
FuzzGen: Automatic Fuzzer Generation

Kyriakos K. Ispoglou
Google Inc.

Daniel Austin
Google Inc.

Vishwath Mohan
Google Inc.

Mathias Payer
EPFL

Abstract
Fuzzing is a testing technique to discover unknown vul-

nerabilities in software. When applying fuzzing to libraries,
the core idea of supplying random input remains unchanged,
yet it is non-trivial to achieve good code coverage. Libraries
cannot run as standalone programs, but instead are invoked
through another application. Triggering code deep in a library
remains challenging as specific sequences of API calls are
required to build up the necessary state. Libraries are diverse
and have unique interfaces that require unique fuzzers, so far
written by a human analyst.

To address this issue, we present FuzzGen, a tool for auto-
matically synthesizing fuzzers for complex libraries in a given
environment. FuzzGen leverages a whole system analysis to
infer the library’s interface and synthesizes fuzzers specifi-
cally for that library. FuzzGen requires no human interaction
and can be applied to a wide range of libraries. Furthermore,
the generated fuzzers leverage LibFuzzer to achieve better
code coverage and expose bugs that reside deep in the library.

FuzzGen was evaluated on Debian and the Android Open
Source Project (AOSP) selecting 7 libraries to generate
fuzzers. So far, we have found 17 previously unpatched vul-
nerabilities with 6 assigned CVEs. The generated fuzzers
achieve an average of 54.94% code coverage; an improve-
ment of 6.94% when compared to manually written fuzzers,
demonstrating the effectiveness and generality of FuzzGen.

1 Introduction

Modern software distributions like Debian, Ubuntu, and the
Android Open Source Project (AOSP) are large and com-
plex ecosystems with many different software components.
Debian consists of a base system with hundreds of libraries,
system services and their configurations, and a customized
Linux kernel. Similarly, AOSP consists of the ART virtual
machine, Google’s support libraries, and several hundred third
party components including open source libraries and ven-
dor specific code. While Google has been increasing efforts

to fuzz test this code, e.g., OSS-Fuzz [35, 36], code in these
repositories does not always go through a rigorous code re-
view process. All these components in AOSP may contain
vulnerabilities and could jeopardize the security of Android
systems. Given the vast amount of code and its high com-
plexity, fuzzing is a simple yet effective way of uncovering
unknown vulnerabilities [20, 27]. Discovering and fixing new
vulnerabilities is a crucial factor in improving the overall
security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on
AFL [44] or any of the more recent advances over AFL
such as AFLfast [6], AFLGo [5], collAFL [19], Driller [37],
VUzzer [31], T-Fuzz [28], QSYM [42], or Angora [8] are
highly effective at finding bugs in programs by mutating in-
puts based on execution feedback and new code coverage [24].
Programs implicitly generate legal complex program state as
fuzzed input covers different program paths. Illegal paths
quickly result in an error state that is either gracefully handled
by the program or results in a true crash. Code coverage is
therefore an efficient indication of fuzzed program state.

While such greybox-fuzzing techniques achieve great re-
sults regarding code coverage and number of discovered
crashes in programs, their effectiveness does not transfer to
fuzzing libraries. Libraries expose an API without depen-
dency information between individual functions. Functions
must be called in the right sequence with the right arguments
to build complex state that is shared between calls. These im-
plicit dependencies between library calls are often mentioned
in documentation but are generally not formally specified.
Calling random exported functions with random arguments is
unlikely to result in an efficient fuzzing campaign. For exam-
ple, libmpeg2 requires an allocated context that contains the
current encoder/decoder configuration and buffer information.
This context is passed to each subsequent library function.
Random fuzzing input is unlikely to create this context and
correctly pass it to later functions. Quite the contrary, it will
generate a large number of false positive crashes when library
dependencies are not enforced, e.g., the configuration func-
tion may set the length of the allocated decode buffer in the



internal state that is passed to the next function. A fuzzer that
is unaware of this length field may supply a random length,
resulting in a spurious buffer overflow. Alternatively, “invalid
state checks” in library functions will likely detect depen-
dency violations and terminate execution early, resulting in
wasted fuzzing performance. To effectively fuzz libraries, a
common approach is to manually write small programs which
build up state and call API functions in a “valid” sequence.
This allows the fuzzer to build up the necessary state to test
functionality deep in the library.

