Code Specialization through Dynamic Feature Observation

Priyam Biswas Nathan Burow Mathias Payer
biswas12@purdue.edu nburow@purdue.edu mathias.payer@nebelwelt.net
Purdue University Purdue University EPFL
ABSTRACT its code base has grown substantially over the last 35 years (from

Modernsoftware (both programs andlibraries) provideslarge amounts
of functionality, vastly exceeding what is needed for a single given
task. This additional functionality results in an increased attack sur-
face: first, an attacker can use bugs in the unnecessary functionality
to compromise the software, and second, defenses such as control-
flow integrity (CFI) rely on conservative analyses that gradually lose
precision with growing code size.

Removing unnecessary functionality is challenging as the de-
bloating mechanism must remove as much code as possible, while
keeping code required for the program to function. Unfortunately,
most software does not come with a formal description of the func-
tionality that it provides, or even a mapping between functionality
and code. We therefore require a mechanism that—given a set of
representable inputs and configuration parameters—automatically
infers the underlying functionality, and discovers all reachable code
corresponding to this functionality.

We propose Ancile, a code specialization technique that leverages
fuzzing (based on user provided seeds) to discover the code necessary
to perform the functionality required by the user. From this, we re-
move all unnecessary code and tailor indirect control-flow transfers
to the minimum necessary for each location, vastly reducing the
attack surface. We evaluate Ancile using real-world software known
to have a large attack surface, including image libraries and network
daemons like nginx. For example, our evaluation shows that Ancile
can remove up to 93.66% of indirect call transfer targets and up to
78% of functions in libtiff’s tiffcrop utility, while still maintaining its
original functionality.

ACM Reference Format:

Priyam Biswas, Nathan Burow, and Mathias Payer. 2021. Code Specialization
through Dynamic Feature Observation. In Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy (CODASPY °21), April
26-28, 2021, Virtual Event, USA. ACM, USA, 12 pages. https://doi.org/10.1145/
3422337.3447844

1 INTRODUCTION

Similar to the second law of thermodynamics, (software) complex-
ity continuously increases. Given new applications, libraries grow
to include additional functionality. Both applications and libraries
become more complex based on user demand for additional function-
ality. The Linux kernel is an important example of this phenomenon:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY 21, April 26-28, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8143-7/21/04...$15.00
https://doi.org/10.1145/3422337.3447844

176K LoC to 27.8M LoC [10, 11]). Yet, given a single task, only a
small subset of a program (or library) is required to be executed
at runtime. This increase in code size can also be seen in network
facing applications such as nginx or tcpdump, which deal with, e.g.,
IPv4, IPv6, or proxy settings, as well as image processing libraries,
which face increasingly complex file formats as standards expand to
support more features. This feature bloat results in a massive amount
of unneeded complexity and an ever-growing attack surface. Ideally,
applications would be customized with the minimal set of features
required by the user, and only the minimum amount of code inlined
from imported libraries.

Software complexity results in a flurry of challenges rooted in
security, performance, and compatibility concerns. In our opinion,
security is the most pressing of these challenges as security flaws can
lead to potentially irreversible losses from adversarial exploitation.
While functionality may not be required for a given task, adversaries
may still find ways to exercise it, increasing the attack surface of
a program [12, 19, 32, 33]. Additionally, the precision of popular
mitigations such as control-flow integrity (CFI) degrades when more
code is introduced. Deployed CFI mechanisms [5] leverage function
prototypes to disambiguate the target sets of valid targets. Additional
complexity increases the probability that functions with the same
signature pollute the same target set.

Removing unnecessary functionality is extremely challenging, as
the majority of programs and libraries do not come with a formal
description of their functionality. Even worse, there is no clear map-
ping between functionality (i.e., an exposed API) and the underlying
code. Reducing the attack surface and removing unnecessary code
requires a mechanism to infer this functionality to code mapping
based on an informal description of the necessary functionality.

Debloating removes unnecessary code at various levels of gran-
ularity [14, 29, 40, 41, 43]. Removing dead code reduces the number
of gadgets and (potentially buggy) unreachable functionality. Due to
the lack of formal descriptions of functionality, these approaches all
remain conservative and must include potentially unneeded func-
tionality. Unfortunately, debloated code may still contain vulnera-
bilities and sufficient targets for an attacker [16].

Our core idea is to enable the user to select the minimum required
functionality (by providing a set of example seeds), thus establish-
ing an informal description of functionalities in a program. While
this approach was previously used to reverse engineer and extract
functional components [37], we are the first to leverage user help to
specialize complex software. The user provides a set of inputs that ex-
ercise the required functionality and a configuration of the software
(as part of the environment). Our approach, Ancile, then special-
izes the program in three steps. First, Ancile infers the required
functionality and code through seed demonstrated fuzzing (fuzzing
based on user-provided seeds that exercise the desired functionality).
Second, Ancile removes all unnecessary code in a compilation pass.

https://doi.org/10.1145/3422337.3447844
https://doi.org/10.1145/3422337.3447844
https://doi.org/10.1145/3422337.3447844

Third, Ancile computes minimal CFI target sets (based on individual
indirect call locations instead of over-approximation on function
prototypes) to enforce strong security properties. The third step is
essential as a sufficient number of gadgets may remain in the code
even after debloating to enable arbitrary code reuse attacks. By gen-
erating per-control-flow transfer location target sets, we minimize
the reachable locations and increase the precision of fine-grained
CFI to a per-location basis, the highest possible precision for a static
CFI approach. Type-based CFI (the current standard) uses one target
set per function type, i.e., all indirect call locations with the same call
signature allow the same set of targets. Ancile specializes this set for
each indirect call location to only targets that are observed during
the analysis phase, strictly increasing the precision. Improving pre-
cision via specialization comes with the challenges of introducing
false positives and false negatives, we discuss those Section 3.

Note that, we propose fuzzing not primarily as a bug finding tool
(although Ancile may discover bugs during focused fuzzing that
can be reported to the developer) but as a tool for analyzing exer-
cised code. Coverage-guided greybox fuzzing uses code coverage
as a feedback to map code to inputs. We use this insight to discover
the exercised functionality and to map the corresponding code to
user-selected inputs. The contributions of our approach are below:

o We design a code specialization technique that repurposes
fuzzing to reduce a program to the minimal amount of code
required for a given functionality. Our technique not only
removes unnecessary code, but also specializes control-flow
checks by creating a reduced target set.

e We present a comprehensive analysis of Ancile on real-world
applications to show the effectiveness of fuzzing as a way to
generate precise path information.

2 BACKGROUND

We provide a brief introduction of debloating and CFI, both of which
seek to minimize the attack surface of applications. We also describe
fuzzing and sanitization as these concepts are integral to our ap-
proach.

2.1 Attack Surface Debloating

As software has expanded its functionality to serve more users, the
size and complexity of libraries and applications has grown dramat-
ically over time, resulting in software bloat. For example, a recent
study showed that most applications only use 5% of libc [41]. Code
bloat imposes a cost: increased attack surface for adversaries. Soft-
ware debloating is a technique that helps prune the program’s attack
surface by removing extraneous code. Several approaches have been
proposed such as debloating via reinforcement learning [29] or trim-
ming unused methods [35]. However, trimming unused or rarely
used features cannot alone prevent Control-Flow Hijacking (CFH).
By manipulating remaining indirect call sites, an attacker can still
launch code-reuse attacks.

Code debloating improves security along two dimensions: code-
reuse reduction and bug reduction. First, code debloating reduces
the amount of available code, making it harder for an attacker to
find gadgets for a code-reuse attack. Second, feature based code de-
bloating approaches reduce attack surface by removing potentially
reachable buggy functionality, making it harder for the attacker

to find an exploitable bug. Unfortunately, security effectiveness of
existing code debloating is inherently limited by the amount of code
that remains. Any functionality in the program requires code, and
even tiny programs [30] provide enough code for full code-reuse
attacks. While code debloating may be effective in removing some
reachable bugs, it is not effective in stopping code-reuse attacks as
any remaining code will be sufficient for such attacks.

