
LIGHTBLUE: Automatic Profile-Aware Debloating of Bluetooth Stacks

Jianliang Wu1∗ , Ruoyu Wu1∗ , Daniele Antonioli2, Mathias Payer2, Nils Ole Tippenhauer3, Dongyan Xu1,

Dave (Jing) Tian1, Antonio Bianchi1

1Purdue University, 2 EPFL, 3 CISPA Helmholtz Center for Information Security
{wu1220, wu1377, dxu, daveti, antoniob}@purdue.edu, daniele.antonioli@epfl.ch, mathias.payer@nebelwelt.net,

tippenhauer@cispa.de

Abstract
The Bluetooth standard is ubiquitously supported by com-

puters, smartphones, and IoT devices. Due to its complexity,

implementations require large codebases, which are prone

to security vulnerabilities, such as the recently discovered

BlueBorne and BadBluetooth attacks. While defined by the

standard, most of the Bluetooth functionality, as defined by

different Bluetooth profiles, is not required in the common

usage scenarios.

Starting from this observation, we implement LIGHTBLUE,

a framework performing automatic, profile-aware debloating

of Bluetooth stacks, allowing users to automatically minimize

their Bluetooth attack surface by removing unneeded Blue-

tooth features. LIGHTBLUE starts with a target Bluetooth

application, detects the associated Bluetooth profiles, and ap-

plies a combination of control-flow and data-flow analysis

to remove unused code within a Bluetooth host code. Fur-

thermore, to debloat the Bluetooth firmware, LIGHTBLUE

extracts the used Host Controller Interface (HCI) commands

and patches the HCI dispatcher in the Bluetooth firmware au-

tomatically, so that the Bluetooth firmware avoids processing

unneeded HCI commands.

We evaluate LIGHTBLUE on four different Bluetooth hosts

and three different Bluetooth controllers. Our evaluation

shows that LIGHTBLUE achieves between 32% and 50% code

reduction in the Bluetooth host code and between 57% and

83% HCI command reduction in the Bluetooth firmware. This

code reduction leads to the prevention of attacks responsible

for 20 known CVEs, such as BlueBorne and BadBluetooth,

while introducing no performance overhead and without af-

fecting the behavior of the debloated application.

1 Introduction

Bluetooth provides wireless, short-range, generic, and afford-

able communication capabilities for billions of devices [6].

∗The two authors contributed equally.

Bluetooth is specified in an open standard that defines around

forty (40) profiles, encompassing a large variety of applica-

tions and devices. Each profile corresponds to a use case, such

as Advanced Audio Distribution Profile (A2DP) for audio,

OBject EXchange (OBEX) for data-exchange, and Human

Interface Device Profile (HID) for input-output peripherals.

The large number of diverse profiles is one of the key rea-

sons why the Bluetooth standard is so complex. For exam-

ple, the Bluetooth 5.2 core specification alone is 3255 pages

long [8] and each Bluetooth profile is specified in a dedicated

document. Consequently, Bluetooth stack implementations

require large codebases. For instance, there are about 436,000

lines of code in the Android 11 Bluetooth host code, in addi-

tion to the closed source Bluetooth firmware counterpart.

Bluetooth is vulnerable to severe attacks both at the speci-

fication and implementation levels. Recent academic works

have shown standard-compliant attacks against the Bluetooth

specification affecting both Bluetooth Classic and Bluetooth

Low Energy [2, 35, 42, 45]. Besides, 132 vulnerabilities, such

as buffer overflow and authentication bypass, have been found

since 2017 affecting the Bluetooth host code on different ver-

sions of Android [27, 38]. Attacks such as BlueBorne [5] and

BadBluetooth [46] demonstrated that remote code execution

and local privilege escalations are common with Bluetooth

host code. In addition, recent research [26, 34] demonstrates

frequent vulnerabilities in Bluetooth firmware.

Given the large codebases, attack surface reduction via

debloating unneeded code is an effective way to secure Blue-

tooth stacks. While existing tools [23, 29, 30, 36] can debloat

software codebases, none of them can be applied to Bluetooth

stack implementations directly, due to the intrinsic structure

of the Bluetooth standard and its implementations. First, Blue-

tooth stack implementations often operate as event-driven

state machines with different callbacks per functionality. Cur-

rent debloating approaches cannot handle callbacks or under-

stand the used state machines. Second, a full-stack Bluetooth

implementation includes both the Bluetooth host code run-

ning within the host machine and the Bluetooth firmware run-

ning within the Bluetooth chip. No existing tools can debloat

code on heterogeneous architectures at the same time. Lastly,

Bluetooth firmware are typically closed source, defeating any

source-based debloating tool.

To enable effective debloating of Bluetooth stacks, in this

paper, we present LIGHTBLUE, a framework performing au-

tomatic profile-aware debloating of Bluetooth stacks, span-

ning from Bluetooth host code to Bluetooth firmware, and

allowing users to automatically minimize their Bluetooth at-

tack surface by removing Bluetooth features not required

by current applications. To address the unique challenges in

Bluetooth debloating, LIGHTBLUE starts with a target Blue-

tooth application and detects the Bluetooth profile used by

the application. Then, it transforms the Bluetooth host code

into a single-entry program, simulating the transitions of its

state machine, and applying a combination of control-flow

and data-flow analysis to detect and remove unneeded code

within the host code. To remove the unused functionality

within the firmware, LIGHTBLUE also identifies unused Host

Controller Interface (HCI) commands and patches the HCI

dispatcher within the firmware binary to ignore them.

We evaluate LIGHTBLUE on four different Bluetooth host

code and three pieces of different Bluetooth firmware. Our re-

sults show that LIGHTBLUE achieves between 32% and 50%

code reduction in the Bluetooth host code and between 57%

and 83% HCI command reduction in the Bluetooth firmware.

This code reduction leads to the prevention of attacks corre-

sponding to 20 known CVEs. We run the debloated host code

and firmware with the target applications and do not observe

abnormal system behaviors.

In summary, our main contributions are as follows:

• We develop a technique to debloat the Bluetooth host

code by removing unneeded code, using a combination

of profile-aware control-flow and data-flow analysis.

• We bridge the gap between Bluetooth host code debloat-

ing and Bluetooth firmware debloating. To achieve this

goal, we extract the list of HCI commands needed by

a specific profile, and we remove the unused HCI com-

mand handlers from the firmware.

• We design and implement LIGHTBLUE as a fully au-

tomated pipeline framework to output a debloated and

usable Bluetooth stack implementation that can support

a given target application without interfering with its

intended functionality.

• We evaluate LIGHTBLUE on four different Bluetooth

host code and three different pieces of Bluetooth

firmware, and we demonstrate that LIGHTBLUE can

achieve around 32%-50% host code reduction, around

57%-83% HCI command reduction within the firmware,

and prevent attacks related to 20 CVEs.

Our code is available at https://github.com/

purseclab/lightblue.

AVDTPBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth
Host

Bluetooth
Controller

Music Player Application

Firmware

MAP PAN HID A2DP

HCI

Figure 1: Architecture of the Bluetooth stack. In the figure

we highlighted code components used by a hypothetical ap-

plication acting as a music player.

2 Background

As shown in Figure 1, the Bluetooth stack is split into two

parts: the Bluetooth host (host for short) layered upon the

Host Controller Interface (HCI) and the Bluetooth controller

(controller for short) locating beneath the HCI. The HCI is

defined by the Bluetooth specification [8] as the protocol used

for the communication between the host and the controller.

Correspondingly, the Bluetooth stack implementation is split

into two parts: the Bluetooth host code (host code for short)

running upon or within an operating system (e.g., Android)

and the Bluetooth firmware (firmware for short) running on a

dedicated Bluetooth chip. The host code sits right below appli-

cations and includes several middle layers, and the firmware

implements the link layer and interacts with the baseband and

radio hardware.

2.1 Bluetooth Host

Profiles. Roughly speaking, a Bluetooth profile corresponds

to a specific use case. Profiles define the standard way of

using the different protocols and their features. For example,

the Advanced Audio Distribution Profile (A2DP) [7] defines

the protocols and procedures that implement the streaming

of high-quality audio content, including Audio/Video Data

Transport Protocol (AVDTP) and Service Discovery Proto-

col (SDP). Profiles may employ different physical transports.

For example, the A2DP profile transmits audio data through

Bluetooth Classic (i.e., Bluetooth Basic Rate/Enhanced Data

Rate), and the Generic Attribute Profile (GATT) specifies the

procedures of data transmission via Bluetooth Low Energy

(BLE), which is mainly for power-constrained devices. As

shown in Figure 1, a typical profile only uses parts of the stack

across different layers.

Protocols. The Bluetooth specification defines a number of

protocols acting as a middle layer between profiles and lower-

level Bluetooth packets. A protocol is usually employed by a

limited number of profiles. For example, the Bluetooth Net-

https://github.com/purseclab/lightblue
https://github.com/purseclab/lightblue

Opcode
OCF OGF

Parameter
length Parameter

0 8 16 24 32

Figure 2: Format of an HCI command. Each HCI command

has an opcode field composed of OCF and OGF and a param-

eter field that depends on the opcode.

work Encapsulation Protocol (BNEP) is only used by the

Personal Area Network (PAN) profile. The Logical Link Con-

trol and Adaption Protocol (L2CAP) fragments, reassembles,

and multiplexes packets generated by higher layer protocols

and provides TCP-like services for Bluetooth.

2.2 Host Controller Interface (HCI)

The Host Controller Interface (HCI) connects the host and the

controller by defining commands, events, and data packets

communicating between the two parts. For example, the host

can send an HCI command to the controller, which answers

with an HCI event. As shown in Figure 2, an HCI command is

composed of two parts: an opcode and a command parameter.

The opcode differentiates HCI commands and has the Opcode

Command Field (OCF) and the Opcode Group Field (OGF).

The parameter field depends on the opcode.

2.3 Bluetooth Controller

The Bluetooth firmware runs on the controller and processes

HCI commands from the Bluetooth host. In particular, when

it receives an HCI command from the host code, it parses and

dispatches the command to the corresponding command han-

dler (based on the command’s OGF and OCF), and returns an

HCI event to the host code. A controller can include vendor-

specific command handlers implementing ad-hoc function-

alities, such as reading and writing the firmware’s RAM at

runtime.

The firmware support different radio links for different

purposes. For example, L2CAP employs the Asynchronous

Connection-Less (ACL) link for asynchronous data trans-

fer, and the Synchronous Connection-Oriented (SCO) link

to transmit synchronous data, such as audio. To set up a

radio link, the host code needs to issue HCI commands

to the firmware to establish a link with a remote de-

vice. For example, an SCO link can be started using the

HCI_Setup_Synchronous_Connection command.