libFuzzer [33] facilitates library fuzzing through the help
of an analyst. The analyst writes a small “fuzzer stub”, a func-
tion that (i) calls the required library functions to set up the
necessary state and (ii) leverages random input to fuzz state
and control-flow. The analyst must write such a stub for each
tested component. Determining interesting API calls, API
dependencies, and fuzzed arguments is at the sole discretion
of the analyst. While this approach mitigates the challenge of
exposing the API, it relies on deep human knowledge of the
underlying API and its usage. Hence, this approach does not
scale to many different libraries.

FuzzGen is based on the following intuition: existing code
on the system utilizes the library in diverse aspects. Abstract-
ing the graph of possible library dependencies allows us to
infer the complex library API. Different aspects of the API are
tested by automatically generating custom fuzzer stubs based
on the inferred API. The automatically generated fuzzers will
execute sequences of library calls that are similar to those
present in real programs without the “bloat” of real programs,
i.e., removing all computation that is not strictly necessary to
build the state required for fuzzing. These fuzzers will achieve
deep coverage, improving over fuzzers written by an analyst
as they consider real deployments and API usage.

On one hand, many libraries contain unit tests that exercise
simple aspects of the library. On the other hand, programs
that utilize a library’s API build up deep state for specific
functions. Leveraging only individual test cases for fuzzing is
often too simplistic and building on complex programs results
in low coverage as all the program functionality is executed
alongside the target library. Test cases are too simple and fail
to expose deep bugs while full programs are too complex.
A mechanism that automatically constructs arbitrarily com-
plex fuzzer stubs with complex API interactions and library
state allows sufficient testing of complex API functions. The
set of all test cases and programs which use a library covers
nearly all relevant API invocations and contains code to set
up the necessary complex state to execute API calls. The vast
amount of different library usages implicitly defines an Ab-
stract API Dependence Graph (A2DG). Based on this A2DG
it is possible to automatically create fuzzer stubs that test
different aspects of a library (Figure 1).

To address the challenges of fuzzing complex libraries, we
propose FuzzGen. FuzzGen consists of three parts: an API
inference, an A2DG construction mechanism, and a fuzzer
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Figure 1: The main intuition behind FuzzGen. To synthesize a
fuzzer, FuzzGen performs a whole system analysis to extract
all valid API interactions.

generator that leverages the A2DG to produce a custom lib-
Fuzzer “fuzzer stub”. The API inference component builds an
A2DG based on all test cases and programs on a system that
use a given library. The A2DG is a graph that records all API
interactions, including parameter value range and possible
interactions. Our analysis infers library use and constructs a
generic A2DG based on this use. The fuzzer generator synthe-
sizes fuzzers that build up complex state and leverage fuzz
input to trigger faults deep in the library. FuzzGen automates
the manual process of the analyst in creating custom-tailored
fuzzers for libraries and specific library functions. The key
contribution of FuzzGen is an automatic way to create new
libFuzzer [33] stubs, enabling broad and deep library fuzzing.

FuzzGen performs a whole system analysis, iterating over
all programs and libraries that use the target library to infer the
A2DG. It then automatically generates fuzzer stubs (ranging
from 1,000 to 10,000 LoC) that encode the A2DG and use
libFuzzer to fuzz individual API components. FuzzGen was
evaluated on Debian and Android [2].