2.2 Control-Flow Integrity

Another prominent mechanism for reducing attack surface is Control-
Flow Integrity (CFI), the state-of-the-art policy for preventing code-
reuse attacks in C and C++ programs. Its key insight is that to per-
form a control-flow hijacking attack, attackers must modify the code
pointer used for an indirect control-flow transfer (direct control-flow
transfers are protected as the target is encoded in read-only code).
CFIbuilds, at compile time, a set of legitimate targets for each indirect
and virtual call, and, at runtime, validates that the observed target
is in the allowed set. By verifying the target, CFI prevents the use
of any corrupted code pointer.

In contrast to debloating which restricts attack surface by remov-
ing unneeded code, CFI does so by allowing only valid targets for
each indirect control-flow transfer. In other words, CFI removes ex-
traneous targets from indirect branches. Code debloating by itself, i.e.,
without CFI, may remove large amounts of executable code but the
remaining code could still be used for arbitrary code reuse attacks.
An adversary only needs a single usable target but a defense must
prohibit all reachable targets to be effective. Partial target reduction
through debloating is insufficient to stop an attack.

State-of-the-art CFI mechanisms [17] focus on a conservative
static analysis for building target sets, including more targets than
just the valid ones. While this approach has no false positives, it
over-approximates the targets. It is also possible to use dynamic
analysis to construct the target sets, potentially introducing false
positives, but greatly improving the precision of the analysis. Here,
we discuss both analysis techniques and their trade-offs.

Static Analysis-Based CFI. Static analysis-based CFI mechanisms
compute the allowed target sets at compile time. The analysis dis-
covers the set of functions that the programmer intends to target ata
given indirect call site. In compiler terms, the analysis is looking for
every reaching definition of the function pointer used at the indirect
call site. Implementations of the analysis quickly run into the alias
analysis problem, and so have to fall back to more tractable, albeit
over-approximate, techniques. Early mechanisms reverted to allow-
ing any address taken function [13] to be targeted at any indirect call
site. Subsequent mechanisms improved this to any function with
a matching prototype [52]. Recent work has even looked at using
a context-sensitive and flow-sensitive analysis to further limit the
target sets [25, 26]. While such works increase the precision of the
analysis, aliasing prevents achieving full sensitivity.

Dynamic CFL. Compared to static CFI, dynamic CFI mechanisms
modify the target sets of the control-flow transfers during the exe-
cution of the program. Dynamic CFI is generally more precise than
static CFl as it starts off with a static target sets but then uses runtime
information to further constrain the target sets.

Several works have leveraged hardware support to restrict the tar-
get sets during runtime. 7CFI [38] begins with an empty control-flow

graph and activates control transfers as required by specific inputs.
However, this approach does not execute any address deactivation
which may degenerate to the full static control-flow graph (CFG).
PathArmor [53] takes advantage of hardware support, specifically
the 16 Last Branch Record (LBR) registers to effectively monitor
per-thread control-flow transfers. It limits the verification process to
only security critical functions, and verifies the path to these critical
functions by using a path cache. PittyPat [21] improves on this by
collecting runtime traces via Intel PT, and verifies them in a separate
process, halting execution at system calls to synchronize with the
verification process. While it is precise (assuming the entire execu-
tion is traced), PittyPat consumes significant additional resources,
e.g., another core for the verification process. yCFI [31] improves
PittyPat by recording execution contexts using Intel PT, and observ-
ing unique code targets for each indirect control-flow transfer. As
PittyPat, it relies on a separate monitoring process.

CFI Security. CFI does not protect against data-only attacks. An
attacker that compromises the data of a process can bend execution
[19, 32, 33] to any allowed functionality and, if a path in the original
CFG exists, CFI will allow execution of that path. While CFI limits
code execution to legitimate targets under some execution of the
program, it does not remove unneeded functionality.

CFI prohibits rogue control flow to unintended locations while
code debloating removes unnecessary code. In combination, CFI
and code debloating can reduce the exposure of a program but are
limited by the remaining code as both approaches are conservative,
resulting in an over-approximation of the required functionality.

2.3 Fuzzing

Fuzzing [1] automatically generates test cases. Coverage-based fuzzers
such as American Fuzzy Lop (AFL) [2] create a new test case by mu-
tating interesting inputs that trigger new code paths. Their mutation
based strategy leads them to test many inputs that cover the same
code paths, causing them to explore the possible data-flows of the
application as well. Fuzzers operate from a seed input, mutating it
in their search for new code-paths while simultaneously exploring
data paths as a result of their search.

Ancile relies on extensive path coverage to generate comprehen-
sive target sets for indirect call-transfers of the selected functionality.
Guided fuzzing [6] facilitates finding new code paths from an indi-
rect call site. With the knowledge of deeper path information, target
discovery has become more efficient.

2.4 Sanitization

Sanitization is a dynamic testing technique that effectively detects
policy violations at runtime [50]. A sanitizer generally instruments
the program during compilation to enforce some security policy.
The instrumentation collects metadata about the program execution
and continuously checks if the underlying policy is violated.
AddressSanitizer (ASan) [34, 48] employs a specialized memory
allocator, and instruments memory accesses at compile time to detect
out-of-bounds accesses to heap, stack, and global objects, as well
as temporal bugs. ASan is a tripwire-based approach that creates
redzones, and checks each memory access to detect memory safety
violations. Fuzzing then triggers memory access bugs and ASan
detects them. Other well-known sanitizers are memory Sanitizer

(MSAN) [51] to detect accesses to uninitialized memory, Undefined-
BehaviorSanitizer (UBSan) [9] to catch various types of undefined be-
havior, or LowFat [22, 23] to detect out of bounds accesses efficiently.
As Ancile uses fuzzing for functionality inference, we must dis-
tinguish between correct functionality and potential bugs. To avoid
memory corruption bugs in our allowed functionality, we compile
target programs with ASan during the inference phase. Ancile en-
sures all the explored targets via fuzzing are indeed valid targets.

3 CHALLENGES AND TRADE-OFFS

Code specialization is a technique used to generate more efficient
code for a specific purpose from generic code [36]. The core issue
of code specialization is the prediction of effective code-behavior
in order to generate precise control-flows. Specializing an applica-
tion allows us to apply both attack surface reduction techniques at
once, by removing code unused by the deployment scenario, and
restricting targets to exactly the purposefully valid sets. However,
automatically specializing code to only support a user specified con-
figuration is challenging. Static analysis quickly degenerates to the
aliasing problem [42], and has difficulty determining if a function
is required for a particular functionality. Dynamic analysis is an
attractive alternative, however, it requires that all valid code and
data paths for a particular configuration are explored.

Dynamic analysis has been made practical by recent advances in
automatic testing, and in particular coverage-guided fuzzing [2, 6,
39, 44]. Given a minimal set of seeds that cover the desired behavior,
fuzzers are capable of quickly and effectively exploring sufficient
code and data paths through a program to observe the required indi-
rect control-flow transfers for a given configuration. CFI target sets
are then restricted to the observed targets for the desired functional-
ity of the application, e.g., an IPv4 deployment of nginx with no proxy.
Note that the dynamic analysis can occur offline, with only traditional
CFlIset checks, which incur minimal performance overhead, required
at run time. Ancile leverages fuzzing to correlate functionality with
code. Fuzzing’s code exploration serves as a mapping process from
functionalities to relevant code-regions. The coverage information
from fuzzing enables us to effectively specialize software by replac-
ing conservative analysis of valid cases with a more precise analysis
of what states are reachable in practice. The correctness of the spe-
cialization procedure depends on successfully mapping functionality
to functions. Ancile maps code at function level granularity. When
executing the program with the desired functionality, Ancile marks
and includes all executed functions and prunes functions that are
not exercised. Hence, mitigating challenges of partial code removal.

However, using fuzzing as a path exploration technique intro-
duces its own set of challenges: (i) generating a dynamic control-
flow graph (CFG) for user-selected functionality, (ii) projection of
dynamic CFG in functionality-based debloating, (iii) precision vs
soundness in CFI target analysis, and (iv) the risk of introducing false
positives/negatives due to inherent randomness in fuzzing. We now
discuss each of these challenges in turn and how we address them.