3 Threat Model and Motivation

Threat model. We target the host and the device controller

supporting Bluetooth Classic and/or BLE. We only require

source code access to the host code, while the firmware can be

closed source and available only as a binary blob. We assume

Android phone

Credit cardSquare app

Square credit

card reader

Figure 3: The Square app on Android phone with debloated

Bluetooth stack communicates with the Square credit card

reader.

that one major application dominates the Bluetooth usage

within the device. While we trust the Bluetooth hardware,

adversaries might try to exploit vulnerabilities within the host

code or firmware to further compromise the whole system. In

this scenario, LIGHTBLUE aims to reduce the attack surface

exposed by the Bluetooth stack implementations.

Motivating example. A concrete usage scenario of

LIGHTBLUE would be a Point-of-Sale app (e.g., Square [39])

running on a dedicated Android tablet or phone (shown in

Figure 3). This app interacts with a dedicated Square credit

card reader using the Bluetooth interface of the phone. This

is a common usage scenario in shops and restaurants.

In the threat model we described, an attacker could exploit

vulnerabilities in the host code and/or the firmware affecting

the whole Bluetooth stack. However, in this specific usage

scenario, the Android phone uses the Bluetooth interface ex-

clusively to receive credit card data through the Square credit

card reader. Technically, this feature only requires the usage

of the GATT profile over BLE. Therefore, we can significantly

reduce the attack surface of the Bluetooth stack by remov-

ing the code dealing with protocols and profiles that are not

needed by the Point-of-Sale app (see Section 7.2 for more

details).

LIGHTBLUE use cases. More broadly, by reducing the Blue-

tooth host and controller’s attack surface, LIGHTBLUE serves

a variety of potential users: (1) Original Equipment Manufac-

turers (OEMs) can use LIGHTBLUE to specialize their prod-

ucts (e.g., Point-of-Sale tablets), (2) enterprise users can use

LIGHTBLUE to customize their devices (e.g., patient check-in

tablets in hospitals), and (3) experienced end-users can use

LIGHTBLUE to harden their Bluetooth stack (e.g., hardened

Bluetooth stack for Android or LineageOS).

Protection scope. In general, LIGHTBLUE can protect both

the host code and the firmware by reducing their attack sur-

face. LIGHTBLUE secures the code in three different ways.

First, it removes unneeded but potentially vulnerable func-

Bluetooth host
source code

Host object
code

Application ❶ Profile
identification❷ Profile-aware
dependence analysis ❹ HCI command

extraction ❼ Firmware patching

Original
firmware

Patched
firmware

LIGHTBLUE framework ❺ HCI dispatcher identification

Host code analysis

Firmware analysis

❸ Code removal

❻ Link interface identification

Figure 4: Workflow of LIGHTBLUE. LIGHTBLUE has three parts, profile identification, host code analysis, and firmware analysis.

tions (see Section 7.4 and Section 8.1). Second, it reduces the

number of ROP code gadgets, hindering the exploitability of

a bug (see Section 7.3.1). Third, it prevents Bluetooth attacks

exploiting protocol malleability, such as BadBluetooth (see

Section 8.2). These attacks allow malicious access and ex-

ploitation of normally unused code (which LIGHTBLUE can

remove).

4 Debloating Challenges and Solutions

Full-stack Bluetooth debloating imposes unique challenges

compared to "single program" software debloating. We enu-

merate the three major challenges and provide a summary of

how LIGHTBLUE addresses them.

Profile state transition and profile coupling. The design

of Bluetooth host code is different from a single-entry pro-

gram. A profile is implemented as an event-driven state ma-

chine in which different callbacks can be called at different

times. Furthermore, the executions of different profiles are

sometimes coupled together. For example, in the host code of

Android 6.0.1, a broker function receives and dispatches all

the received events. Therefore, the code of different profiles

cannot be partitioned just by operating at the function gran-

ularity. Some approaches [25, 36] suggest solving this issue

by using a combination of data-flow and control-flow anal-

ysis. However, this hybrid method only works on programs

having a single entry point and receiving inputs through a

limited number of interfaces (e.g., a program receiving in-

puts through command-line arguments and standard input).

Therefore, these approaches are not suitable for a multi-entry,

callback-driven software, such as the Bluetooth host code.

Approach: LIGHTBLUE uses a profile-aware analysis (see

Section 5.2) to decouple the profile-specific code chunks. This

technique transforms the multi-entry host code into a single-

entry program. After this transformation, LIGHTBLUE can

use a data-flow-based approach (inspired by TRIMMER [36])

to separate code chunks used by different profiles.

Semantic gap between the host code and the firmware.

The host code does not directly invoke the firmware code

since these two codebases run on separate CPUs. While a

profile-based analysis provides a way to debloat the host code,

we need to find a way to extend the debloating from the host

code to the firmware, achieving full-stack debloating.

Approach: LIGHTBLUE exploits the fact that the Bluetooth

specification defines an HCI layer to bridge the host and

the controller. In particular, LIGHTBLUE extracts the HCI

commands needed by a specific profile of interest and maps

them to the corresponding HCI command handlers in the

firmware (Section 5.3).

Diversity and accessibility of the firmware. The firmware

of a Bluetooth controller is usually proprietary and closed

source. On top of that, controllers from different vendors may

have different software stacks (e.g., different real-time op-

erating systems and Bluetooth controller implementations)

and might even run on different architectures (e.g., ARM and

MIPS). The absence of source code, together with the hetero-

geneity of the firmware and the architecture of the controller,

prevents the application of existing and generic debloating

techniques to this specific domain.

Approach: LIGHTBLUE exploits the fact that the firmware, re-

gardless of its specific implementation, needs to dispatch the

received HCI commands to the corresponding handler func-

tions if HCI is supported. Therefore, LIGHTBLUE focuses

on identifying the HCI dispatcher function using a two-step

approach, as we will explain in Section 5.4.

5 System Design

The workflow of the LIGHTBLUE framework is illustrated in

Figure 4. As input, LIGHTBLUE takes an application and a

Bluetooth stack implementation (host code and firmware).

Internally, LIGHTBLUE is composed of three parts: (i) Pro-

file identification, (ii) Host code analysis, and (iii) Firmware

analysis. To remove unneeded host code, LIGHTBLUE first

identifies the profile that is used by the application (step ¶

in Figure 4) 1. Then, LIGHTBLUE analyzes the source code

of the host, performing a profile-aware dependence analysis.

1For simplicity, in this description, we assume that LIGHTBLUE is used

to keep a single profile and remove the others. In Section 7.3.1, we will show

how LIGHTBLUE can also be used with multiple profiles.

This analysis generates a profile-specific dependency graph

(step ·). LIGHTBLUE then removes the code outside this

graph (step ¸) and generates a debloated host code.

Additionally, LIGHTBLUE generates a list of HCI com-

mands that are used by the target profile (step ¹). This list is

used to remove the unneeded functionalities in the firmware.

Specifically, LIGHTBLUE takes the original firmware and an-

alyzes it to find the code to handle HCI commands (step

º). Since the host code interacts with the firmware via HCI

commands to set up radio links, LIGHTBLUE can identify

the interfaces for setting up different types of links based

on the identified code that handles the HCI commands (step

»). For instance, the host code issues the HCI command

HCI_Setup_Synchronous_Connection to the firmware to

establish an SCO link with another device.

Therefore, LIGHTBLUE can take the code that handles this

HCI command (identified in step º) as one of the interfaces

of the SCO link. After this step, LIGHTBLUE produces a

patched version of the firmware (step ¼) by debloating the

unneeded functionalities. Specifically, LIGHTBLUE debloats

the code handling unneeded HCI commands, based on a list

of HCI commands extracted during step ¹. LIGHTBLUE also

removes the unneeded link interfaces of the profile. Finally,

the compiled host code and the patched firmware are linked

and flashed on the Bluetooth device.

5.1 Profile Identification

Profile identification is the first step of the LIGHTBLUE

pipeline. The goal of this step is to understand the profile

needed by a specific high-level application (e.g., an Android

app). Our key observation is that the host code provides fixed

interfaces to the application so that the application can use

the functionalities provided by the profile. For example, in

Android, the app can call the getProfileProxy() API to

get the interfaces of a specific profile. On Linux, the applica-

tion can access the profile provided by the Bluetooth stack

by accessing the relevant D-Bus [14] services. LIGHTBLUE

identifies the profile by scanning for these interfaces in the

application’s code.

5.2 Host Code Analysis

A profile is exposed as a series of APIs (i.e., functions) to

the application. For instance, the A2DP profile exposes 8

interfaces in Android 6.0.1 running on the Nexus 5 phone.

LIGHTBLUE builds the profile-specific dependency graph

starting from these exposed functions and generating a call

graph that encompasses all the functions potentially reach-

able in the host code. At this stage, the call graph is built

using a conservative approach. In particular, for each func-

tion, LIGHTBLUE scans each instruction belonging to it (Line

4 in Algorithm 1) and if a function is called or referenced, it

is added to the call graph.

Obviously, this approach leads to major over approxima-

tions, especially since the host code contains “dispatching”

functions, which are used by many profiles. In other words,

the functions implementing the functionality of different pro-

files are coupled together, as described in Section 4. Listing 1

shows an example of one of these dispatching functions. In

this example, the value of the variable service_id repre-

sents the profile that is currently being executed, and based on

this value, different functions are called. Our initial analysis

includes in the call graph all the functions potentially called

by the function shown in the example. For this reason, it over-

approximates the number of functions that are reachable when

a specific profile is executed.

A traditional way [25, 36] to solve this issue is to perform

a data-flow analysis from the entry point of the program.

This data-flow analysis can detect that, if a specific profile

is executed, some branches cannot be taken, and therefore,

some function calls cannot happen. For instance, in the ex-

ample, the data-flow analysis could understand that, when

the Hands-Free Profile (HFP) is executed, the value of the

service_id variable must be BTA_HFP_SERVICE_ID, and

therefore, the btif_in_execute_service_request func-

tion cannot call the btif_av_execute_service function

nor the btif_av_sink_execute_service function.

However, existing techniques cannot be directly applied

since they assume that a program has a single-entry point.

To solve this problem, LIGHTBLUE adds a dummy function

invoking the different interface functions exposed by a spe-

cific profile, taking into consideration the ordering in which

these interfaces are called by applications using the specific

profile (Line 5 in Algorithm 1). For instance, the applica-

tion needs to first initialize (init()) the profile, then connect

to the remote device (connect()), disconnect and close the

connection (close()) at last. Then, LIGHTBLUE takes the

constant values within the profile interface functions as the

source, and propagates them across the host code, using an

approach similar to what is proposed in TRIMMER [36]

(Line 6 in Algorithm 1).

Finally, LIGHTBLUE scans each function for conditional

jumps and checks if the conditional value is known. If it is,

LIGHTBLUE removes the basic blocks that are only reachable

from the unsatisfiable branch of the conditional instruction. In

turn, every edge in the call graph originated from a function

call located in one of these removed basic blocks is removed

as well, leading to a smaller, and more accurate, profile-aware

call graph (Line 7 to Line 10 in Algorithm 1). Using the gener-

ated dependency graph, which is profile-aware, LIGHTBLUE

removes all code that is not in the profile dependency graph.