Our evaluation of FuzzGen so far, resulted in 17 discov-
ered vulnerabilities in the Android media framework, with 6
assigned CVEs: CVE-2019-2176 [16], CVE-2019-2108 [15],
CVE-2019-2107 [14] and CVE-2019-2106 [13] (critical),
CVE-2017-13187 [12] (high) and –duplicate– CVE-2017-
0858 [11] (medium). (in Appendix C we provide more details
on these vulnerabilities). Finding and eliminating vulnerabili-
ties in these components is crucial to prevent potential attacks
such as StageFright [17]. So far, FuzzGen has reported 17
new vulnerabilities in Android native libraries and Debian.
The discovered bugs range from denial of service to stack
buffer overflows, as shown in Section 6. Overall FuzzGen
makes the following contributions:



• Design of a whole system analysis that infers valid
API interactions for a given library based on exist-
ing programs and libraries that use the target library—
abstracting the information into an Abstract API Depen-
dence Graph (A2DG);

• Based on the A2DG, FuzzGen creates libFuzzer stubs
that construct complex program state to expose vulnera-
bilities in deep library functions was developed—fuzzers
are generated without human interaction;

• Evaluation of the prototype on AOSP and Debian demon-
strates the effectiveness and the generality of the Fuz-
zGen technique. Generating fuzzers for 7 libraries,
FuzzGen discovered 17 bugs. The generated fuzzers
achieve 54.94% code coverage on average, compared to
48.00% that fuzzer stubs—written manually by experts—
achieve.

A note on disclosure: All bugs have been responsibly
disclosed, and fixes have been pushed to the correspond-
ing projects. The source code of our prototype is avail-
able at https://github.com/HexHive/FuzzGen, allowing
other researchers to reproduce our results and to extend our
automatic fuzzer generation technique.

2 The case for API-aware fuzzer construction

Writing an effective API-aware fuzzer requires an in-depth
understanding of the target library and pinpointing the inter-
esting components for fuzzing. Consider the libmpeg2 library,
which provides encoding and decoding functions for MPEG2
video streams. The library contains several functions to build
up a per-stream context that other functions take as a param-
eter. This approach of encapsulating state is common in li-
braries. Figure 2 shows a code snippet for properly initializing
an MPEG2 decoding object. A fully initialized decoder object
is required to decode a video frame. Without this decoder
object, frames cannot be decoded.

While a target-agnostic fuzzer (invoking all functions with
random arguments in a random order) may find simple issues,
deep bugs will likely be missed due to their dependence on
complex state. Naive fuzzers are also prone to false positives
due to lack of API awareness. Consider a fuzzer that targets
frame decoding. If the context does not contain a valid length
with a pointer to an allocated decode buffer then the fuzzer
will trigger a false positive crash when the decoded frame is
written to unallocated memory. However, this is not a bug in
the decode function. It is simply improper initialization. Or-
thogonally, by supplying random values to certain arguments,
such as function pointers or sizes, a fuzzer may trigger mem-
ory errors. These crashes do not correspond to actual bugs or
vulnerabilities as such an illegal context cannot be generated
through any possible execution of a benign use of the library.
Inferring API dependencies, such as generating a common

1 /* 1. Obtain available number of memory records */
2 iv_num_mem_rec_ip_t num_mr_ip = { ... };
3 iv_num_mem_rec_op_t num_mr_op = { ... };
4 impeg2d_api_function(NULL, &num_mr_ip, &num_mr_op);
5
6 /* 2. Allocate memory & fill memory records */
7 nmemrecs = num_mr_op.u4_num_mem_rec;
8 memrec = malloc(nmemrecs * sizeof(iv_mem_rec_t));
9

10 for (i=0; i<nmemrecs; ++i)
11 memrec[i].u4_size = sizeof(iv_mem_rec_t);
12
13 impeg2d_fill_mem_rec_ip_t fill_mr_ip = { ... };
14 impeg2d_fill_mem_rec_op_t fill_mr_op = { ... };
15 impeg2d_api_function(NULL, &fill_mr_ip, &fill_mr_op);
16
17 nmemrecs = fill_mr_op.s_ivd_fill_mem_rec_op_t
18 .u4_num_mem_rec_filled;
19
20 for (i=0; i<nmemrecs; ++i)
21 memrec[i].pv_base = memalign(memrec[i].u4_mem_alignment,
22 memrec[i].u4_mem_size);
23
24 /* 3. Initalize decoder object */
25 iv_obj_t *iv_obj = memrec[0].pv_base;
26 iv_obj->pv_fxns = impeg2d_api_function;
27 iv_obj->u4_size = sizeof(iv_obj_t);
28
29 impeg2d_init_ip_t init_ip = { ... };
30 impeg2d_init_op_t init_op = { ... };
31 impeg2d_api_function(iv_obj, &init_ip, &init_op);
32
33 /* 4. Decoder is ready to decode headers/frames */