Challenge i. Generating a dynamic CFG. Given a program with a
set of functionalities f1,f2,f3,....fn and a user-specified functionality
fs < {f1.f2.f3,--.fn}, we must discover the code required by that
particular functionality, fs. For example, a user may only require
the tiffcrop functionality from the image library libtiff. To generate

a dynamic CFG for a given functionality, we need to explore all
required and valid control-flows exercised by that functionality
within the program. In the CFG, we need to include only the targets
originated from exercising the desired functionality and exclude any
potential targets that are not relevant. Hence, if a control-flow has a
target setS = f1,t9,3,...,tx and the CFG should have only the subset of
the target set S’ = t1, t3,... coming from the desired functionality. We
also have to ensure that S - S targets are not included in the dynamic
CFG. Ancile addresses this challenge by taking as input a set of seeds
and configuration demonstrating the required functionality (f5), and
then uses these to fuzz the application in order to retrieve the relevant
control flows and record the valid targets. For instance, if the desired
functionality of the application tcpdump is to read only pcap files, the
user needs to provide pcap files as seed. Ancile starts with an empty
CFG and adds edges in the dynamic CFG only if their execution is
observed in the set of valid executions of reading pcap files.

Challenge ii. Projection of dynamically generated CFG in functionality-
based debloating. To prune unneeded functionality, we need to map
the control-flow information into relevant code. In order to do so, we
guide fuzzing by carefully selecting inputs to explore the intended
functionality. Similar to Razor [40] and binary control-flow trim-
ming [28], Ancile utilizes test cases to trace execution paths. Ancile
also takes advantage of the power of coverage-guided fuzzing to
explore deeper code paths pertinent to the desired functionality. To
ensure that the fuzzed functionality has covered all possible paths,
we evaluate the targeted utility with a different set of test cases.
Ancile then removes any not-executed functions.

Challenge iii. Precision vs soundness. Ancile trades soundness for
precision when constructing CFI target sets. State-of-the-art CFI
mechanisms have focused on a conservative static analysis for build-
ing the CFG, resulting in a conservative over-approximation of indi-
rect control-flow targets. These CF mechanisms quickly run into the
alias analysis problem, and so must fall back to more tractable, albeit
over-approximate, techniques. Recent approaches have looked at
using context-sensitive and flow-sensitive analyses to further limit
the target sets [25, 26]. While such works increase the precision of
the analysis, aliasing prevents achieving full sensitivity.

It is also possible to use dynamic analysis to construct target sets,
potentially introducing false positives, but greatly improving the pre-
cision of the analysis. Several works [21, 38, 53] introduce hardware
requirements to restrict the target sets during runtime. Both static
and dynamic approaches inherently over-approximate as existing
CFI solutions are oblivious to a minimal, user-specified functionality.
Static analysis-based approaches leverage only information avail-
able during compilation, while dynamic analysis-based approaches
use runtime information to further constrain the target sets. Still,
existing dynamic mechanisms result in over-approximation in the
target set. Ancile extensively fuzzes the desired functionality to in-
fer the required control-flow transfers. Fuzzing’s efficiency comes
from its fundamental design decision: to embrace randomness and
practical results rather than theoretical soundness. Consequently,
fuzzing gives no guarantees about covering all possible code or data
paths, but covers them well in practice.

Challenge iv. False positives and false negatives. Our goal is to mini-
mize the number of targets for individual CFI checks. Ancile restricts
per-location CFI targets by combining per-function removal along
with CFI-based target removal.

An unintended function included in the target set is a false neg-
ative. This can happen in two scenarios, (i) a fuzzing campaign per-
forming invalid executions; and (ii) exploring traces outside of the
desired functionality. Ancile guarantees valid executions by using
Address Sanitizer (ASan) along with fuzzing. By selecting relevant
seeds, we prime fuzzing to only explore relevant code regions. For ex-
ample, when using a PNG as seed, we are much more likely to explore
PNG code features than to mutate the seed into a valid JPG image. To
improve the confidence in our discovered targets, we use two sepa-
rate fuzzers to cross check all discovered targets. We have tuned our
fuzzing campaign timeline and observed that neither increasing the
duration beyond 24 hours nor repeating the fuzzing campaign mul-
tiple times does discover more targets. We also performed manual
static analysis with 40 test cases to verify these results.

False positives occur if valid and intended targets are not included
in the generated set through lack of fuzzing coverage. Ancile starts
with the minimum set of seeds that exercise the intended functional-
ities, giving a lower-bound of targets. Next, fuzzing discovers targets
that were not previously included. Moreover, to increase confidence
in the discovered target set, we repeat each fuzzing campaign mul-
tiple times. We discuss false positives/negatives in Section 6.

4 ANCILE DESIGN

Based on the user-selected functionality (through provided seeds),
Ancile generates specialized binaries. The design of Ancile is moti-
vated by the need for precise control-flow information so that this
information can be used to debloat the target program, reducing
its exposed attack surface. The user informally specifies the desired
functionality by providing seed inputs that explore that function-
ality. Ancile operates in three distinct phases, as shown in Figure 1.
First, Ancile performs targeted fuzzing (using the seeds provided by
the user) to infer the CFG and to explore code associated with the
required functionality (including error paths). This step infers all
of the necessary information for the next two steps. Second, Ancile
removes any unnecessary code using a compiler pass, reducing the
program’s attack surface. Third, Ancile leverages the precise CFG
to customize CFI enforcement to the observed CFG. This customiza-
tion increases the precision of CFI to only observed targets. These
observations result in the following requirements:

Desired Functionality. Every application has its own set of fea-
tures. By desired functionality, we mean one or more features of the
application that the user intends to exercise. For example, in tcpdump,
the user may only want to exercise the feature that reads pcap files.

Seed Selection. The minimum number of inputs required to ex-
ercise the desired functionalities is selected. For example, to exercise
the feature of reading a pcap file, the user only needs to provide a
captured pcap file.

User Involvement. Ancile requires two sets of input from the
user, (i) necessary command line arguments to select the functional-
ity; and (ii) a minimum set of seeds that exercise this functionality. For
reading a pcap file, the user must provide (i) the -r command-line ar-
gument, and (ii) a pcap file as an input seed. Ancile results in low user
burden. The user only needs to specify input configurations for their
chosen functionality. The user does not have to carry out any form
of source code annotations or code changes and does not require any
knowledge of the source code. Applying Ancile is as easy as building

AN
-
CiC++

Source

& D
— Ancile - Debloater
[C/C++ Instrumentation

Source Instrumented

Phase ii: Debloating

* ‘ Debloated

N
Seed — Fuzzing | CFl Enforcement
Phase i: Dynamic CFG Generation

Hardened
Binary
Phase iii: CFl Enforcement

Figure 1: Ancile operates in three phases: (i) Dynamic CFG
Generation (record control flow), (ii) Debloating (remove
unnecessary functionality), and (iii) CFI Target Analysis.

a software package which any package maintainer or advanced user
can do. It is a one-time effort to generate the specialized application.
The key insight of Ancile is the functionality analysis. It is this
analysis which allows us to automatically specialize an application,
simultaneously removing extraneous features and shrinking the
attack surface by restricting the set of allowed indirect control-flow
transfers. Selection of the required functionality depends on the type
of application as well as user requirements. Ancile minimizes the
user burden for feature selection. For example, if a user wants to
read pcap files using tcpdump, she will configure Ancile to execute
tcpdump with the command line option -r, and a sample pcap file
as input. Ancile also takes advantage of existing unit test-suites that
comes with the application package to exercise functionality.

Ancile uses fuzzing to infer the code covered by an informally-
selected functionality. Input seeds are used to exercise the desired
functionality. Coverage-based fuzzing excels at finding code paths
from a given seed. For each target in our per CFI-location target sets,
fuzzing produces an execution that witnesses that specific target.
The challenge becomes ensuring that the set of executions used by
our functionality analysis fully covers the control and data flows of
the desired functionality. We show that fuzzing, in conjunction with
a small set of test cases that observe the desired functionality, can
be leveraged to generate a precise CFG.