5.3 HCI Command Extraction

LIGHTBLUE leverages the well-defined HCI send/receive in-

terfaces to extract the HCI commands from the dependency

graph. LIGHTBLUE performs data-flow analysis from all the

1 bt_status_t btif_in_execute_service_request(

tBTA_SERVICE_ID service_id, BOOLEAN b_enable){

2 switch (service_id){

3 case BTA_HFP_SERVICE_ID:

4 btif_hf_execute_service(b_enable); break;

5 case BTA_A2DP_SOURCE_SERVICE_ID:

6 btif_av_execute_service(b_enable); break;

7 case BTA_A2DP_SINK_SERVICE_ID:

8 btif_av_sink_execute_service(b_enable); break;

9}

10 }

Listing 1: A code snippet from btif_dm in Android

Algorithm 1 Profile-aware analysis algorithm

1: procedure PROFILEAWAREANALYSIS(source, profile)

2: for each v ∈ Variables do

3: C[v]← /0

4: D← callgraphBuilding(source, profile)

5: P← stackTransformation(profile)

6: C← constantPropagation(P)

7: for each F ∈ D do

8: for each conditionalBranch ∈ F do

9: if C[condition] 6= /0 then

10: pruneFunction(F,C[condition])

11: return D

functions in the profile dependency graph to the HCI inter-

faces. Then, it obtains the used HCI commands, by recovering

the first two bytes used to generate the HCI command pack-

ets. These two bytes contain the OGF and OCF fields of the

packet, and they determine the invoked HCI command. For

instance, if the first two bytes are 0x0405, LIGHTBLUE re-

covers OGF and OCF by extracting the upper 6 bits and lower

10 bits. Based on the value of OGF and OCF (0x1 and 0x5),

the HCI command is a Create Connection command.

5.4 Firmware Analysis and Patching

Given the firmware’s binary, LIGHTBLUE first identifies

the HCI command dispatcher, which dispatches the HCI

command to different handlers. Once the dispatcher is lo-

cated, LIGHTBLUE can further identify different HCI com-

mand handlers. From the identified HCI command handlers,

LIGHTBLUE also recognizes the interfaces setting up differ-

ent radio links (e.g., the SCO link). To know which ones are

needed, LIGHTBLUE relies on the Bluetooth core specifica-

tion [8] and the profiles’ specifications.

LIGHTBLUE debloats the unneeded HCI commands by

redirecting the handling of those commands to the error com-

mand handler and replacing the unneeded HCI command

handler with dummy code. LIGHTBLUE employs the same

approach to disable the interfaces of unneeded links. At last,

LIGHTBLUE writes the patched binary back to the chip by a

vendor-provided patching mechanism.

1 bt_status_t bthci_cmd_dispatcher(PTR* hci_cmd_pkt){

2 opcode = *(hci_cmd_pkt + 9);

3 OGF = opcode >> 10;

4 OCF = opcode & 0x3ff;

5 handler = error_cmd_handler;

6 switch(OGF) {

7 case 0x01: switch(OCF) {

8 case 0x01: handler = handle_inquiry; break;

9 ...}

10 ...

11 default: // handling error HCI command

12 handler = error_cmd_handler; break;}

13 handler(hci_cmd_pkt);

14 }

Listing 2: HCI command dispatcher example

5.4.1 HCI Command Dispatcher Identification

Upon receiving different types of HCI commands, the

firmware needs to parse their headers and handle them accord-

ing to their opcode (Figure 2). Our key observation is that

the dispatcher needs to perform bitwise operations to extract

the OGF and OCF values from the opcode during parsing. This

is due to the fact that, based on the OGF/OCF, the dispatcher

either calls the corresponding handler directly or passes the

handler to another function to execute. Listing 2 shows a

simplified HCI command dispatcher example.

Dispatcher candidate scanning. The bitwise operation pat-

tern that we use is the OGF/OCF extraction pattern from the

opcode in the HCI command. Specifically, OGF is the upper 6

bits, and OCF is the lower 10 bits of the opcode. The extraction

pattern consists of dividing a variable into two parts, one of

which is the upper 6 bits and the other is the lower 10 bits.

To identify code exhibiting this pattern, for each function in

the firmware, LIGHTBLUE marks every undefined reference

as symbolic and performs symbolic execution. During the

symbolic execution, if the aforementioned bitwise operation

pattern is detected, the function is included in the candidate

list. In addition, the source of the opcode is also identified (i.e.,

hci_cmd_pkt+9 in the example code). The source of the op-

code is further used to enable the dynamic under-constrained

symbolic execution [31] and the binary patching described in

the following sections.

Dispatcher candidate verification. LIGHTBLUE utilizes the

semantic of different HCI commands defined in the specifica-

tion to verify each candidate dispatcher and filter out false dis-

patchers. The specification mandates the HCI_Read_BD_ADDR

and HCI_Read_Local_Version_Information commands

to provide the Bluetooth MAC address and the de-

vice’s manufacturer name. Exploiting this semantic

information, we start under-constrained symbolic exe-

cution of each dispatcher candidate by setting the

value of the opcode to HCI_Read_BD_ADDR first and

HCI_Read_Local_Version_Information later. If the Blue-

tooth MAC address and the manufacturer name are accessed

during the two executions, we flag the analyzed candidate as

the HCI dispatcher function, otherwise we discard it.

Algorithm 2 shows how LIGHTBLUE identifies the dis-

patcher through pattern scanning and candidate verification.

We highlight that the implemented algorithm does not de-

pend on any specific firmware implementation, and as we

will show, it reliably works on a large variety of different

implementations.

Algorithm 2 Dispatcher identification algorithm

1: procedure IDENTIFYDISPATCHER(FW: Firmware)

2: func_list← IdentifyFunctions(FW)

3: predef_val← btDefinedValues

4: candidate← /0

5: dispatcher← /0

6: for each func ∈ func_list do

7: if PatternDetected(func) then

8: op_src← IdentifySource(func)

9: candidate.add((func, op_src))

10: for each (func, op_src) ∈ candidate do

11: op_src← informationalHCICmds

12: acc_val← SymbExec(func, op_src)

13: if predef_val ∈ acc_val then

14: dispatcher.add(function)

15: return dispatcher

5.4.2 HCI Command Handler Identification

Once the dispatcher is identified, LIGHTBLUE symbolically

executes the dispatcher multiple times, by concretizing the

source of command’s opcode with the value of all the possible

opcodes corresponding to the different HCI commands.

For each execution with a different concrete opcode,

LIGHTBLUE records all the visited functions, creating a set

of functions corresponding to each considered opcode. Then,

in each generated function set, LIGHTBLUE identifies the spe-

cific HCI command handler function by removing from it all

the functions that are present in any other function set. The

unique function in each generated function set is identified as

the specific HCI command handler.

5.4.3 Link Interface Identification

Once the HCI command handlers are identified, LIGHTBLUE

leverages the semantics of these HCI command handlers

obtained from the Bluetooth specification to further iden-

tify the interfaces of different links. For example, we know

from the specification that the opcode of 0x0428 refers to

the HCI_Setup_Synchronous_Connection HCI command

that starts an SCO link with another device. Therefore, we

can create the mapping between the HCI command handler

handling the HCI command whose opcode is 0x0428 and the

link it uses. In this example, LIGHTBLUE marks this HCI

command handler as one of the interfaces of the SCO link.

We manually analyze every HCI command in the specifi-

cation to create the mapping beforehand for LIGHTBLUE to

identify all the interfaces of different links. Table 8 shows the

links and corresponding interfaces. We also manually create

the mapping between the profile and the links that the profile

depends on based on the profile’s specification. We note that

the mapping creation is a one-time effort, and LIGHTBLUE

reuses the mapping when debloating profiles on all platforms.

5.4.4 Firmware Patching

Once the HCI command dispatcher and handlers are identi-

fied, LIGHTBLUE performs firmware patching to debloat the

firmware. LIGHTBLUE inserts a snippet of binary code at the

beginning of the HCI command dispatcher function, which

modifies the unneeded HCI command’s opcode to an invalid

opcode based on the observation that the dispatcher function

first checks whether the opcode is valid or not. Thus, the un-

needed HCI command will be handled by the error handler

instead of the original one. We employ the same approach to

debloat the interfaces of the unneeded links.

This approach has two main advantages. First, the

debloated firmware still emits an HCI event (e.g.,

HCI_Command_Complete) to the host to remain specification-

compliant, preventing the firmware from crashing when it

receives debloated HCI commands from the host. Second,

this approach is applicable to the platforms that have lim-

ited patching capabilities (e.g., the popular BCM4339 chip

and similar Broadcom chips) since the firmware needs to

be patched at only one place. In fact, for these devices the

firmware is stored in a non-reprogrammable memory, and we

need to use vendor-specific mechanisms to patch the firmware

(e.g., the patchram [26] mechanism of Broadcom chips).

Conversely, if the controller allows unlimited patching (e.g.,

the firmware is held in reprogrammable flash memory), we

modify it more extensively. In these cases, LIGHTBLUE also

replaces the functions of each unneeded HCI command han-

dler and link interface with dummy code (e.g., bx lr for

ARM).

6 Implementation

We implement the host code analysis as an LLVM pass on top

of LLVM 9.0, using about 2.3 KLOC. The firmware analysis

and patching are implemented with Python based on angr [37],

using about 1.2 KLOC.

Profile identification implementation. LIGHTBLUE identi-

fies the needed profile by scanning for the APIs of interest and

performing static analysis. For example, LIGHTBLUE scans

for the getProfileProxy() API used by Android apps and

traces back the third argument which indicates the needed pro-

file. We highlight that we demonstrate the feasibility of profile

identification for Android apps in Section 7.1. We leave the

profile identification for additional types of applications as

future work.

Host code analysis implementation. LIGHTBLUE compiles

and links the host source code using Clang and generates the

Table 1: Host code and Bluetooth chips on our evaluation

platforms. The Bluetooth firmware on Plt. 4 is not available.

AC: ARM Cortex
Device Host OS Host Stack BT Chip Processor

Plt. 1 Nexus 5 Android 6.0.1 BlueDroid BCM4339 AC M3

Plt. 2 Raspberry Pi 3 Raspbian 9 BlueZ 5.52 BCM43430A1 AC M3

Plt. 3 Dell Laptop Ubuntu 18.04 BlueKitchen CYW20735B1 AC M4

Plt. 4 Google Pixel 3 Android 9.0.0 Fluoride Kryo 385 AC A75

LLVM Intermediate Representation (IR). Then, LIGHTBLUE

runs the LLVM pass to generate the profile dependency

graph and removes unneeded code. After the code removal,

LIGHTBLUE generates the object file and the linker links the

object file to generate the binary file.