Figure 2: Source code that initializes an MPEG2 decoder
object. Low level details such as struct field initializations,
variable declarations, or casts are omitted for brevity.

context, initializing the necessary buffers, and preparing it for
usage, is challenging because dependencies are not encoded
as part of the library specification.

However, by observing a module that utilizes libmpeg2
(i.e., a library consumer), we could observe the dependencies
between the API calls and infer the correct order of context
initialization calls. Such dependencies come in the form of
(a) control flow dependencies and (b) shared arguments (vari-
ables that are passed as arguments in more than one API call).
Furthermore, arguments that hold the state of the library (e.g.,
the context), should not be fuzzed, but instead they should
be passed, without intermediate modification, from one call
to the next. Note that this type of information is usually not
formally specified. The libmpeg2 library exposes a single
API call, impeg2d_api_function, that dispatches to a large
set of internal API functions. Yet, this state machine of API
dependencies is not made explicit in the code.

3 Background and Related Work

Early fuzzers focused on generating random parameters to
test resilience of code against illegal inputs. Different forms
of fuzzers exist depending on how they generate input, handle
crashes, or process information. Generational fuzzers, e.g.,
PROTOS [32], SPIKE [1], or PEACH [18], generate inputs
based on a format specification, while mutational fuzzers,
e.g., AFL [44], honggfuzz [39], or zzuf [22], synthesize inputs
through random mutations on existing inputs, according to
some criterion (e.g., code coverage). Typically, increasing

https://github.com/HexHive/FuzzGen


code coverage and number of unique crashes is correlated
with fuzzer effectiveness.

Mutational fuzzers have become the de-facto standard for
fuzzing due to their efficiency and ability to adapt input. The
research community developed additional metrics to classify
fuzzers, based on their “knowledge” about the target program.
Blackbox fuzzers, have no information about the program
under test. That is, they treat all programs equally, which al-
lows them to target arbitrary applications. Whitebox fuzzers
are aware of the program that they test and are target-specific.
They adjust inputs based on some information about the target
program, targeting more “interesting” parts of the program.
Although whitebox fuzzers are often more effective in find-
ing bugs (as they focus on a small part of the program) and
therefore have lower complexity, they require manual effort
and analysis and allow only limited reuse across different
programs (the whitebox fuzzer for program A cannot be used
for program B). Greybox fuzzers attempt to find a balance
between blackbox and whitebox fuzzing by inferring informa-
tion about the program and feeding that information back to
guide the fuzzing process. Evaluating fuzzers is challenging.
We follow proposed guidelines [24] for a thorough evaluation.

Code coverage is often used in greybox fuzzers to deter-
mine if an input should be further evaluated. The intuition is
that the more code a given input can reach the more likely is
to expose bugs that reside deep in the code. Fuzzers are lim-
ited by the coverage wall. This occurs when the fuzzer stops
making progress, and could be due to limitations of the model,
input generation, or other constraints. Any newly generated in-
put will only cover code that has already been tested. Several
recent extensions of AFL have tried to address the coverage
wall using symbolic or concolic execution techniques [23]
and constraint solving. Driller [37] detects if the fuzzer no
longer increases coverage and leverages program tracing to
collect constraints along paths. Driller then uses a constraint
solver to construct inputs that trigger new code paths. Driller
works well on CGC binaries but the constraint solving cost
can become high for larger programs. VUzzer [31] leverages
static and dynamic analysis to infer control-flow of the appli-
cation under test, allowing it to generate application-aware
input. T-Fuzz [28] follows a similar idea but instead of adding
constraint solving to the input generation loop, it rewrites the
binary to bypass hard checks. If a crash is found in the rewrit-
ten binary, constraint solving is used to see if a crash along
the same path can be triggered in the original binary. Fair-
Fuzz [26] increases code coverage by prioritizing inputs that
reach “rare” (i.e., triggered by very few inputs) areas of the
program, preventing mutations on checksums or strict header
formats. FuzzGen addresses the coverage wall by generat-
ing multiple different fuzzers with different API interactions.
The A2DG allows FuzzGen to quickly generate alternate fuzz
drivers that explore other parts of the library under test.