Ancile then utilizes the dynamic CFG constructed in the dynamic
CFG generation phase as a mechanism for (i) debloat unnecessary
code and (ii) tighten CFI checks to restrict indirect control-flow to
a set of targets required by a given user specification. Ancile can
achieve the best possible precision with negligible runtime overhead,
i.e., set checks inserted at compile time. Therefore, we believe that
increased specialization is the way of the future for “prevent-the-
exploit” defenses.

4.1 Dynamic CFG Generation

Ancile requires the user to select the desired functionality of the pro-
gram by providing corresponding input. These input seeds can come
from, e.g., unit tests, examples, or be custom tailored by the user. For
example, the network sniffer tcpdump offers a variety of features,
from directly capturing network packets to processing recorded
traces. A user may want to only process recorded traces of a single
protocol. Building off this informal specification, Ancile performs
dynamic fuzzing that identifies (i) all the executed functions, and (ii)
the targets of indirect function calls. Any function that has not been
observed via direct or indirect calls during this phase is considered
extraneous and hence, is not included in the CFG. At this point, our

analysis is fully context and flow sensitive, as it directly depends on
actual executions.

After this analysis, the observed targets are aggregated over
each indirect call site. This aggregation results in a slight over-
approximation and aloss of full context and data sensitivity. However,
every target we allow is valid for some execution trace, which is a
significantly stronger guarantee than is provided by static analysis-
based CFI [17]. Static analysis-based target sets only guarantee that
every target may be required by an execution trace. Put another way,
our dynamic analysis recovers the programmer-intended target sets,
rather than an over-approximation thereof.

Ancile recompiles the application with not only the coverage
instrumentation for grey box fuzzing, but also to log the targets for
direct and indirect control-flow transfers. In particular, we cover
forward edges, leaving return edges for more precise solutions such
as a shadow stack [18]. Ancile rejects all executions that Address-
Sanitizer [46] flags as an error to ensure that all observed executions
are in fact valid.

Asfuzzing is incomplete, the core risk of this approach is that some
required functionality is not discovered and therefore unintention-
ally removed. Our analysis could potentially introduce false positives
(prohibiting valid indirect control-flow transfers). This is in direct
opposition to the conservative approach employed by static analysis,
which over-approximates and thus weakens security guarantees. In
contrast, Ancile only allows the targets for a particular functionality.

The increased security guarantees through this specialization pro-
vide a new avenue for the security community to explore. Our eval-
uation Section 6 shows that with the increasing power of automated
testing techniques such as fuzzing [2], robust test sets maintained
by many projects [7, 8], and a wealth of prior work on sanitizers [46]
to validate execution traces, Ancile did not cause false positives in
our observed test cases.

4.2 Debloating Mechanism

In automatic code specialization, unneeded code is discarded and the
debloated program contains only the required functionality. Given
the user’s functionality selection, the challenge of debloating comes
from mapping functionality to code regions. One possible approach
to address this challenge is to learn code regions through valid pro-
gram executions that exercise the desired functionality. In other
words, we require a set of inputs that exercises, at least minimally,
all desired functionality.

By taking advantage of the dynamic functionality observation
performed in the first phase of our analysis, Ancile discovers all
reachable and executable code. This code analysis can be considered
a simple marking phase that records all reachable code. Based on
the recorded execution traces, Ancile removes all unneeded code. As
a second compilation pass, with the marked code from the fuzzing
campaigns, we then tailor and remove all unnecessary code on a per
function basis. All functions that are unreachable are replaced with
a single empty stub. If this stub is reached, the program is terminated
with an error message.

Ancile debloats at function level granularity. Debloating at func-
tion level (compared to the more fine-grained basic block level)
ensures that each function includes all necessary code. A function
invocation during the analysis phase indicates that the function is

part of the user-selected functionality. While debloating at the basic
block level would be more precise, ensuring that the fuzzer executes
all possible paths through each function is currently an unsolved
open challenge, we therefore opted for function level granularity.
Hence, the correctness of Ancile’s debloating mechanism depends
on the exercise of only the required functions pertaining to the spec-
ified functionality. Seed demonstrated fuzzing along with proper
sanitization can ensure the execution of the necessary functions.

Ancile keeps only the functions that are observed during the anal-
ysis phase. Depending on the underlying platform and instruction
set, exceptions are implemented differently. On Linux/x86-64 excep-
tions are using the Itanium ABI and come with a zero cost abstraction
on top of DWARF4. We include the reachable exception handlers in
the final binary, as they can be triggered through DWARF4-based
exception handling.

4.3 CFITarget Analysis

Although, debloating restricts a program’s attack surface by remov-
ing unneeded code, it is still possible that vulnerabilities remain in
non-bloated code. To ensure tighter security in the specialized bi-
nary, Ancile removes extraneous targets from indirect control-flow
transfers in the remaining code.

The main goal of Ancile’s CFI target analysis is to achieve min-
imal target sets for indirect branches. It does so by only allowing
targets that are required for the specified functionality and actu-
ally observed at runtime. For each target, we ensure that there is at
least one dynamic witness, i.e., a valid execution trace that includes
the indirect call. Hence, Ancile solves the aliasing problem of static
analysis based approaches and increases precision.

Based on the inferred CFG that is tied to the actual execution of
the desired behavior, Ancile learns—for each indirect control-flow
transfer—the exact set of targets observed during execution. This set
is strictly smaller than the set of all functions with the same proto-
type. Once the target sets are created, we recompile the application
to a specialized form, which enforces the target sets derived from
our functionality analysis.

Since we focus on static CFI enforcement mechanisms, deciding
if a target is allowed depends purely on the information known at
compile time, regardless of how that information was obtained. For
example, if two paths in a program result in two different targets at
alocation then the most precise static mechanism will always allow
both targets (as it cannot distinguish the runtime path without track-
ing runtime information). In contrast, dynamic enforcement mecha-
nisms can modify the target sets depending on runtime information
(e.g., data-flow tracking). Unfortunately, dynamic mechanisms result
in additional runtime overhead (e.g., to update the target sets), in-
creased complexity (for ensuring that the target sets remain in sync),
and compatibility issues (e.g., the runtime metadata for the CFI mech-
anism must be protected against an adversary during the updates).
For as long as no hardware extension exists for protecting metadata
(e.g., to protect attacker-controlled arbitrary writes from the buggy
program), realistically deployable CFI mechanisms will remain static.

5 IMPLEMENTATION

Ancile is implemented on top of the LLVM compiler framework,
version 7.0.0. The LLVM-CFI framework has entered mass deploy-
ment [15, 20], and its set checks are highly optimized. Consequently,

building on top of LLVM-CFI guarantees that our enforcement
scheme is efficient, and ready for wide-spread adoption. As men-
tioned in the design, the Ancile implementation constitutes three
parts: (i) dynamic CFG generation, (ii) debloating and (ii) CFI en-
forcement, following the description in Section 4.

Dynamic CFG Generation. This functionality analysis phase is im-
plemented as a combination of an LLVM compiler pass and a runtime
library. Our instrumentation takes place right after the clang front-
end and modifies the LLVM IR code. Ancile is enabled by specifying
our new fsanitize=Ancile flag.

C/C++ source files are first passed to the clang front-end. The
compiler pass adds instrumentation to log all indirect calls and their
targets. At the IR level, Ancile adds a call to the logging function in
our runtime library before every indirect call. The logging function
takes two arguments: location of the indirect call in the source, as
well as the address of the targeted function. Additionally, the pass
logs all the address taken functions to facilitate the remapping of the
logged target addresses to corresponding functions. The runtime
library of Ancile generates a hash map to store target set information
per call site. To remove extraneous code, Ancile collects information
during profiling about function invocations via direct control-flow
transfers. This procedure follows the same mechanism described
above for indirect control-flow transfers. Hence, Ancile generates
a dynamic CFG accommodating all the observed control flows that
reflect the user specified functionality.

The challenge associated with fuzzing is to guarantee that paths
taken during fuzzing are valid code and data paths. To address such
challenges, we leverage AddressSanitizer (ASan) [48], a widely-used
sanitizer that detects memory corruptions (e.g., use-after-free or
out-of-bounds access). Only non-crashing executions are recorded.
Hence, Ancile ensures all the recorded control-flow transfers are
from valid execution traces and generates the dynamic CFG.