Firmware analysis implementation. After dumping the

firmware with a vendor-specific method, LIGHTBLUE recov-

ers the functions and builds the firmware’s call graph using

angr. Then, LIGHTBLUE automatically identifies the HCI

command dispatcher and handlers using angr’s symbolic ex-

ecution (as discussed in Section 5.4.1 and 5.4.2). During

symbolic execution, to verify the dispatcher candidates we set

the maximum function call depth to 0 to avoid state explosion.

Then LIGHTBLUE automatically verifies each dispatcher

candidate from the candidate list. If no dispatcher is found,

we increase the maximum function call depth by 1 and do

symbolic execution again until we find a dispatcher. After

that, the maximum function call depth, which successfully

confirms the dispatcher, is used as the maximum function call

depth in identifying the HCI command handler. For collect-

ing the accessed values during symbolic execution, we also

consider the dispatcher candidate’s return value as a function

pointer which accesses the defined values.

Once the HCI command handlers are identified,

LIGHTBLUE also identifies the interfaces of different links

based on the mapping between the handlers and their se-

mantics (see Table 8), as discussed in Section 5.4.3. Then

LIGHTBLUE identifies the needed link of the profile accord-

ing to the specification and marks the interfaces of other

links as unneeded. Finally, LIGHTBLUE patches the firmware

using the vendor-provided approaches (e.g., patchram), as

discussed in Section 5.4.4.

7 Evaluation

We evaluate LIGHTBLUE on several popular platforms across

different Bluetooth hosts and controllers. Specifically, we

test LIGHTBLUE on 3 full Bluetooth stacks used by different

devices: a Nexus 5 phone, a Raspberry Pi 3, and a Dell Lat-

itude laptop, as shown in Table 1. The Nexus 5 (Platform 1

in the table, Plt. 1 for short) has BlueDroid [15] as the host

code and the Broadcom BCM4339 [9] Bluetooth chip. The

Raspberry Pi 3 (Plt. 2), uses BlueZ 5.52 for the host and the

BCM43430A1 chip [33]. The Dell laptop (Plt. 3) employs

BlueKitchen [20] as the host code and the CYW20735B1 [12]

chip. We choose these three platforms due to their availability

of both the host code (source code) and the firmware binary.

All three pieces of firmware that we analyze are proprietary

and closed source, and they run on different chips. Addition-

ally, we also evaluate LIGHTBLUE on a Google Pixel 3 (Plt. 4)

running Fluoride [16] as the host code to show that host code

debloating can work separately.

Among the steps shown in our pipeline (Figure 4), all steps

are automated on Plt. 1. As we mentioned in Section 3, in

most cases, the user of LIGHTBLUE is aware of the profiles to

keep, and therefore, the profile identification step (step ¶) is

not implemented for Plt. 2 and Plt. 3. For this reason, we only

implemented the profile identification step (step ¶) for Plt. 1.

All the other steps on Plt. 2 and Plt. 3 (steps · to ¼) are

automated. On Plt. 4, for which we only perform host code

debloating (due to the unavailability of its firmware), all the

steps needed (steps ¶ - ¹) are automated. We note that the

user could manually specify the profiles that the user wants

to keep on all platforms. In fact, we envision different usage

scenarios in which LIGHTBLUE potential users are aware of

the needed profiles, as we discussed in Section 3.

We first demonstrate LIGHTBLUE’s real-world practicality

by investigating the usage of Bluetooth profiles of Android

apps. Then, we evaluate LIGHTBLUE along three different

aspects, the correctness of the debloated stack (i.e., its ability

to work correctly when supporting app code using a single

profile), the attack surface reduction on both the host code and

the firmware, and the number of prevented CVEs. To show

the generality of the HCI command handler identification,

besides the three pieces of firmware shown in Table 1, we

also evaluate the HCI command handler identification on the

firmware of Zephyr [10].

7.1 Profile Identification of Android Apps

We evaluate the profile identification on Android by ana-

lyzing 10,650 popular apps automatically crawled from An-

droidZoo [1] during January and February 2020. Among our

dataset, 935 apps require Android’s BLUETOOTH permission

(thus they can access Bluetooth functionality), out of which

432 apps are detected as using Bluetooth profiles. We find

that more than 90% of the 432 apps only use 1 or 2 profiles.

Besides, as shown in Table 6 in Appendix A, some profiles

are rarely used, such as SAP and SPP. Only three profiles

(i.e., A2DP, HFP, and GATT) are frequently used by the apps.

Therefore, most of the profiles are not needed and can be

debloated under a particular Bluetooth use scenario.

During the identification, we find that there are apps us-

ing reflection together with string operations (e.g., append-

ing) to load Bluetooth-related classes and profiles, which

LIGHTBLUE cannot identify. We highlight that, LIGHTBLUE

follows the developers’ guidelines to identify the profile,

while reflection is not the recommended approach to use

Bluetooth profiles by Google [21]. Besides, the presence of

Table 2: Applications that are used to test debloated Bluetooth

stacks on different platforms. For all tested end devices, we

did not observe unexpected results (i.e., issues due to debloat-

ing). N/A = untested as we did not have required devices.

Platform Application Profile
No

Crash

No

Issue

Plt. 1

Spotify
A2DP

(AVRCP)
X X

Phone (Built-in) HFP X X

Bluetooth Tethering

Manager
PAN X X

Bluetooth (Built-in)1 HID X X

Samsung Health HDP X N/A

nRF Connect for Mobile GATT X X

Plt. 2 blueman

A2DP

(AVRCP)
X X

PAN X X

HID X X

HDP X N/A

SAP X N/A

Plt. 3

a2dp_sink_demo
A2DP

(AVRCP)
X X

hfp_hf_demo HFP X X

panu_demo PAN X X

hid_keyboard_demo HID X X

hsp_hs_demo HSP X X

spp_streamer SPP X N/A

pbap_client_demo PBAP X N/A

gatt_browser GATT X X

1: If the built-in Bluetooth app supported profiles (e.g., HID profile) are

removed from the Bluetooth stack, the built-in Bluetooth app does not

crash and cannot set up connections for the removed profiles.

obfuscation may fail our profile identification.

7.2 Correctness of Debloating

To test the correctness of the debloated stack, we run differ-

ent apps that use distinct profiles on each platform to check

whether the app and the Bluetooth stack crash or whether the

app can communicate through the needed profile correctly.

Besides, we also test if, when one profile is debloated, the

debloated platform can still use that profile. Through our ex-

periment, we find that A2DP and AVRCP profiles are tightly

coupled, and the AVRCP profile is not functioning without

A2DP on all platforms. Because AVRCP is used to control

the audio playback, there would be nothing to control with-

out A2DP that transmits the audio playback. Therefore, we

consider A2DP and AVRCP as one profile in our evaluation.

Table 7 in Appendix A shows the profiles and their corre-

sponding functionalities to give intuition to the user about the

functionality removed when debloating a profile.

For Plt. 1, we pick 6 popular apps that use different Blue-

tooth profiles, run the apps with the debloated host code and

firmware, and test whether the apps can run and communicate

with another Bluetooth device without any issues. The same

apps are used to test the debloated host code on Plt. 4. We

use the blueman Bluetooth manager with our debloated host

code and firmware on Plt. 2 to connect to different Bluetooth

devices via different profiles and to test whether the debloated

stack works correctly. At last, we compile and run the demo

app code using different profiles in BlueKitchen on Plt. 3

with the debloated development board as the Bluetooth chip

to test whether the app can run and connect to other Bluetooth

devices. The tested apps are shown in Table 2.

We use these apps to connect to different Bluetooth devices

including a laptop, a headset, a keyboard, and a BLE device

to test the A2DP, AVRCP, PAN, HSP, HFP, HID, MAP, and

GATT profiles. For other profiles (i.e., HDP, SAP, SPP, and

PBAP) for which we do not have physical devices to run, we

test whether the app and the stack crash or not.

Throughout our experiment, all apps can be executed on all

platforms without any crashes, and the apps can communicate

with other Bluetooth devices through the debloated Bluetooth

stack without any observed issues.

We test LIGHTBLUE with the Square Android app [39] run-

ning on a Nexus 5 and the Square Reader [40]. LIGHTBLUE

first analyzes the Square app and identifies the profile (i.e.,

the GATT profile) needed by the app. Then LIGHTBLUE de-

bloats the host code and the firmware used by the Nexus 5

phone. At last, we run the app to connect to the Square reader,

and we verify that the app is still functioning correctly after

debloating, as shown in Figure 3.

To test whether the debloated profiles are actually removed

and no longer available, we use sdptool [17] to get all pro-

files on the test platforms and check whether the debloated

profiles can still be accessed. As expected, all the debloated

profiles are no longer available on the test platforms.

7.3 Attack Surface Reduction

In this section, we evaluate LIGHTBLUE by presenting the at-

tack surface reduction rate when debloating different profiles

using LIGHTBLUE. We show the code reduction rate of both

the host code and the firmware.

7.3.1 Bluetooth Host Code

We evaluate our host code analysis on four different platforms

as shown in Table 1. We first show the attack surface reduc-

tion when keeping one profile, then we evaluate LIGHTBLUE

when keeping multiple profiles. We evaluate the host code

analysis using three different metrics: reduced number of in-

structions, reduced number of functions, and reduced number

of ROP gadgets. The reduction of ROP gadgets is not a perfect

metric for evaluating the attack surface reduction However, it

is widely used [23, 29, 30, 36] and we follow prior literatures

to use this metric.

Keeping one profile. In this evaluation, LIGHTBLUE keeps

one needed profile and removes the others. Our baseline

(100%) is the original host code enabling all profiles, and

we evaluate keeping, one-by-one all the supported profiles.

We compile the binaries with the same optimization level.

66.52%

65.30%

65.51%

64.26%

64.77%

68.95%

70.29%

59.74%

57.92%

60.03%

57.38%

55.85%

60.53%

66.72%

59.93%

57.91%

61.39%

57.82%

56.16%

58.90%

67.40%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

HDP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fil
e

Instruction Function ROP Gadget

Figure 5: Comparison between debloated host code (keeping

different profiles) and the Baseline on Plt. 1 (BlueDroid).

62.53%

61.72%

60.89%

59.93%

60.35%

69.75%

63.88%

63.19%

62.38%

61.67%

61.17%

70.97%

68.29%

66.90%

67.48%

65.38%

65.27%

76.40%

0% 20% 40% 60% 80%

Average

SAP

HDP

HID

PAN

A2DP &
AVRCP

K
ep

t P
ro

fil
e

Instruction Function ROP Gadget

Figure 6: Comparison between debloated host code (keeping

different profiles) and the Baseline on Plt. 2 (BlueZ).

The reduced attack surface of the host code on the four

tested platforms is shown in Figure 5, 6, 7, and 8 respectively.