Although the aforementioned fuzzing approaches are ef-
fective in exposing unknown vulnerabilities, they assume that

the target program has a well defined interface to supply ran-
dom input and observe for crashes. These methods cannot
be extended to deal with libraries. A major challenge is the
interface diversity of the libraries, where each library pro-
vides a different interface through its own set of exported API
calls. DIFUZE [10] was the first approach for interface-aware
fuzzing of kernel drivers. Kernel drivers follow a well-defined
interface (through ioctl) allowing DIFUZE to reuse com-
mon structure across drivers. FuzzGen infers how an API
is used from existing use cases and generates fuzzing func-
tions based on observed usage. SemFuzz [41], used natural-
language processing to process the CVE descriptions and
extract the location of the bug. Then it uses this informa-
tion to synthesize inputs that target this specific part of the
vulnerable code.

Developed concurrently and independently from FuzzGen,
FUDGE [4] is the most recent effort on automated fuzz driver
generation. FUDGE leverages a single library consumer to
infer valid API usages of a library to synthesize fuzzers. How-
ever there are two major differences to our approach: First,
FUDGE extracts sequences of API calls and their context
(called “snippets”) from a single library consumer and then
uses these snippets to create fuzz drivers which are then tested
using a dynamic analysis. Instead of extracting short snippets
from consumers, FuzzGen minimizes consumers (iterating
over the consumer’s CFG) to only the library calls, their de-
pendent checks, and dependent arguments/data flow. Second,
FUDGE creates many small fuzz drivers from an extracted
snippet. In comparison, FuzzGen merges multiple consumers
to a graph where sequences of arbitrary length can be syn-
thesized. Instead of the 1-N approach of FUDGE, FuzzGen
uses an M-N approach to increase flexibility. Compared to
FUDGE, FuzzGen fuzzers are larger, more generic, focusing
on complex API interaction and not just short API sequences.

Beside fuzzing, there are several approaches to infer API
usage and specification. One way to infer API specifica-
tions [29, 30] is through dynamic analysis. This approach
collects runtime traces from an application, analyzes objects
and API calls and produces Finite State Machines (FSMs)
that describe valid sequences of API calls. This set of API
specifications is solely based on dynamic analysis. Producing
rich execution traces that utilize many different aspects of the
library requires the ability to generate proper inputs to the
program. Similarly, API Sanitizer [43] finds violation of API
usages. APISan infers correct usages of an API from other
uses of the API and ranks them probabilistically, without rely-
ing on whole-program analysis. APISan leverages symbolic
execution to create a database of (symbolic) execution traces
and statistically infers valid API usages. APISan suffers from
limited scalability due to symbolic execution. As a static anal-
ysis tool, it may result in false positives. SSLint [21] targets
SSL/TLS libraries and discovers API violations based on an
analyst-encoded API graph. MOPS [7] is a static analyzer
that uses a set of safe programming rules and searches for



violations of those rules. Yamaguchi et. al [40] present a tech-
nique that mines common vulnerabilities from source code,
representing them as a code property graph. Based on this
representation, they discover bugs in other programs.

4 Design

To synthesize customized fuzzer stubs for a library, FuzzGen
requires both the library and code that exercises the library (re-
ferred to as library consumer). FuzzGen leverages a whole sys-
tem analysis to infer the library API, scanning consumers for
library calls. The analysis detects all valid library usage, e.g.,
valid sequences of API calls and possible argument ranges for
each call. This information is essential to create reasonable
fuzzer stubs and is not available in the library itself.