Debloating. To prune unnecessary code, Ancile utilizes the dy-
namic CFG to construct the list of observed functions. It then removes
any functions that are not in our observed white list, thereby ensur-
ing a custom binary incorporating only the user specified features.
It relies on a compiler pass to remove any unintended function.

CFI Mechanism. Ancile enforces the strict targets for the indirect
calls based on the dynamic CFG. Despite relying on dynamic pro-
filing, Ancile still enforces target sets statically (i.e., relying only on
information available at compile time to embed the target sets in
the binary). We have customized LLVM-CFI to adopt Ancile’s strict
target set at each individual indirect control transfer check points.
Our target-set sizes are smaller in most cases and equal to the size
of the LLVM analysis in the worst case. In contrast to Ancile, vanilla
LLVM-CFI relies on static analysis for target generation and thus
fails to solve aliasing, resulting in an over-approximate target sets.
The main advantage behind adapting LLVM-CFl is that it is highly
optimized and incurs only 1% overhead [5]. Our framework for using
LLVM-CFI to enforce user-specified target sets will help the research
community to advance control-flow hijacking mitigation by serving
as an enforcement API for any analysis that generates target sets.

Note that, Ancile executes its analysis phase during software
compilation. No (additional) analysis is required during runtime, i.e.,
when the program is executed. Hence, the customization procedure
is an one-time effort during compilation.

6 EVALUATION

Our evaluation of Ancile focuses on the following research questions:

RQ1. Can fuzzing be used to enable debloating?

RQ2. Can fuzzing be used as a CFI target generator?

RQ3. How can we analyze the correctness?

RQ4. How performant is Ancile (compared to LLVM-CFI)?

For our evaluation, we compared Ancile to vanilla LLVM-CFIL
Unlike other debloating mechanisms [40], Ancile performs function
level debloating and reduces attack surface by including only the
target sets of the indirect control-flows pertaining to the specified
functionalities. Hence, we chose to compare to LLVM-CFI which is
state-of-the-art CFI mechanism.

We investigated commonly attacked diverse software that of-
fers rich opportunities for customization and specialization. We
evaluated Ancile with two popular, and frequently attacked, im-
age libraries 1ibtiff and libpng, as well as two network facing
applications, nginx and tcpdump which deal with different proxy
settings for our analysis. To show the impact of feature selection,
we investigated four different cases for each of the applications. We
analyzed Ancile with each of the application’s standard test-suite
(included in the package), as well as two user-selected functionality
sets and then compared with vanilla LLVM-CFIL.

For the two image libraries, we used the utilities tiffcrop, tiff2pdf
for libtiff and pngfix, timepng for libpng. We used a set of tif and png
files as input seeds to fuzz the libraries respectively. For tcpdump, we
leveraged two sets of command line arguments -rand -ee -vv -nnr
as well as network capture files in the cap and pcap formats as input
seeds. For nginx, we used methods such as GET, POST, and TRACE
operations as inputs along with two different configuration settings.

6.1 ROQ1: Fuzzing as a debloating tool (RQ1)

With the advancement of efficient coverage-guided mechanisms,
fuzzers can be used to observe valid code executions. Ancile learns
valid targets yielding from valid execution paths. Ancile utilizes
mutational fuzzing via AFL and honggfuzz to explore relevant code
paths. To generate complete observed function sets for a desired
functionality, it is possible to carefully select input seeds for that
particular functionality. For instance, if the user only wants to read
pcap files via tcpdump, we can provide only pcap files as seed. In
the case, where the user wants to read both cap and pcap files, we
can then use both type of files as seeds.

In the following sections, we have analyzed fuzzing’s effective-
ness in debloating and CFI checks. Fuzzing has been mainly used
as a bug finding mechanism. To demonstrate its effectiveness as a
debloating mechanism, we evaluate code reduction by Ancile on
our case studies. Additionally, Ancile improves the security of the
debloated binary by pruning gadgets as well as security-sensitive
functions. All performance measurement were done on Ubuntu 18.04
LTS system with 32GB memory and Intel Core i7-7700 processor.

Function Debloating. Ancile debloats applications by removing all
unused functions, i.e., code that was never executed during our func-
tionality inference phase. It generates a white list of functions based
on the context of the user-specified functionality and removes func-
tions that were not invoked during execution. Figure 2 compares the
number of functions before and after debloating is performed across
different benchmarks. Additionally, function reduction depends on

0.75

0.5

0.25

0
libtiff (testsuite) libpng nginx (testsuite) tcpdump
(testsuite) (testsuite)

B Before debloating M After debloating

Figure 2: Comparison of the number of functions before and
after debloating across libtiff, libpng, tcpdump, and nginx.
We used the standard test-suite for each of these applications.
Ancile reduces more functions in specialized cases.

the specified functionality. Ancile removes around 60% functions
for libtiff standard test-suite that comes with the library, where as
for a more specialized scenario, for example in case of tiffcrop utility,
Ancile removes 78% of functions.

Pruning Security Sensitive Functions. The main goal of Ancile is
to allow the minimum set of control-flow transfers for the required
functionality, thereby minimizing the available attack surface. Sen-
sitive functions belonging to a target set increase the attack surface.
We measure if sensitive functions are reachable from (i) indirect calls
i.e., they are in the target sets, (ii) at distance-1 (indirection +1), i.e., if
afunction in the target set calls a sensitive function, (iii) at distance-2
(indirection +2), i.e., if a function in the target set calls a function that
calls a sensitive function, and (iv) similarly at distance-3 (indirection
+3). In short, we have observed different level of indirect calls in
the evaluated benchmarks. We considered execve, mmap, memcpy,
and system as the set of sensitive functions in our analysis. The
main reason behind selecting such functions as sensitive is that an
attacker can modify the arguments of these functions such as system
to execute unwanted actions and gain control of the system. Since,
there were no security sensitive function directly in the target set,
we exclude criterion (i) from our analysis.

Table 1 shows reachability to sensitive functions from an indi-
rect call site through a sequence of intermediate calls. For instance,
in libpng several calls are made to the sensitive function memcpy.
At indirection+1, indirection+2, and indirection+3 level, there are
five, 20, and 17 reachable calls respectively in LLVM-CFIL. Ancile
restricts these calls to three locations at indirection+1 and in rest
of the two cases there are no indirect call sequences to memcpy. We
have observed another interesting case in nginx, where execve, a
highly sensitive function, is reachable in indirection+1 in LLVM-CFI,
however, Ancile does not allow this call. This call is only made in one
rarely-used feature (to hot restart nginx without losing connections
when the underlying binary is replaced with a newer version). This
demonstrates that focusing on control-flow transfers based on func-
tionality reduces the attack surface when such features are restricted.

Case Study: Gadget Reduction. To better understand the signifi-
cance of Ancile, we performed a case-study on gadget discovery. We
focused on two metrics: (i) Jump Oriented Programming (JOP) gad-
gets, and (ii) unintended indirect-call gadgets. We did not consider

Table 1: Sensitive function analysis: Number of indirection
level to the sensitive functions from functions present in the
target sets of LLVM-CFI and Ancile.

ind. +1 ind.+2 ind.+3

Benchmark Function

. LLVM-CFI 5 20 17
hbpng memepy Ancile 3 0 0
execve LLVM-CFI 1 0 0

Ancile 0 0 0

nginx memcpy LLVM-CFI 1271 2276 2869
Ancile 167 272 352

mmap LLVM-CFI 0 2 4

Ancile 0 1 1

Y LLVM—CFI 59 95 66

libtiff Ancile 14 14 11
e LLVM-CFI 1 0 0

Ancile 1 0 0

LLVM-CFI 156 670 678

tepdump - memepy e 34 22 26

ROP gadgets since our framework is aimed for securing forward
edges only and CET [3]-like technology will secure backward edges.
We built two versions of nginx: one with LLVM-CFI enforcement and
the other with Ancile enforcement along all the unit test-suite fea-
tures. Using a gadget-discovery algorithm and manual analysis, we
observed a 54% reduction in JOP gadgets and a 44% reduction of un-
intended indirect-call gadgets. This case study shows us that Ancile
can indeed help in reducing the number of gadgets in an application.