As we can see from Figure 5, the average reduced instruc-

tions, functions, and ROP gadgets of BlueDroid on Plt. 1 are

40.07%, 40.26%, and 33.48%. The reduced attack surface is

also different by keeping different profiles. Figure 6 shows the

reduced attack surface of BlueZ by keeping different profiles.

The average reduced instructions, functions, and ROP gad-

gets are 31.71%, 36.12%, and 37.47%. The average reduced

instructions of BlueKitchen on Plt. 3 is 49.12%, while the re-

duced functions and ROP gadgets are 50.03% and 52.13% as

shown in Figure 7. As shown in Figure 8, the average reduced

instructions, functions, and ROP gadgets of Fluoride on Plt. 4

are 33.68%, 41.53%, and 30.07%.

Overall, BlueKitchen has the highest host code reduction

rate among all the test platforms. One reason is that BlueK-

itchen is designed for low-end IoT devices which typically

only have one profile. Therefore, the profiles are not coupled

47.87%

48.07%

46.84%

41.95%

51.28%

36.32%

42.86%

54.13%

61.52%

49.97%

54.46%

47.06%

44.37%

53.25%

39.00%

41.23%

59.49%

60.89%

50.88%

51.10%

47.82%

43.49%

59.16%

38.09%

40.71%

63.70%

62.95%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

PBAP

SPP

HSP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fil
e

Instruction Function ROP Gadget

Figure 7: Comparison between debloated host code (keeping

different profiles) and the Baseline on Plt. 3 (BlueKitchen).

69.93%

69.39%

65.41%

67.66%

66.21%

66.21%

68.75%

85.89%

58.47%

59.56%

54.52%

57.57%

53.77%

55.18%

58.19%

70.48%

66.32%

65.68%

62.01%

66.26%

61.47%

63.22%

66.57%

79.04%

0% 20% 40% 60% 80%

Average

GATT
(BLE)

MAP

HDP

HID

PAN

HFP

A2DP &
AVRCP

K
ep

t P
ro

fil
e

Instruction Function ROP Gadget

Figure 8: Comparison between debloated host code (keeping

different profiles) and the Baseline on Plt. 4 (Fluoride).

together as the host code on other platforms. Another reason

is that BlueKitchen has the largest number of supported pro-

files, which enlarges the code baseline, and therefore, more

code is removed when only 1 profile is kept.

Keeping multiple profiles. LIGHTBLUE also supports keep-

ing multiple profiles. It is challenging to evaluate all possible

profile combinations on the tested platforms. Therefore, we se-

lect the top 4 of the most popular profile combinations found

during our profile identification step on Android (Section 5.1).

In addition, we test one additional common use case (using

headset and keyboard, requiring the A2DP and HID combi-

nation of profiles) to measure the reduced attack surface on

Plt. 1 and Plt. 4. Table 3 shows the reduced attack surface

Table 3: Reduced attack surface percentage of host code when keeping multiple profiles on Plt. 1 and Plt. 4.

Profile Combination
Used by

of Apps

Reduced Attack Surface

Plt. 1 Plt. 4

Instruction # Function # ROP Gadget # Instruction # Function # ROP Gadget #

A2DP & HFP 71 27.05% 26.33% 23.31% 15.82% 24.97% 9.80%

GATT & HFP 22 36.49% 34.62% 27.82% 29.13% 35.80% 26.50%

A2DP & GATT & HFP 18 22.57% 22.01% 18.56% 11.52% 18.96% 5.12%

A2DP & GATT 13 28.15% 28.96% 24.94% 16.59% 23.38% 9.07%

A2DP & HID - 28.25% 29.49% 26.57% 20.81% 29.17% 13.47%

results in these scenarios. We can see from the table that the

reduced attack surface drops slightly compared with keep-

ing only one profile. For example, compared with keeping

only the A2DP profile, the percentage of removed instructions

drops slightly from 32.60% to 27.05% when keeping A2DP

and HFP simultaneously on Plt. 1.

7.3.2 Bluetooth Firmware

Among the three types of HCI packets, HCI commands are

the only input to the firmware from the host code. Besides,

the interfaces are also the code that handles HCI commands.

Therefore, we use the number of disabled HCI command

handlers in the firmware as a metric to evaluate the reduced

attack surface of the firmware.

Through our experiment, we find that different profiles are

using the same set of HCI commands based on the host code

analysis. This happens because all the profiles use L2CAP as

the transport protocol, which uses the same HCI commands

to establish different connections. In addition, since all the

tested platforms support Bluetooth Classic and BLE, the ini-

tializations of Bluetooth Classic and BLE stacks are tightly

coupled. Therefore, even though only the A2DP profile is

needed, the initialization of BLE is also executed. During this

initialization, HCI commands of both Bluetooth Classic and

BLE HCI are needed.

The analyzed firmware usually supports far more HCI com-

mands than needed, which enables a significant amount of de-

bloating, as we will show later in this section. In addition, the

link interface identification and debloating enables additional

firmware debloating. Therefore, LIGHTBLUE can further de-

bloat HCI command handlers that handle these overestimated

yet unneeded HCI commands in the firmware.

Table 4 shows the results of debloating in terms of removed

HCI commands, on the three tested platforms. We manually

check each platform to get the number of HCI commands

that are processed in the original firmware and host code.

We group the profiles in the table based on the links they

need since the profiles that use the same link share the same

interfaces (HCI commands).

We notice that removing HCI command handlers in the

firmware also prevents the firmware from sending correspond-

ing HCI events to the host code, and therefore, prevents those

events from being processed by the host code. To better quan-

tify this aspect, in the table, we specified how many debloated

commands and corresponding events were processed by the

host code before debloating takes place (“# of Cmds Pro-

cessed by Host and Removed by Debloating” row). We no-

ticed that a significant fraction of the removed HCI commands

were not processed by the host code even before debloating.

One reason for this aspect is that many of the debloated com-

mands in the firmware are “vendor-specific.” Commands of

this class are used for firmware update, debugging, or adding

new features, and they are typically not processed by the host

code. The table lists the exact number of vendor-specific HCI

commands we encountered in the debloated firmware sam-

ples.

The removal of some HCI command handler in the

firmware may not affect (negatively or positively) the secu-

rity of the host code. However, we note that LIGHTBLUE

implements the HCI command handler removal functionality

primarily to improve the security of the controller (while the

security of the host is improved by debloating the host code,

as evaluated in Section 7.3.1). In fact, debloating these un-

needed HCI command handlers reduces the attack surface of

the firmware, regardless of whether they are used in the host

code or not. Besides, debloating the unneeded link interfaces,

which are also HCI command handlers, can prevent the at-

tacker from triggering certain vulnerabilities in the firmware,

including CVE-2019-13916 (see Section 7.4).

In all the tested platforms and usage scenarios LIGHTBLUE

removes more than half of the processed HCI commands. It

is noteworthy that in BlueKitchen we can debloat a higher

percentage of HCI commands. This happens because BlueK-

itchen is designed for low-end IoT devices that usually use

one profile, and, therefore, the HCI commands for different

profiles are not tightly coupled.

7.4 Preventing Known Bluetooth Vulnerabili-

ties

At the time of writing, there are 15 CVEs about the Plt. 1

host code, out of which 11 can be removed via LIGHTBLUE.

There are 23 CVEs about the Plt. 4 host code, out of which 8

can be removed through LIGHTBLUE. No CVE specifically

targets Plt. 2 and Plt. 3 host code. There are 3 reported CVEs

in the firmware of our tested platforms, out of which 1 can

be prevented. Table 5 lists the CVEs that can be prevented

by LIGHTBLUE. These CVEs are related to different pro-

files and functions which can be removed or prevented by

Table 4: Number of debloated HCI commands on different platforms.
Platform Plt. 1 Plt. 2 Plt. 3

Host Code BlueDroid BlueZ BlueKitchen

Bluetooth Chip BCM4339 BCM43430A1 CYW20735B1

of Cmds Processed by Firmware 310 299 423

out of which vendor-specific 135 93 174

of Cmds Processed by Host Code 138 144 131

Kept Profile HFP GATT Others1 HFP GATT Others HFP GATT Others

Needed Link(s)
ACL

& SCO

LE ACL2

& ADVB3 ACL
ACL

& SCO

LE ACL

& ADVB
ACL

ACL

& SCO

LE ACL

& ADVB
ACL

of Cmds Processed by Firmware

and Removed by Debloating
192 196 195 171 172 174 352 354 354

out of which vendor-specific 125 125 125 88 88 88 171 171 171

of Cmds Processed by Host Code

and Removed by Debloating
20 24 23 16 17 19 60 62 62

of Cmds Removed by Debloating 192 (64.2%) 196 (65.6%) 195 (65.2%) 171 (57.2%) 172 (57.5%) 174 (58.2%) 352 (83.2%) 354 (83.7%) 354 (83.7%)

1. Other profiles supported on the platform. 2. Low Energy Asynchronous Connection. 3. LE Advertising Broadcast link.

Table 5: Prevented CVE vulnerabilities and related profiles.

N/A: not related to any profile. HO: the vulnerability is in the

host code. FM: the vulnerability is in the firmware.
Vul.

Loc.

Related

Profile
Platform

of Vul.

Functions
CVE Number

HO

A2DP &

(AVRCP)

Plt. 1 4

CVE-2018-9542∗

CVE-2018-9450∗

CVE-2017-13266∗

CVE-2018-9453

Plt. 4 7

CVE-2019-2227∗

CVE-2018-9588∗

CVE-2018-9507∗

CVE-2018-9506∗

CVE-2019-2049

PAN Plt. 1 7

CVE-2017-0783∗

CVE-2017-0782∗

CVE-2017-0781∗

CVE-2018-9436∗

CVE-2018-9356∗

CVE-2018-9357

CVE-2017-13269

MAP Plt. 4 1 CVE-2018-9505∗

HSP/HFP Plt. 4 5 CVE-2018-9583∗

N/A Plt. 4 1 CVE-2019-2226

FM GATT Plt. 3 1 CVE-2019-13916∗

*: CVEs that can be triggered by over-the-air attacks.

debloating the corresponding profiles. Besides, LIGHTBLUE

can also remove the code that is not needed by any profile

when debloating a profile. Therefore, LIGHTBLUE can re-

move some vulnerabilities (e.g., CVE-2019-2226), regardless

of the considered profile. Since there are different CVEs in

different profiles, the vulnerabilities that can be removed by

keeping different profiles are also different. We highlight

that LIGHTBLUE can also potentially remove undiscovered

vulnerabilities by debloating unneeded profiles.

It is noteworthy that LIGHTBLUE can protect both the host

code and the firmware from over-the-air attacks (the CVEs

with ∗ in Table 5). LIGHTBLUE protects the host code from

over-the-air attacks by removing the relevant vulnerable code.