By leveraging actual uses of API sequences, FuzzGen syn-
thesizes fuzzer code that follows valid API sequences, com-
parable to real programs. Our library usage analysis allows
FuzzGen to generate fuzzer stubs that are similar to what a
human analyst would generate after learning the API and
learning how it is used in practice. FuzzGen improves over a
human analyst in several ways: it leverages real-world usage
and builds fuzzer stubs that are close to real API invocations;
it is complete and leverages all uses of a library, which could
be manually overlooked; and FuzzGen scales to full systems
due to its automation without requiring human interaction.

At a high level, FuzzGen consists of three distinct phases, as
shown in Figure 1. First, FuzzGen analyzes the target library
and collects all code on the system that utilizes functions from
this library to infer the basic API. Second, FuzzGen builds
the Abstract API Dependence Graph (A2DG), which captures
all valid API interactions. Third, it synthesizes fuzzer stubs
based on the A2DG.

4.1 Inferring the library API
FuzzGen leverages the source files from the consumers to in-
fer the library’s exported API. First, the analysis enumerates
all declared functions in the target library, Flib. Then, it iden-
tifies all functions that are declared in all included headers of
all consumers, Fincl . Then, the set of potential API functions,
FAPI is:

FAPI ← Flib∩Fincl (1)

FuzzGen’s analysis relies on the Clang framework to ex-
tract this information during the compilation of library and
consumer. To address over-approximation of inferred library
functions (e.g., identification of functions that belong to an-
other library that is used by the target library), FuzzGen ap-
plies a progressive library inference. Each potential API func-
tion is checked by iteratively compiling a test program linked
with the target library. If linking fails, the function is not
part of the library. Under-approximations are generally not
a problem as functions that are exported but never used in a
consumer are not reachable through attacker-controlled code.

4.2 A2DG construction

FuzzGen iterates over library consumers that invoke API calls
from the target library and leverages them to infer valid API
interactions. It builds an abstract layout of library consumers
which is used to construct fuzzer stubs. Recall that FuzzGen
fuzzer stubs try to follow an API flow similar to that observed
in real programs to build up complex state. FuzzGen fuzzer
stubs allow some flexibility as some API calls may execute in
random order at runtime, depending on the fuzzer’s random
input. The A2DG represents the complicated interactions and
dependencies between API calls, allowing the fuzzer to satisfy
these dependencies. It exposes which functions are invoked
first (initialization), which are invoked last (tear down), and
which are dependent on each other.

The A2DG encapsulates two types of information: control
dependencies, and data dependences. Control dependencies
indicate how the various API calls should be invoked, while
data dependencies describe the potential dependencies be-
tween arguments and return values in the API calls (e.g., if
the return value of an API call is passed as an argument in a
subsequent API call).

The A2DG is a directed graph of API calls, similar to a
coarse-grained Control-Flow Graph (CFG) that expresses se-
quences of valid API calls in the target library. Edges are
also annotated with valid parameter ranges to further improve
fuzzing effectiveness as discussed in the following sections.
Each node in the A2DG corresponds to a single call of an
API function, and each edge represents control flow between
two API calls. The A2DG encodes the control flow across the
various API calls and describes which API calls are reachable
from a given API call. Figure 3 (a) shows an instance of the
CFG from a libopus consumer. The corresponding A2DG is
shown in Figure 3 (b).

Building the A2DG is two step process. First, a set of ba-
sic A2DGs is constructed, one A2DG for each root function
in each consumer. Second, the A2DGs of all consumers are
coalesced into a single A2DG.

Constructing a basic A2DG. To build a basic A2DG, Fuz-
zGen starts with a consumer’s CFG. If the consumer is a
library, FuzzGen builds CFGs for each exported API function,
otherwise it starts with the main function. To reconcile the
collection of CFGs, FuzzGen leverages the Call Graph of
the consumer. An individual analysis starts at the entry basic
block of every root function in the call graph to explore the
full consumer. This may lead to a large number of A2DGs for
a library consumer.