6.2 ROQ2:Effectiveness of fuzzing for CFI

To show the effectiveness of fuzzing as a CFI analysis tool, our aim is
to establish that fuzzing is effective in producing drastically smaller
target sets for indirect control-transfers than previous approaches.
We found that Ancile can reduce target sets by 93.66% and 97.94% for
the tiffcrop, tiff2pdf utilities from the libtiff image library. Target set
reduction reduces the attack surface, increasing the security of our
customized binaries. Any additional target which is not intended to
be taken during valid program execution potentially increases an at-
tacker’s capabilities. We compare Ancile’s target set per call site with
LLVM-CFI on libtiff-4.0.9, libpng-1.6.35, nginx-1.15.2 and tcpdump-
4.9.0, as well as the SPEC CPU2006 benchmark suite. We compare
Ancile to LLVM-CFI (the state of the art static CFI mechanism).
LLVM-CFI is used, e.g., on Android and Chrome. Ancile generates a
customized minimal target set per control-flow transfer in contrast
to an over-approximated set generated by static approaches like
LLVM-CFI without sacrificing the performance.

To understand the differences in target set generation from dif-
ferent feature selections, we have analyzed the target applications
with different user specifications and input seeds. Varying the input
seeds for a given specification allows us to examine the effect of path
exploration during fuzzing on target set generation.

Figure 3 shows the mean and standard deviation of target set per
call site across the four benchmarks for Ancile and LLVM-CFIL We
leverage the application’s standard test-suite for Ancile’s function-
ality analysis. In each of the benchmarks libtiff, libpng, nginx and
tcpdump, LLVM-CFI has on average 73% more targets than Ancile.

140 B LLVM-CFI B Ancile

120

80

Targets

60

.

40

20 R o ¢
. :
— % e

libtiff libpng nginx

.

—~ %

tcpdump

Figure 3: Mean and std. deviation of target sets across our
test-suite for LLVM-CFI and Ancile. LLVM-CFI has more
callsite outliers with large target sets than Ancile.

Furthermore, LLVM-CFI has outliers of call sites with very large tar-
get sets. For example, tcpdump has 48 call sites for which LLVM-CFI
reports 130 targets, whereas Ancile observes none to at most two
targets. To support our claim in target reduction, Table 2 shows the
comparison between LLVM-CFI and Ancile for the maximum target
set size for each of the benchmarks. This highlights the power of func-
tionality analysis in reducing the attack surface available to attackers.

Figure 4 shows the comparison of target-set size per call site be-
tween LLVM-CFI and Ancile specializing on different functionalities.

Table 2: Statistics of maximum target size in LLVM-CFI and
Ancile for our benchmarks. An ‘X’ indicates a benchmark
without any recorded indirect calls.

Max. target set size

Benchmark LLVM-CFI Ancile
400.perlbench 354 175
401.bzip2 1 1
403.gcc 366 38
429.mcf X X
433.milc 2

444 namd 40 1
445.gobmk 1642 492
447 .dealll 11 2
450.soplex 7 1
453.povray 81 9
456.hmmer 11 1
458.sjeng 10 6
462 libquantum X X
464.h264ref 12 10
470.lbm X X
471.omnetpp 172 168
473.astar 1 1
482.sphinx3 5 1
483.xalanbmk 100 38
libtiff 78 16 (testsuite)
libpng 48 25 (testsuite)
nginx 103 87 (testsuite)
tcpdump 130 18 (testsuite)

80

= LLVM-CF| = Test-suite Tiff2pdf = Tiffcrop

60

Number of targets

(a) libtiff callsites

= LLVM-CF| = Test-Suite Pngfix = Timepng

40

20

Number of targets

10

—\ [NAAA

(b) libpng callsites

Figure 4: Comparison of number of targets per each callsite at LLVM-CFI and Ancile with specialization in different function-
alities for two libraries: libtiff and libpng. For each case study, we analyzed LLVM-CFI and Ancile in three different scenarios:
standard test-suite along with two utilities (tiffcrop and tiff2pdf utilities for libtiff, and pngfix and timepng utilities for libpng).

In each of the cases, we analyzed target sets obtained from the unit
test-suite as well as target sets obtained from the specialization of cer-
tain features as mentioned in Section 6. As expected, Ancile reduces
the target set sizes for all targets, compared to LLVM-CFI. Addition-
ally, fuzzing a particular utility can lead to discovering more targets
than the unit test-suite. For instance, for certain indirect control-flow
transfers, we observed more targets while fuzzing tiffcrop than just
running the test-suite.

SPEC CPU2006. In addition to our real-world applications, we
also evaluate our prototype on the SPEC CPU2006 benchmark-suite.
Working with SPEC CPU2006 enables us to compare with LLVM-CFL
Furthermore, SPEC CPU2006 is the standard performance bench-
mark, so we included our analysis results for completeness. We used
the smaller test SPEC benchmark configuration as our functionality
specification, and ran the benchmarks once without fuzzing. These
target sets were then used to specialize the binaries, and we verified
they run with larger ref data set, see Section 6.4.

Figure 5 shows the comparison of Ancile, and LLVM-CFI on two
SPEC CPU2006 benchmarks, namely 400.perlbench, and 445.gobmk.
We chose to focus on these benchmarks as they have the largest
number of indirect call sites. We show the cumulative distribution
function (CDF) of target set size per call site. The goal is to have as
many call sites as possible and a very short tail, indicating few call
sites with many targets, as such call sites are easily exploitable. For
example, in case of 400.perlbench 5(a), most of the call sites have very
few targets, 65% of all call sites have only one target. Similar situations
were observed in the 445.gobmk benchmark; where the maximum
target set size for LLVM-CFI is 1642, compared to 492 for Ancile. In
all of these benchmarks, Ancile has fewer targets than LLVM-CFI
as well as the maximum number of targets allowed by any call site is
on average 59% smaller. Table 2 shows the maximum target set size
in LLVM-CFI and Ancile for each of the evaluated benchmarks.

Equivalence Classes. Equivalence classes are an important part of
static analysis-based CFI. Each class is a group of call sites that are all
assigned to the same target set (e.g., based on function prototypes).
Ancile does away with the notion of equivalence classes as each call
site is independently analyzed, instead of being grouped together as

per existing static analysis-based approaches. In other words, Ancile
introduces an equivalence class for each indirect call instead of, in
its most precise form, for each function pointer type for LLVM-CFIL.
Having more equivalence classes increases the security of applica-
tions [17], as each call site has the minimum target set appropriate
for it, not the target set for a class of call sites.

Ideally, we would increase the number of classes while reduc-
ing the size of each class. Ancile breaks large equivalence classes
into smaller ones, namely one class per indirect call site, thus re-
stricting the indirect calls to fewer targets. Ancile always generates
more equivalence classes than LLVM-CFI, and the classes are strictly
smaller, in most cases restricting the call site to single target.

6.3 RQ3: Correctness of specialized binaries

To confirm the correctness of Ancile-generated binaries, we per-
formed a series of analyses such as result consistency, assessment
of target discovery, correctness of generated input, target set min-
imality, and statistical analysis.

Consistency. One way to establish the confidence of the result is
to check for consistency. If two separate fuzzer can generate same
set of targets, it can increase our confidence in the specialized binary.
We have used two separate fuzzers, AFL and honggfuzz, to generate
the dynamic CFG and we achieved similar outcomes.

Target Discovery. Using fuzzing for target discovery comes with
the challenge of effectiveness in learning targets. To understand this
aspect, we plotted the discovery of each unique target against time.
Figure 6 shows the number of targets discovered over time by the
fuzzer for tepdump with the command line option r for reading IPv4
and IPv6 captured packets. The x-axis plots time in hour and y-axis
plots the percentage of target discovery. From the figure, it is evident
that most of the targets are discovered at the very beginning of the
fuzzing procedure and few to no new targets towards later phases of
fuzzing. This same observation holds true for all programs we tested.
Furthermore, we reran all the fuzzing executions multiple times and
target discovery remain identical in all the fuzzing sessions.