For example, Section 8.1 shows how all the PAN-profile-

related BlueBorne [5] vulnerabilities that can be triggered by

over-the-air attackers can be removed by debloating the PAN

profile completely. LIGHTBLUE protects the firmware from

over-the-air attacks by disabling unneeded link interfaces. For

instance, debloating the GATT profile would also disable

the creation of BLE ACL and BLE Advertising Broadcast

(ADVB) links since GATT is the only profile that uses these

links. Therefore, LIGHTBLUE prevents the vulnerabilities

inside the firmware triggered by malicious packet via these

links, such as CVE-2019-13916. Section 9 discusses how to

defend against more over-the-air attacks.

7.5 Accuracy of HCI Command Handler

Identification in Firmware

To show the flexibility of LIGHTBLUE, we evaluate the ac-

curacy of the HCI command handler identification on four

different firmware. Besides the three pieces of firmware tested

in Table 4, we also evaluate our automatic HCI handler iden-

tification accuracy on the open-source Zephyr firmware.

We obtain the ground truth about the Plt. 1 and Plt. 2

firmware by reverse-engineering them, helped by the Inter-

nalBlue [26] tool. Since the CYW20735B1 chip (used on

Plt. 3) is a development board, for which debugging symbols

are available, we get its ground truth using the symbols. The

ground truth of Zephyr is obtained from its source code.

LIGHTBLUE can automatically detect all the HCI com-

mand handlers with 100% accuracy on our tested platforms.

Yet, it may fail to identify the HCI command handlers on

other platforms if the firmware employs complicated logic

in the HCI command dispatcher function that leads to state

explosion for angr, or if angr fails to decompile the firmware.

8 Case Study

In this section, we show how LIGHTBLUE can prevent real-

world attacks. Specifically, we present two user studies detail-

ing how LIGHTBLUE can prevent the BlueBorne [5] and the

BadBluetooth [46] attacks.

8.1 Removal of BlueBorne CVEs

BlueBorne [5] is an airborne attack vector discovered by

Armis in 2017. Based on the found vulnerabilities, the at-

tacker can exploit vulnerable Bluetooth devices remotely.

BlueBorne comprises eight CVEs including CVE-2017-0781,

CVE-2017-0782, and CVE-2017-0783, which affect devices

running Android version 4.4.4 to 8.0. All these three CVEs

are related to the PAN profile or the BNEP protocol which

the PAN profile is built upon.

LIGHTBLUE can remove all these vulnerabilities by de-

bloating the PAN profile. Specifically, the BNEP protocol

would be removed since PAN is the only profile that needs

BNEP. Therefore, when the adversary sends the malicious

packets to trigger the remote code execution vulnerability, the

connection cannot be established because of the unavailability

of BNEP. The man-in-the-middle (MITM) attack will also

fail because of the debloating of the PAN profile. Considering

that the PAN profile is rarely used (in our dataset, it is used

by only two apps, out of more than 10K), LIGHTBLUE can

effectively defend against these vulnerabilities in common

usage scenarios.

8.2 Defence Against BadBluetooth Attacks

BadBluetooth [46] introduces a new type of attack on Android

smartphones from a malicious Bluetooth device. This attack

is based on the weakness of the design that the Bluetooth

profile authentication process is coarse-grained: the device

still trusts the paired device (including all profiles) even if

the paired device changes its profiles after pairing. Therefore,

a malicious Bluetooth device can first use a user-expected

profile to pair with a smartphone, and then switch to other

profiles silently, to launch the attack on the smartphone. For

example, a malicious Bluetooth speaker can pair with the

smartphone using the A2DP profile at first, and then switch

to the HID profile to inject input events to the smartphone.

LIGHTBLUE can naturally defend against this kind of at-

tack. Taking the malicious Bluetooth speaker as an exam-

ple, LIGHTBLUE can identify from the application that only

the A2DP profile is needed and debloat the other profiles.

After the smartphone pairs with the malicious speaker, the

speaker changes profile to HID and try to inject malicious in-

put events to the smartphone. However, since the HID profile

is debloated and no longer supported by the smartphone, the

injection fails, and the attack cannot be launched. At the same

time, in the debloated smartphone, the audio transmission can

still be functioning since the smartphone and the speaker can

still communicate through the A2DP profile.

Though LIGHTBLUE cannot completely mitigate BadBlue-

tooth attacks when enabling multiple profiles, it can still pre-

vent some BadBluetooth attacks based on the removed pro-

files. Suppose that LIGHTBLUE is used to keep the A2DP

and HFP profiles. In this case, the BadBluetooth attack can

be used to switch between these two profiles but cannot acti-

vate other Bluetooth functionality requiring another profile.

For example, in the mentioned scenario, the attacker could

use BadBluetooth to inject malicious voice commands to

the voice assistant on the smartphone using the HFP pro-

file but cannot inject malicious keystrokes to the smartphone,

since this attack requires using the HID profile debloated by

LIGHTBLUE. Similarly, LIGHTBLUE would prevent launch-

ing MITM attacks since the corresponding PAN profile is

debloated by LIGHTBLUE.

9 Discussion and Limitation

Extending over-the-air protection. As discussed in Sec-

tion 7.4, LIGHTBLUE can protect both the host and the con-

troller from over-the-air attacks by removing unneeded code

and debloating unneeded links. However, LIGHTBLUE can-

not prevent all over-the-air attacks affecting the controller

due to its top-down debloating approach (from the profile

side of the host code to the firmware). Out of three known

vulnerabilities affecting the controller of the considered de-

vices (CVE-2019-13916, CVE-2019-18614, and CVE-2019-

11516) [34], LIGHTBLUE can automatically prevent one

(CVE-2019-13916, as explained in Section 7.4).

To further explore this issue, we studied the other two

vulnerabilities and manually patched them. Specifically, we

reverse-engineered the firmware of Plt. 1 and Plt. 3 to identify

the radio-level interface. Based on the identified interface,

we implemented patches for CVE-2019-18614 (on Plt. 3)

and CVE-2019-11516 (on Plt. 1), both of which can be trig-

gered over-the-air. For Plt. 3, we leveraged debug symbols

to identify the radio-level interface for patching CVE-2019-

18614. For Plt. 1, since there are no debug symbols, we used

LIGHTBLUE to help us manually identifying the radio-level

interface. In particular, LIGHTBLUE automatically identi-

fied the HCI command handler enabling the controller to

receive data that can trigger the vulnerability. Following func-

tions called by this command handler, we further reverse-

engineered the firmware, located the targeted interface, and

inserted additional length checks to patch CVE-2019-11516.

As shown, LIGHTBLUE can prevent some vulnerabilities

affecting the controller automatically, and help an analyst to

patch others manually. However, to fully handle these vul-

nerabilities, a complementary bottom-up approach (from the

radio side of the firmware to the host code), which needs to

identify the radio-level interfaces (i.e., the code dispatching

packets coming from the radio interface), is needed.

Our study of the firmware revealed that, while LIGHTBLUE

can automatically identify the HCI handler code in the

firmware, automatically identifying the radio-level packet

dispatcher code poses additional challenges. In fact, different

from the HCI handler case, there is no well-defined specifica-

tion on how this code is supposed to behave, and therefore,

this code can be implemented in different ways by different

vendors. Consequently, implementing an automated radio-

level dispatcher identification procedure remains an open

challenge. In addition, even if the radio-level dispatcher is

detected, an additional issue is to identify a set of properties

of the incoming radio packets that can be used to effectively

classify them and discard those triggering vulnerable code.

Configuration vs. debloating. Among our tested platforms,

BlueDroid [15], Fluoride [16], and BlueZ [11] support dis-

abling specific functionalities via configuration files during

compilation. However, this configuration approach is not gen-

eral, since it heavily depends on the stack implementation.

For instance, BlueKitchen [20] does not support configura-

tion at compilation time, and therefore, cannot be debloated

via the configuration approach. Besides, some functionalities,

such as the HFP profile, cannot be debloated even when the

configuration approach is possible. Additionally, disabling a

functionality does not remove all the related code, limiting

the effectiveness of this approach. Finally, the configuration

file approach is only applicable when source code is avail-

able, and therefore, it cannot be used to debloat the firmware.

LIGHTBLUE, on the other hand, provides a general approach

that can debloat unneeded functionality in both the host code

and the firmware.

Blocking code path vs. debloating. Blocking the code path

(e.g., introducing a new access control mechanism or dynam-

ically enabling/disabling profiles) can also defend attacks

like BadBluetooth [46]. However, the code-path blocking ap-

proaches cannot reduce the attack surface of the executable in

memory or maybe even increase the attack surface due to the

newly introduced mechanisms. Therefore, code-reuse attacks

(e.g., ROP) can still exploit the executable gadgets of blocked

profiles and newly introduced mechanisms.

Besides, blocking the code path cannot prevent attacks

that jump to an existing function to perform their malicious

operations (e.g., control flow hijacking attacks). Therefore,

we implemented LIGHTBLUE so that it not only blocks the

code path (i.e., disabling interfaces of unneeded profiles) but

also reduces the attack surface of the executable by removing

the unneeded code from the host code and the firmware (when

a suitable firmware patching method is available).

Extending LIGHTBLUE to other protocol stacks. Theoret-

ically, LIGHTBLUE is applicable to other stacks if they have a

similar structure to the Bluetooth stack. The host code analy-

sis can be applied to debloat such stacks if they have multiple

functionalities exposed to the upper application layer via pre-

defined interfaces (as discussed in Section 5.2).

For example, we envision extending LIGHTBLUE to sup-

port devices using the Near-Field Communication (NFC) pro-

tocol. The NFC protocol implements multiple functionalities,

such as card emulation and peer-to-peer communication, but

normally not all of them are used. In this case, the host code

analysis could be applied to the NFC host code debloating the

unused functionality (e.g., card emulation). The firmware anal-

ysis can also be applied to other stacks if the interface between

the host code and the firmware is well defined. For instance,

the firmware analysis can be applied to NFC firmware based

on the well-defined NFC Controller Interface (NCI) [28] be-

tween the host and the controller. Similarly, LIGHTBLUE

could be potentially applicable to Wi-Fi and 2/3/4/5G on An-

droid, exploiting the separation between the host code and the

firmware, i.e., Wi-Fi Hardware Abstraction Layer and Radio

Interface Layer.

Extending profile identification. As mentioned in Section 6,

LIGHTBLUE identifies the needed profile of Android apps

by static analysis. The analysis fails when the application’s

Bluetooth profile usage cannot be determined statically, or

obfuscation techniques are present. Moreover, LIGHTBLUE

currently does not support profile identification other than on

Android apps. We note that, however, profile identification

implemented on Android is primarily to show that Bluetooth

debloating is feasible because most Android apps only use

a limited set of Bluetooth functionality. We plan to support

automated profile identification of other types of apps in the

future. We highlight that the user can always input the profiles

instead of automatically identifying when the user is aware

of the needed profiles.