Starting from the entry basic block of a root function, Fuz-
zGen iteratively removes every basic block that does not con-
tain a call instruction to an API call. If a basic block contains
multiple call instructions to API functions, the basic block
is split into multiple A2DG nodes with one API call each. If
a basic block calls a non-API function, FuzzGen recursively
calculates the A2DG for the callee and results are integrated
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Figure 3: The FuzzGen workflow. FuzzGen starts with a CFG (a) and extracts the corresponding A2DG (b) (see (c) for the graph
of another module). The two A2DG graphs are then merged (d). The merged A2DG is then used to create fuzzers based on
function orders (e). These graphs are autogenerated by FuzzGen.

into the caller’s A2DG. The pass integrates the calls into the
root function. If the same non-API function is invoked mul-
tiple times, it is marked as a repeating function in the graph,
avoiding an explosion of the graph’s complexity. The algo-
rithm to create the A2DG is shown in Algorithm 1. A call
stack (CS) prevents unbounded loops when analyzing recur-
sive functions. Two maps (Mentry and Mexit ) link basic blocks
to individual nodes in the A2DG, allowing the algorithm to
locate the A2DG node a basic block corresponds to. Note that
the only case where Mentry and Mexit are different is when a
basic block contains more that one call to an API function.

After A2DG construction, each node represents a single
API call. The A2DG allows FuzzGen to isolate the flows
between API calls and expose their control dependencies.
Basic A2DG construction is a static analysis which results in
some over-approximation during CFG construction due to
indirect function calls. FuzzGen uses an LLVM Link Time
Optimization (LTO) analysis pass to extract this information.

Coalescing A2DG graphs. After generating A2DGs for
each consumer, FuzzGen merges them into a single A2DG:

Select any two A2DG graphs and try to coalesce them
together. Repeat this process until there are no two A2DG
that can be coalesced together.

To coalesce two A2DGs they must have at least one node
in common. Two nodes are considered “common” if they
invoke the same API call with the same arguments of the
same type. FuzzGen starts from the root and selects the first

common node. FuzzGen then removes the node from one
graph and migrates all children, along with their sub trees,
to the other A2DG, continuously merging common nodes. A
common node is a requirement, as placing the nodes from the
second A2DG at random positions will likely result in illegal
target states. If there are no common nodes, FuzzGen keeps
the A2DGs separate, synthesizing two different fuzzers.

Figure 3 (d) shows an example of the A2DG produced after
coalescing the two A2DGs in Figure 3 (b) and (c). The nodes
with function opus_decoder_destroy are coalesced (as the
argument is a handle, which has the same type), but other
nodes like opus_decoder_ctl are not coalesced as the argu-
ments are different. It is possible for the coalesced A2DG to
result in an inconsistent state, which results in an API misuse.
That is, the coalesced A2DG may contain a path (i.e., a subset
of API calls) that violates API usage and therefore causes
problems to execution state of the library. In Appendix A, we
explain this problem in detail.

Our experiments showed that it may be feasible to coalesce
two A2DGs without common nodes by backward-slicing and
locating function usages that invoke the API call. We leave
this along with other heuristics to coalesce A2DGs into a
single one, for future work.

Precision of A2DG construction. The current FuzzGen
A2DG construction has two sources of imprecision: static
analysis and merging. First, the static analysis results in an
over-approximation of paths. This may result in false posi-



Algorithm 1: A2DG construction.
Input: Function F to start A2DG construction
Output: The corresponding A2DG

1 Function make_AADG(Function F)
2 . “A∪= B” is shorthand for “A = A∪B”
3 if F ∈CS then return ( /0, /0) else CS ∪= {F}
4 GA2DG← (VA2DG, EA2DG)
5 foreach basic block B ∈CFGF do
6 . An empty vertex is not associated with an API call
7 Create empty vertex u, VA2DG∪= {u},

Mentry[B]← u

8 Q←{entry_block(F)} . single entry point
9 while Q is not empty do

10 remove basic block B from Q
11 v←Mentry[B]
12 foreach call instruction ci ∈ B in reverse order

do
13 if ci.callee ∈ FAPI then
14 if v is empty then
15 v← ci, Mentry[B]← v, Mexit [B]← v

