for safe and secure manual memory management and full memory
safety. In 2012 39th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 189-200.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 245-258.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In Proceedings of the 2010
international symposium on Memory management. 31-40.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89-100.
Harish Patil and Charles Fischer. 1997. Low-cost, concurrent checking of pointer
and array accesses in C programs. Software: Practice and Experience 27, 1 (1997),
87-110.

Inc. Qualcomm Technologies. 2017. Pointer Authentication on ARMv8.3.
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf.

Ramu Ramakesavan, Dan Zimmerman, Pavithra Singaravelu, George Kuan, Brian
Vajda, Scott Gibbons, and Gautham Beeraka. 2016. Intel memory protection
extensions enabling guide.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 1-34.

Olatunji Ruwase and Monica S Lam. 2004. A Practical Dynamic Buffer Overflow
Detector.. In NDSS, Vol. 2004. 159-169.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In Presented as
part of the 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12).
309-318.

Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. arXiv preprint arXiv:1802.09517 (2018).

Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision.. In USENIX Annual Technical Conference, General
Track. 17-30.

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: sanitizing for security. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1275-1295.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48-62.

Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. Dangsan:
Scalable use-after-free detection. In Proceedings of the Twelfth European Conference
on Computer Systems. 405-419.

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert M.
Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo,
A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson,
and Simon W. Moore. 2019. Cheri concentrate: Practical compressed capabilities.
IEEE Trans. Comput. 68, 10 (2019), 1455-1469.

Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457-468.

Shengjie Xu, Wei Huang, and David Lie. 2021. In-fat pointer: hardware-assisted
tagged-pointer spatial memory safety defense with subobject granularity pro-
tection. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 224-240.

https://samate.nist.gov/SRD/testsuites/juliet/Juliet_Test_Suite_v1.3_for_C_Cpp.zip
https://samate.nist.gov/SRD/testsuites/juliet/Juliet_Test_Suite_v1.3_for_C_Cpp.zip
 https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
 https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
 https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
 https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://saaramar.github.io/iBoot_firebloom/
https://saaramar.github.io/iBoot_firebloom/
https://support.apple.com/en-il/guide/security/sec30d8d9ec1/web
https://support.apple.com/en-il/guide/security/sec30d8d9ec1/web
https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/509/fvps
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/509/fvps
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1145/3428334
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://doi.org/10.1145/3133956.3134062
https://doi.org/10.1145/3133956.3134062
 https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
 https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
 https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
 https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

PACMem: Enforcing Spatial and Temporal Memory Safety

via ARM Pointer Authentication CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

[51] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities [54] Mohamed Tarek Ibn Ziad, Miguel A Arroyo, Evgeny Manzhosov, Ryan Piersma,
due to dangling pointers.. In NDSS. and Simha Sethumadhavan. 2021. No-FAT: Architectural support for low over-

[52] Michal Zalewski. 2017. American fuzzy lop. URL: http://lcamtuf. coredump. cx/afl head memory safety checks. In ISCA-48: Proceedings of the 48th Annual Interna-
(2017). tional Symposium on Computer Architecture, Worldwide Event.

[53] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. Bogo: Buy spatial memory
safety, get temporal memory safety (almost) free. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 631-644.

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Safety
	2.2 ARM Pointer Authentication

	3 Methodology
	3.1 System Overview
	3.2 Metadata Creation
	3.3 Metadata Tracking and Checking
	3.4 Compatibility with Unprotected Modules

	4 System Implementation
	4.1 Implementation Details
	4.2 Performance Optimizations

	5 Evaluation
	5.1 Environment and Comparison Targets
	5.2 Microbenchmark Testing
	5.3 Security Evaluation
	5.4 Performance Evaluation

	6 Limitation
	7 Related Work
	7.1 Memory Safety Sanitizer
	7.2 Metadata Management
	7.3 Hardware Expansions
	7.4 Memory Safety based on ARM PA

	8 Conclusion
	References