Debloated stack testing coverage. We test the correctness

of the debloated Bluetooth stack by checking whether the

kept profile still works after debloating, as discussed in Sec-

tion 7.2. We did not exhaustively test (e.g., fuzzing) the whole

debloated Bluetooth stack for a long time. As future work,

we could implement automated testing (e.g., fuzzing) of the

debloated code, but fuzzing the entire Bluetooth stack is out

of scope for this paper.

Usability. The primary users we designed LIGHTBLUE for

are not general users (e.g., consumers) in its current imple-

mentation, since it requires actions such as rooting a phone

to install the modified host code and firmware. In addition,

usability of LIGHTBLUE might be limited in dynamic usage

scenarios, in which the user frequently changes the needed

functionality, since it requires reloading the host code fre-

quently. Furthermore, the debloating of the firmware might

not be possible if the Bluetooth controller vendors prevent

firmware modifications (e.g., employing firmware integrity

verification mechanisms). In summary, LIGHTBLUE is ide-

ally suited for devices that serve a specific purpose and require

a specific subset of the Bluetooth functionality, such as the

use cases discussed in Section 3 or Bluetooth-enabled IoT

devices (e.g., IoT devices using BlueKitchen).

10 Related Work

Program debloating. Programs can be debloated at the bi-

nary level and the source code level. The following works

discuss the debloating of binaries. Qian et al. [29] introduced a

debloating framework for deployed binaries based on dynamic

tracing. Heo et al. [23] built a framework to debloat programs

based on reinforcement learning. Redini et al. [32] presented

a debloating tool based on a new abstract domain. Debloating

with source code was discussed by Quach et al. [30], who built

a framework to remove the unneeded code, operating both

at compile and load time. However, that framework needs a

specific loader to load the binary. The works closest to ours

are TRIMMER [36] and [25]. Both works only debloat single-

entry programs and require knowing the inputs received by

the program. However, the Bluetooth host code has multiple

entries and does not take input directly. In addition, the listed

prior works cannot debloat program code across different

layers (the host code and the firmware).

Firmware analysis. We now discuss recent works that focus

on firmware analysis both dynamically and statically. For

dynamic analysis, Feng et al. [19] built a test framework to

execute and fuzz the firmware by abstracting the diverse pe-

ripherals and handling I/O operations on the fly. Avatar [47]

introduced a framework combining emulation and real device

to execute the firmware by forwarding peripheral accesses

to the real device. Mantz et al. [26] build a patching and

testing framework specifically for Broadcom Bluetooth chip.

Examples for static analysis approaches are FIE [13] and Fir-

mUSB [24], which applied symbolic execution to firmware

analysis on MSP430 family firmware and USB firmware. Fir-

mXRay [43] analyzed the configurations of the firmware on

bare-metal BLE devices to detect link layer vulnerabilities.

All these works focus on finding vulnerabilities, but none of

them aims at reducing the attack surface of the firmware.

Bluetooth stack security. Antonioli et al. [2, 4] discovered

a vulnerability in Bluetooth key length negotiation so that

the key length can be one byte, therefore, encrypted data can

be easily decrypted. Sivakumaran et al. [38] and Naveed et

al. [27] revealed the "mis-bonding" problem between the ap-

plication on the smartphone and the Bluetooth device leading

to unauthorized access of the Bluetooth device. Xu et al. [46]

showed how to attack a smartphone by replacing the user-

expected profile with another one on after pairing. BIAS [3]

can bypass the authentication and impersonate a paired be-

nign Bluetooth device. BLESA [45] allows the attacker to

inject malicious data into a smartphone when it reconnects

to a previously paired BLE device. Tschirschnitz et al. [42]

revealed the vulnerability during pairing, which allows the

attacker to launch MITM attacks by confusing the user with

two pairing methods. Ruge et al. [34] and Heinze et al. [22]

proposed frameworks to fuzz the Bluetooth stack implemen-

tations. BLE-guardian [18] built a framework to protect the

privacy of users of BLE devices by jamming the advertising

channel. BlueShield [44] proposed a monitoring framework

to detect spoofed BLE advertising messages. LBM [41] pro-

tects the Bluetooth host code by building a firewall in Linux

kernel. All these works made Bluetooth safer by either dis-

covering new vulnerabilities or providing different defense

mechanisms, but none of them achieved the same goal by

reducing the attack surface.

11 Conclusion

In this paper, we presented LIGHTBLUE, a novel framework

for automatic Bluetooth stack debloating. LIGHTBLUE trans-

forms the multi-entry, callback-driven, host code into a single-

entry program. Then, a profile-aware, data-flow-based anal-

ysis is used to decouple profile-specific code chunks and

identify chunks to be debloated. This analysis also yields

unneeded HCI commands and link interfaces that are used

for firmware debloating. At last, LIGHTBLUE debloats the

firmware by removing the unused command handlers and link

interfaces via firmware patching. In our evaluation with 4

different pieces of host code and 3 pieces of firmware, we

demonstrated that LIGHTBLUE successfully removed 26 vul-

nerable functions, mitigating attacks from 20 CVEs.

Acknowledgments

We thank the reviewers for their valuable comments and sug-

gestions. This project was supported in part by ONR under

grants N00014-18-1-2674 and N00014-17-1-2513, NSF un-

der grant CNS-1801601, and the European Research Council

under the European Union’s Horizon 2020 research and inno-

vation program (grant agreement No. 850868). Any opinions,

findings, and conclusions or recommendations expressed in

this paper are those of the authors and do not necessarily

reflect the views of our sponsors.

References

[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. AndroZoo: Collecting Millions of

Android Apps for the Research Community. In Proceed-

ings of the International Conference on Mining Software

Repositories (MSR), 2016.

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper

Rasmussen. The KNOB is Broken: Exploiting Low

Entropy in the Encryption Key Negotiation Of Blue-

tooth BR/EDR. In Proceedings of the USENIX Security

Symposium (USENIX Security), 2019.

[3] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper

Rasmussen. BIAS: Bluetooth Impersonation AttackS.

In Proceedings of the IEEE Symposium on Security and

Privacy (S&P), 2020.

[4] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper

Rasmussen. Key Negotiation Downgrade Attacks on

Bluetooth and Bluetooth Low Energy. ACM Transac-

tions on Privacy and Security, 23(3), 2020.

[5] Armis. BlueBorne Technical White Paper. https:

//go.armis.com/blueborne-technical-paper. Ac-

cessed: January 29, 2020.

[6] Bluetooth Special Interest Group. 2019 Bluetooth

Market Update. https://www.bluetooth.com/

bluetooth-resources/2019-bluetooth-market-

update/, 2019. Accessed: August 1, 2019.

[7] Bluetooth Special Interest Group. Advanced Audio

Distribution v1.3.2. https://www.bluetooth.org/

docman/handlers/downloaddoc.ashx?doc_id=

457083, 2019. Accessed: January 17, 2020.

[8] Bluetooth Special Interest Group. Bluetooth Core Spec-

ifications 5.2, 2019.

[9] Broadcom. BCM4339 data sheet. https:

//www.mouser.com/datasheet/2/100/Radio%

20with%20Integrated%20Bluetooth%204.1%

20and%20FM%20Receive-961626.pdf. Accessed:

January 18, 2020.

[10] Zephyr Project Community. Zephyr Project. https:

//www.zephyrproject.org/. Accessed: February 3,

2020.

[11] BlueZ contributers. BlueZ. http://www.bluez.org/,

2019. Accessed: August 1, 2019.

[12] Cypress. CYW920735Q60EVB-01 Evaluation

Kit. https://www.cypress.com/documentation/

development-kitsboards/cyw920735q60evb-01-

evaluation-kit. Accessed: August 1, 2019.

[13] Drew Davidson, Benjamin Moench, Thomas Ristenpart,

and Somesh Jha. FIE on Firmware: Finding Vulnera-

bilities in Embedded Systems Using Symbolic Execu-

tion. In Proceedings of the USENIX Security Symposium

(USENIX Security), 2013.

[14] D-bus. https://www.freedesktop.org/wiki/

Software/dbus/. Accessed: January 18, 2020.

[15] Android Developers. Bluedride Bluetooth stack.

https://android.googlesource.com/platform/

external/bluetooth/bluedroid/, 2015. Accessed:

August 1, 2019.

[16] Android Developers. Fluo-

ride Bluetooth stack. https://

android.googlesource.com/platform/system/bt/

+/181144a50114c824cfe3cdfd695c11a074673a5e/

README.md, 2019. Accessed: August 1, 2019.

[17] die.net. sdptool(1) - Linux man page. https://

linux.die.net/man/1/sdptool. Accessed: August 1,

2020.

[18] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-

tecting Privacy of BLE Device Users. In Proceeings of

the USENIX Security Symposium (USENIX Security),

2016.

[19] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable

and Hardware-independent Firmware Testing via Auto-

matic Peripheral Interface Modeling. In Proceedings

of the USENIX Security Symposium (USENIX Security),

2020.

[20] BlueKitchen GmbH. BlueKitchen BTSTACK. https:

//bluekitchen-gmbh.com/. Accessed: February 3,

2020.

[21] Google. BluetoothProfile. https://

developer.android.com/reference/android/

bluetooth/BluetoothProfile. Accessed: February

11, 2020.

[22] Dennis Heinze, Jiska Classen, and Matthias Hollick.

ToothPicker: Apple Picking in the iOS Bluetooth Stack.

In Proceedings of the USENIX Workshop on Offensive

Technologies (WOOT), 2020.

[23] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and

Mayur Naik. Effective Program Debloating via Rein-

forcement Learning. In Proceedings of the ACM Confer-

ence on Computer and Communications Security (CCS),

2018.

[24] Grant Hernandez, Farhaan Fowze, Dave Jing Tian, Tuba

Yavuz, and Kevin RB Butler. FirmUSB: Vetting USB

Device Firmware using Domain Informed Symbolic

Execution. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS), 2017.

[25] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis

Polychronakis. Configuration-Driven Software Debloat-

ing. In Proceedings of the European Workshop on Sys-

tems Security (EuroSec), 2019.

[26] Dennis Mantz, Jiska Classen, Matthias Schulz, and

Matthias Hollick. InternalBlue - Bluetooth Binary Patch-

ing and Experimentation Framework. In Proceedings of

the International Conference on Mobile Systems, Appli-

cations, and Services (MobiSys), 2019.

[27] Muhammad Naveed, Xiao-yong Zhou, Soteris

Demetriou, XiaoFeng Wang, and Carl A Gunter.

Inside Job: Understanding and Mitigating the Threat

of External Device Mis-Binding on Android. In

Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2014.