This profile of target discovery, with most targets discovered early,
increases our confidence that fuzzing is finding all possible targets,

e o 9o
> o ®

Percentage

©
N}

0 100 200 300
(a) 400.perlbench targets

—o—LLVM-CFI
—e—Ancile

400 0 500 1000 1500 2000

(b) 445.gobmk targets

Figure 5: Comparison of the cumulative distribution function (CDF) of the target set size per call site of Ancile against LLVM-CFI
over two SPEC CPU2006 benchmarks: 400.perlbench and 445.gobmk

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Percentage

0 5 10 15 20 25 30
Time (in hours)

Figure 6: Target discovery over the time during application
(tcpdump) fuzzing.

and that continuing to fuzz for greater than 24 hours will not find
additional targets.

Correctness of Generated Input. In order to cross-check that the
fuzzer generated executions are valid, we applied several sanitizers

(ASan, Ubsan) to check the correctness of fuzzer generated inputs.

We also manually ensured that for each of these generated inputs
there is an intended control-flow execution.

Minimality. Almost all dynamic CFI policies [38] have a fallback
strategy and they usually fall back to over-approximated target sets
generated statically. Ancile is inherently more aggressive. Although
it uses instrumentation similar to LLVM-CFI for its enforcement, it
never reduces precision to LLVM-CFI target sets. Ancile considers
any call site or target that has not been exercised during profiling
phase as invalid or, in other words, not relevant to the intended
functionality. This is to ensure that we only employ the desired
functionality. Our investigation indicates that this reduction has a
meaningful impact on the application’s security by making sensitive
functions harder to access (more levels of indirection are required)
from indirect call sites.

Statistical Analysis. A potential issue of using fuzzing is that the
fuzzer may include superfluous coverage, i.e., the fuzzer discovers
functionality that the user does not want included, preferably known
as false negative. One way to handle this situation is to tune the length

Table 3: Performance overhead comparison between LLVM-
CFI and Ancile. Note that LLVM-CFI could not compile—and
run—some benchmarks (marked by).

Benchmark Baseline (ms) LLVM-CFI(ms) Ancile (ms)
400.perlbench 374 379(1.33%) 378 (1.07%)
401.bzip2 726 730 (0.55%) 730 (0.55%)
403.gec 781 - 790 (1.1%)
429.mcf 296 297 (0.34%) 297 (0.34%)
433.milc 1029 1037 (0.78%) 1036 (0.68%)
444.namd 1420 1429 (0.63%) 1430 (0.70%)
445.gobmk 518 522(0.77%) 519 (0.19%)
447.dealll 1294 1301 (0.54%) 1300 (0.46%)
450.s0plex 339 345(1.78%) 345 (1.78%)
453.povray 440 - 451 (2.5%)
456.hmmer 569 - 572(0.52%)
458.sjeng 620 621(0.16%) 622 (0.32%)
462 libquantum 474 481(2.34%) 481 (2.34%)
464.h264ref 872 877 (0.57%) 879 (0.80%)
470.1bm 692 695 (0.43%) 694 (0.28%)
471.omnetpp 781 - 802 (2.6%)
473.astar 544 546 (0.33%) 546(0.33%)
482.sphinx3 945 947 (0.21%) 946 (0.11%)
483.xalanbmk 1325 - 1341(1.2%)

of the fuzzing campaigns. For example, when extracting functional-
ity of reading the captured pcap packets using tepdump, it is unlikely
that the fuzzer will mutate the input seed enough to discover the
code that handles capturing packets. Due to the stochastic nature
of fuzzing, it is also possible that Ancile might miss some intended
control flows resulting in false positives.

To understand how Ancile performs with respect to false positives
and false negatives, we have analyzed it with forty different test cases
for each of our case studies. In half of our test cases, we analyzed the
specialized binary with the same intended functionality but with
different set of inputs. For example, in case of tiff2pdf utility, we
evaluated it with twenty different tif files which we have not used as
seed. In similar way, we have used the rest twenty of the test cases to
exercise an unintended functionality. Ancile successfully validated
all test scenarios for all the investigated applications.

In future work, we will evaluate how a user can select negative
functionality they want explicitly excluded. We refer to existing
work that focused on similar challenges [37].

6.4 ROQ4:Performance Overhead

Performance overhead is crucial for mitigations. We analyzed the
performance of Ancile on SPEC CPU2006 and compared it with
LLVM-CFL Table 3 presents a comparison of runtime performance
of Ancile and LLVM-CFI. Ancile’s enforcement mechanism mainly
reuses the enforcement part of LLVM-CFI with a tighter target set,
and as the table shows, has equivalent runtime performance. As is
standard, we report results for three SPEC CPU2006 iterations. Note
that we require no additional system resources, such as additional
processes, cores, virtual address space, or hardware extensions, un-
like other works aimed at increasing the precision of CFI [21, 27, 53].

7 RELATED WORK

Software Debloating is a well-known attack mitigation scheme
which reduces code size and complexity. Rastogi et al. introduced
Cimplifier [43], an approach for debloating containers by using dy-
namic analysis for necessary resource identification. Chisel [29]
debloats programs at a fine-grained level through reinforcement
learning. Trimmer [49] eliminates unused functionality based on
user-provided configuration data. Quanch et al. [41] debloat pro-
grams via piece wise compilation and loading. They analyze the
program to build a dependency graph of external functions and then
only load the required functions as well as remove any library code.
Nibbler [14] performs similar library specialization at the binary
level. BinTrimmer [45] utilizes abstract interpretation to recover a
precise CFG as well as to identify unreachable code and then remov-
ing it. Unfortunately, software debloating is not enough to stop CFH.
An attacker can still exploit bugs in the remaining code segments
and launch code-reuse attacks.

Razor [40] is another post-deployment debloating framework
which works at the binary level. It has three components: Tracer,
Path finder and Generator. It debloats the binary by utilizing test
cases to trace execution paths, then uses four heuristics to find nearby
code-paths. Finally, the generator rewrites the binary. Similar to Ra-
zor, Binary Control-Flow Trimming[28] uses test traces and later
machine learning to explore relevant control-flows. Both of these
works are binary based and utilize test traces, where as Ancile works
primarily on source code and it depends on the user given seeds to
map functionality into code. The main distinction of Ancile over
these two worksisit introduces seed demonstrated fuzzing to explore
relevant code regions. It strengthens the security of an application
by not only debloating unused functionalities, but also eliminating
invalid targets from the remaining control transfers.

Control-Flow Integrity reduces attack surface by prohibiting
illegal control flow transfers from the CFG. After the introduction
of the CFI mechanism by Abadi et al. [13] in 2005, the mechanism
saw a diverse set of improvements along performance, security, and
precision. For a full survey see Burow et. al [17].

LLVM-CFI [5] is a static analysis based CFI approach that is imple-
mented in production compilers with negligible overhead (approx-
imately 1%) [4]. In this approach, each indirect call along with asso-
ciated targets are clustered into equivalence classes where each indi-
rect call can target any of the addresses within the associated equiva-
lence class. However, due to the reliance on the static analysis, LLVM-
CFIstruggles with aliasing that results in an over-approximation. An
attacker can perform attacks [19, 24, 33, 47] by leading an indirect
control flow to a different target within the equivalence class without
violating the CFG. LLVM-CFI is seeing wide deployment by Google
in Chrome [20] and Android [15].

Recent research efforts improved the precision, and thus security,
of CFL. PittyPat [21] presents a path-sensitive approach combin-
ing hardware-based monitoring and runtime points-to-analysis. It
improves preciseness with the cost of additional hardware and per-
formance overhead. In particular, it requires a separate process to
monitor and validate the execution traces of the protected process.
mCFI [38] starts enforcement of a process with an empty CFG and
adds edges dynamically by activating addresses as needed. The se-
curity of 7CFI depends on an attacker’s inability to activate certain
edges, otherwise it would provide the same guarantees as a static
CFI policy (modulo the complexity of activating the target). VIP [25]
adds a measure of control and data-flow sensitivity to the static
analysis used by CFL Ancile achieves greater precision than 7 CFI or
VIP through its functional analysis, and does not require additional
system resources like PittyPat.