[28] NFC Forum. New NFC Controller Interface Specifica-

tion Makes It Easier to Deliver a Broad Range of NFC

Devices and Solutions. https://nfc-forum.org/

https://go.armis.com/blueborne-technical-paper
https://go.armis.com/blueborne-technical-paper
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
 https://www.mouser.com/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%204.1%20and%20FM%20Receive-961626.pdf
https://www.zephyrproject.org/
https://www.zephyrproject.org/
http://www.bluez.org/
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920735q60evb-01-evaluation-kit
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/dbus/
https://android.googlesource.com/platform/external/bluetooth/bluedroid/
https://android.googlesource.com/platform/external/bluetooth/bluedroid/
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
 https://android.googlesource.com/platform/system/bt/+/181144a50114c824cfe3cdfd695c11a074673a5e/README.md
https://linux.die.net/man/1/sdptool
https://linux.die.net/man/1/sdptool
https://bluekitchen-gmbh.com/
https://bluekitchen-gmbh.com/
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
https://developer.android.com/reference/android/bluetooth/BluetoothProfile
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/

new-nfc-controller-interface-specification-

makes-it-easier-to-deliver-a-broad-range-

of-nfc-devices-and-solutions/, 2012. Accessed:

August 1, 2020.

[29] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho

Chung, Taesoo Kim, and Wenke Lee. RAZOR: A Frame-

work for Post-deployment Software Debloating. In Pro-

ceedings of the USENIX Security Symposium (USENIX

Security), 2019.

[30] Anh Quach, Aravind Prakash, and Lok Yan. Debloating

Software through Piece-Wise Compilation and Load-

ing. In Proceedings of the USENIX Security Symposium

(USENIX Security), 2018.

[31] David A Ramos and Dawson Engler. Under-Constrained

Symbolic Execution: Correctness Checking for Real

Code. In Proceedings of the USENIX Security Sympo-

sium (USENIX Security), 2015.

[32] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan

Shoshitaishvili, Giovanni Vigna, and Christopher

Kruegel. BinTrimmer: Towards Static Binary Debloat-

ing Through Abstract Interpretation. In Proceedings of

the Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment (DIMVA), 2019.

[33] RPi-Distro. Bluetooth firmware. https://

github.com/RPi-Distro/bluez-firmware. Ac-

cessed: August 1, 2020.

[34] Jan Ruge, Jiska Classen, Francesco Gringoli, and

Matthias Hollick. Frankenstein: Advanced Wireless

Fuzzing to Exploit New Bluetooth Escalation Targets.

In Proceedings of the USENIX Security Symposium

(USENIX Security), 2020.

[35] Mike Ryan. Bluetooth: With Low Energy Comes Low

Security. In Proceedings of the USENIX Workshop on

Offensive Technologies (WOOT), 2013.

[36] Hashim Sharif, Muhammad Abubakar, Ashish Gehani,

and Fareed Zaffar. TRIMMER: Application Special-

ization for Code Debloating. In Proceedings of the

ACM/IEEE International Conference on Automated Soft-

ware Engineering (ASE), 2018.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Audrey Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, and Giovanni Vigna. SoK: (State of) The Art

of War: Offensive Techniques in Binary Analysis. In

Proceedings of the IEEE Symposium on Security and

Privacy (S&P), 2016.

[38] Pallavi Sivakumaran and Jorge Blasco. A Study of the

Feasibility of Co-located App Attacks against BLE and a

Large-Scale Analysis of the Current Application-Layer

Security Landscape. In Proceedings of the USENIX

Security Symposium (USENIX Security), 2019.

[39] Inc Square. Square Point of Sale - POS. https:

//play.google.com/store/apps/details?id=

com.squareup&hl=en_US, 2020. Accessed: August 1,

2020.

[40] Inc Square. Square Reader for contactless and chip.

https://squareup.com/shop/hardware/us/en/

products/chip-credit-card-reader-with-nfc,

2020. Accessed: August 1, 2020.

[41] Dave Jing Tian, Grant Hernandez, Joseph I. Choi,

Vanessa Frost, Peter C. Johnson, and Kevin R. B. Butler.

LBM: A Security Framework for Peripherals within the

Linux Kernel. In Proceedings of the IEEE Symposium

on Security and Privacy (S&P), 2019.

[42] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian

Franzen, and Jens Grossklags. Method confusion attack

on bluetooth pairing. In Proceedings of the IEEE Sym-

posium on Security and Privacy (S&P), 2021.

[43] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Fir-

mXRay: Detecting Bluetooth Link Layer Vulnerabilities

from Bare-Metal Firmware. In Proceedings of the ACM

Conference on Computer and Communications Security

(CCS), 2020.

[44] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Math-

ias Payer, and Dongyan Xu. BlueShield: Detecting

Spoofing Attacks in Bluetooth Low Energy (BLE) Net-

works. In Proceedings of the International Symposium

on Research in Attacks, Intrusions and Defenses (RAID),

2020.

[45] Jianliang Wu, Yuhong Nan, Vireshwar Kumar,

Dave (Jing) Tian, Antonio Bianchi, Mathias Payer, and

Dongyan Xu. BLESA: Spoofing Attacks against Re-

connections in Bluetooth Low Energy. In Proceedings

of the USENIX Workshop on Offensive Technologies

(WOOT), 2020.

[46] Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and

Kehuan Zhang. BadBluetooth: Breaking Android Secu-

rity Mechanisms via Malicious Bluetooth Peripherals.

In Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2019.

[47] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and

Davide Balzarotti. AVATAR: A Framework to Sup-

port Dynamic Security Analysis of Embedded Systems’

Firmwares. In Proceedings of the Network and Dis-

tributed System Security Symposium (NDSS), 2014.

 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
 https://nfc-forum.org/new-nfc-controller-interface-specification-makes-it-easier-to-deliver-a-broad-range-of-nfc-devices-and-solutions/
https://github.com/RPi-Distro/bluez-firmware
https://github.com/RPi-Distro/bluez-firmware
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://play.google.com/store/apps/details?id=com.squareup&hl=en_US
https://squareup.com/shop/hardware/us/en/products/chip-credit-card-reader-with-nfc
https://squareup.com/shop/hardware/us/en/products/chip-credit-card-reader-with-nfc

A Appendix

Prevalence of each profile in tested Android apps.

Table 6 shows the number of Android apps in our dataset

that use a specific profile.

Table 6: The prevalence of each profile in tested Android

apps.
Profile Used by # of Apps

A2DP

(AVRCP)
182

HFP 192

PAN 2

HID 2

HDP 22

GATT 223

SAP 0

SPP 0

PBAP 2

Bluetooth profiles and corresponding functionalities.

Table 7 describes the functionality enabled by the different

Bluetooth profiles.

Links and their interfaces.

Table 8 shows the mapping between links and their inter-

faces, as described by the Bluetooth specification.

Table 7: Profiles and corresponding functionalities.
Profile Functionality

A2DP

(AVRCP)

Advanced Audio Distribution Profile (A2DP) defines how one

device streams audio to another one via Bluetooth. Audio/Video

Remote Control Profile (AVRCP) provides functionality for one

device to control the audio and video playing on another device

through Bluetooth.

HFP Hands-Free Profile (HFP) allows the car or headset to communicate

with the mobile phone via Bluetooth so that the car or headset can

make/answer phone calls or stream audio from the phone.

PAN Personal Area Networking (PAN) Profile describes how to set up

an ad-hoc network between different devices via Bluetooth and

how to use it to access a remote network through a network access

point.

HID Human Interface Device (HID) Profile defines the procedures to

be used by Bluetooth HID hosts (e.g., smartphones and laptops)

to get input from and send output to Bluetooth HID devices (e.g.,

keyboards and mice).

HDP Health Device Profile (HDP) allows communication between Blue-

tooth healthcare data source devices (e.g., blood pressure monitors

and glucose meters) and data sink devices (e.g., smartphones).

GATT Generic Attribute (GATT) Profile is designed to be used by an

application or another profile so that a client can communicate with

a server. Most BLE devices use this profile to communicate with

smartphones.

SAP SIM Access Profile (SAP) allows devices such as car phones with

built-in GSM transceivers to connect to a SIM card in a Bluetooth

enabled phone.

SPP Serial Port Profile (SPP) allows Bluetooth enabled devices to emu-

late serial cable transmission via Bluetooth.

PBAP Phone Book Access Profile (PBAP) provides the functionality to

exchange phone books between Bluetooth enabled devices.

Table 8: Mapping of links and their interfaces.
Link Type Link Interfaces

Asynchronous Connec-

tion Oriented (ACL), BT

Classic

HCI_Create_Connection, HCI_Disconnect,

HCI_Create_Connection_Cancel,

HCI_Accept_Connection_Request,

HCI_Reject_Connection_Request

Synchronous Connection

Oriented (SCO) & Ex-

tended Synchronous Con-

nection Oriented (eSCO),

BT Classic

HCI_Setup_Synchronous_Connection,

HCI_Accept_Synchronous_Connection_Request,

HCI_Reject_Synchronous_Connection_Request,

HCI_Enhanced_Setup_Synchronous_Connection,

HCI_Enhanced_Accept_Synchronous_Connection_Request

LE Asynchronous Con-

nection (LE ACL), BLE

HCI_LE_Create_Connection,

HCI_LE_Create_Connection_Cancel,

HCI_LE_Extended_Create_Connection

LE Advertising Broad-

cast (ADVB), BLE

HCI_LE_Set_Advertising_Enable,

HCI_LE_Set_Scan_Enable,

HCI_LE_Set_Extended_Advertising_Enable,

HCI_LE_Set_Extended_Scan_Enable

LE Periodic Advertis-

ing Broadcast (PADVB),

BLE

HCI_LE_Set_Periodic_Advertising_Enable,

HCI_LE_Periodic_Advertising_Create_Sync,

HCI_LE_Periodic_Advertising_Create_Sync_Cancel,

HCI_LE_Periodic_Advertising_Terminate_Sync

Connected Isochronous

Stream (CIS), BLE

HCI_LE_Create_CIS,

HCI_LE_Accept_CIS_Request,

HCI_LE_Reject_CIS_Request

Broadcast Isochronous

Stream (BIS), BLE

HCI_LE_BIG_Create_Sync,

HCI_LE_BIG_Terminate_Sync

	Introduction
	Background
	Bluetooth Host
	Host Controller Interface (HCI)
	Bluetooth Controller

	Threat Model and Motivation
	Debloating Challenges and Solutions
	System Design
	Profile Identification
	Host Code Analysis
	HCI Command Extraction
	Firmware Analysis and Patching
	HCI Command Dispatcher Identification
	HCI Command Handler Identification
	Link Interface Identification
	Firmware Patching

	Implementation
	Evaluation
	Profile Identification of Android Apps
	Correctness of Debloating
	Attack Surface Reduction
	Bluetooth Host Code
	Bluetooth Firmware

	Preventing Known Bluetooth Vulnerabilities
	Accuracy of HCI Command Handler Identification in Firmware

	Case Study
	Removal of BlueBorne CVEs
	Defence Against BadBluetooth Attacks

	Discussion and Limitation
	Related Work
	Conclusion
	Appendix