Existing solutions for control-flow hijacking cannot protect against
data-flow attacks and leave the attacker some room. Ancile restricts
the application to the bare minimum code required to run the speci-
fied functionality and thereby restricts the power of data-only attacks
to this exposed functionality. If there is no path to, e.g., execve then
no modification of the program’s memory can bend the control flow
to the sensitive function.

8 CONCLUSION

We present Ancile, a code specialization technique through fuzzing.
Our case studies show that seed demonstrated fuzzing can be used
to effectively map user-intended functionalities into relevant code
regions. We can then leverage this information to guide debloating
and program specialization, reducing the program’s attack surface
and improving the precision of defenses such as CFIL.

We believe that automatically specializing code for particular us-
age scenarios via fuzzing is a promising new technique for software
security. It can achieve greater security than static analysis without
requiring extra system resources.

9 ACKNOWLEDGMENTS

We thank the reviewers and our shepherd Roland Yap for their feed-
back. This project has received funding from the European Research
Council (ERC) under grant agreement No. 850868, NSF under grant
CNS-1801601, and a gift from Huawei. Any findings are those of the
authors and do not necessarily reflect the views of our sponsors.

REFERENCES

[1] Online; accssed 10-Oct-2020. Fuzzing. https://www.owasp.org/index.php/
Fuzzing.
[2] Online; accssed 11-Oct-2020. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.

https://www.owasp.org/index.php/Fuzzing
https://www.owasp.org/index.php/Fuzzing
http://lcamtuf.coredump.cx/afl/

=
it

[15]

[16

[17]

[18]

[19]

[20

[21]

[22

[23

[24]

[25]

[26

[27

[28]

[29]

[31]

Online; accssed 11-Oct-2020. Control-flow Enforcement Technology.
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf.

Online; accssed 11-Oct-2020. Control Flow Integrity. https://clang.llvm.org/docs/
ControlFlowIntegrity.html.

Online; accssed 11-Oct-2020. Control Flow Integrity Design Documentation.
https://clangllvm.org/docs/ControlFlowIntegrityDesign.html.

Online; accssed 11-Oct-2020. honggfuzz. https://github.com/google/honggfuzz.
Online; accssed 11-Oct-2020. libpng. http://www.libpng.org/pub/png/libpng html.
Online; accssed 11-Oct-2020. libTIFF. http://www.libtiff.org/.
Online; accssed 11-Oct-2020. UndefinedBehaviorSanitizer.
//clang llvm.org/docs/UndefinedBehaviorSanitizer.html.

Online; accssed 13-Oct-2020. Linux in 2020: 27.8 million lines of code in the kernel,
1.3 million in systemd. https://www.linux.com/news/linux-in-2020-27-8-million-
lines-of-code-in-the-kernel-1-3-million- in-systemd/.

Online; accssed 13-Oct-2020. Linux Kernel. https://en.wikipedia.org/wiki/Linux_
kernel.

Online; accssed 15-Jan-2021. CVE-2014-0038: Privilege escalation in X32 ABL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-
flow integrity. In Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 340-353.

Toannis Agadakos, Di Jin, David Williams-King, Vasileios P Kemerlis, and Georgios
Portokalidis. 2019. Nibbler: debloating binary shared libraries. In Proceedings of
the 35th Annual Computer Security Applications Conference. 70-83.

Google Android. 2018. Kernel Control Flow Integrity. https://source.android.com/
devices/tech/debug/kefi.

Michael D Brown and Santosh Pande. 2019. Is less really more? towards better met-
rics for measuring security improvements realized through software debloating. In
12th {USENIX} Workshop on Cyber Security Experimentation and Test ({ CSET} 19).
Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. ACM Computing Surveys(CSUR) 50, 1 (2017), 16.

Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light on
Shadow Stacks. SP’19(2019).

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity.. In USENIX Security Symposium. 161-176.

Google Chromium. 2017. Chromium: Control Flow Integrity.
//www.chromium.org/developers/testing/control-flow- integrity.

Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient protection of path-sensitive control security. In 26th { USENIX }
Security Symposium ({USENIX} Security 17). 131-148.

Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction, CC, Ayal Zaks and Manuel V. Hermenegildo (Eds.). 132-142.
Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack Bounds
Protection with Low Fat Pointers. In 24th Annual Network and Distributed System
Security Symposium, NDSS. The Internet Society.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 901-913.
Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the
precision of virtual call integrity protection with partial pointer analysis for C++.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis.

Robert Gawlik and Thorsten Holz. 2014. Towards automated integrity protection
of C++ virtual function tables in binary programs. In Proceedings of the 30th
Annual Computer Security Applications Conference. ACM, 396-405.

Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control
flows using intel processor trace. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 585-598.

Masoud Ghaffarinia and Kevin W Hamlen. 2019. Binary Control-Flow Trim-
ming. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1009-1022.

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 380-394.
Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2012. Microgadgets: Size Does Matter in Turing-Complete Return-Oriented
Programming. In WOOT.

Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target property
for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1470-1486.

https:

https:

(32

[33

[34

@
2

[36]

[37

[38

@
29,

[40

[41

[42

[43

[44

=
s oY

™~
&,

N
)

[50

[51

[52

[53

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness
of non-control data attacks. In Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 969-986.

Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1868-1882.

Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. 2020. FuZZan:
Efficient Sanitizer Metadata Design for Fuzzing. In Usenix Annual Technical
Conference.

Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. 2018. RedDroid:
Android Application Redundancy Customization Based on Static Analysis. In
Proceedings of the 29th IEEE International Symposium on Software Reliability
Engineering (ISSRE’18).

Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial evaluation and
automatic program generation. Peter Sestoft.

Dohyeong Kim, William N. Sumner, Xiangyu Zhang, Dongyan Xu, and Hira
Agrawal. 2014. Reuse-oriented Reverse Engineering of Functional Components
from x86 Binaries. In Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 1128-1139.
https://doi.org/10.1145/2568225.2568296

Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 914-926.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 697-710.

Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and
Wenke Lee. 2019. {RAZOR }: A Framework for Post-deployment Software Debloat-
ing. In 28th { USENIX} Security Symposium ({ USENIX} Security 19). 1733-1750.
Anh Quach, Aravind Prakash, and Lok Kwong Yan. 2018. Debloating Software
through Piece-Wise Compilation and Loading. arXiv preprint arXiv:1802.00759
(2018).

Ganesan Ramalingam. 1994. The undecidability of aliasing. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 5 (1994), 1467-1471.
Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 476-486.
Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).
Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. B in T rimmer: Towards Static Binary Debloating
Through Abstract Interpretation. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 482-501.
Address Sanitizer. Online; accssed 10-Oct-2020. ASan.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in C++ applications. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 745-762.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.. In USENIX
Annual Technical Conference. 309-318.

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: application specialization for code debloating. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering.
ACM, 329-339.

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2018. SoK: Sanitizing for Security. arXiv preprint
arXiv:1806.04355 (2018).

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization. IEEE
Computer Society, 46—55.

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ul-
far Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge
Control-Flow Integrity in GCC & LLVM.. In USENIX Security Symposium. 941-955.
Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical context-
sensitive CFL In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 927-940.

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://github.com/google/honggfuzz
http://www.libpng.org/pub/png/libpng.html
http://www.libtiff.org/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://source.android.com/devices/tech/debug/kcfi
https://source.android.com/devices/tech/debug/kcfi
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://doi.org/10.1145/2568225.2568296

	Abstract
	1 Introduction
	2 Background
	2.1 Attack Surface Debloating
	2.2 Control-Flow Integrity
	2.3 Fuzzing
	2.4 Sanitization

	3 Challenges and Trade-offs
	4 Ancile Design
	4.1 Dynamic CFG Generation
	4.2 Debloating Mechanism
	4.3 CFI Target Analysis

	5 Implementation
	6 Evaluation
	6.1 RQ1: Fuzzing as a debloating tool (RQ1)
	6.2 RQ2: Effectiveness of fuzzing for CFI
	6.3 RQ3: Correctness of specialized binaries
	6.4 RQ4: Performance Overhead

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