16 else
17 . if already exists, split node
18 u← ci
19 VA2DG∪= {u}, EA2DG∪= {(u,v)}
20 v← u, Mentry[B]← u

21 else
22 AADG′←make_AADG(ci)
23 Create empty vertex sink
24 VA2DG∪=VA2DG′ ∪{sink}
25 EA2DG∪= EA2DG′

26 foreach leaf vl ∈ AADG′ do
27 EA2DG∪= {(vl , sink)}
28 foreach root vr ∈ AADG′ do
29 EA2DG∪= {(v, vr)}

30 foreach unvisited successor block Bad j of B do
31 add Bad j to Q
32 EA2DG∪= {(Mexit [B], Mentry[Bad j])}

33 . Drop empty nodes from AADG
34 foreach empty node v ∈ AADG do
35 foreach predecessor p of v do
36 foreach successor s of v do
37 EA2DG∪= {(p,s)}

38 remove v and its edges from VA2DG

39 CS←CS−{F}
40 return GA2DG

tives due to illegal API sequences that do not occur in real
programs. Second, the merging process may over-eagerly
merge two A2DGs with different or slightly different parame-
ters, resulting in illegal API sequences. We will discuss these
sources of false positives in Section 7.

4.3 Argument flow analysis
To create effective fuzzers, the A2DG requires both control
and data dependencies. To construct the data dependencies
between API calls FuzzGen leverages two analyses: argument
value-set inference (what values are possible) and argument
dependence analysis (how are individual variables reused).

Argument value-set inference. Argument value-set infer-
ence answers two questions: which arguments to fuzz and
how to fuzz these arguments. Supplying arbitrary random
values (i.e., “blind” fuzzing) to every argument imposes sig-
nificant limitations both in the efficiency and the performance
of fuzzing. Contexts, handles, and file/socket descriptors are
examples that result in large numbers of false positives. Sup-
plying random values for a descriptor in an API call results in
shallow coverage as there are sanity checks at the beginning
of the function call. Some arguments present diminishing
returns when being fuzzed. Consider an argument that is used
to hold output, or an argument that is part of a switch state-
ment. In both cases, a fuzzer will waste cycles generating
large inputs, where only a few values are meaningful. To
better illustrate this, consider a fuzzer for memcpy:

void *memcpy(void *dest, const void *src, size_t n);

Supplying arbitrary values to n makes it inconsistent with
the actual size of src, which results in a segmentation fault.
However this crash does not correspond to a real bug. Also, the
fuzzer may invest many cycles generating random values for
the dest argument, which is never read by memcpy() (please
ignore the corner case of overlapping source and destination
arguments for the sake of the example).

Our analysis classifies arguments into two categories ac-
cording to their type: primitive arguments (e.g., char, int,
float, or double) and composite arguments (e.g., pointers,
arrays, or structs). The transitive closure of composite argu-
ments are a collection of primitive arguments—pointers may
have multiple layers (e.g., double indirect pointers), structures
may contain nested structures, or arrays—and therefore they
cannot be fuzzed directly. That is, they cannot be assigned
a random (i.e., fuzz) value, upon the invocation of the API
call but require type-aware construction. Consider an API
call with a pointer to an integer as the first argument. Clearly,
fuzzing this argument results in segmentation faults when
the function dereferences a likely invalid pointer. Instead, the
pointer should point to an integer. The pointed-to address can
be safely fuzzed. FuzzGen performs a data-flow analysis in
the target library for every function for every argument, to
infer the possible values that an argument could get.

Argument dependence analysis. Data-flow dependencies
are as important as control-flow dependencies. A fuzzer must
not only follow the intended sequence of API calls but must
also provide matching data flow. For example, after creating
a context, it must be passed to specific API calls for further
processing. If this does not occur, it will likely result in a
violation of a state check or a spurious memory corruption.
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Figure 4: FuzzGen implementation overview.

Data-flow dependencies in an A2DG can be intra-
procedural and inter-procedural. First, FuzzGen identifies data
dependencies through static per-function alias analysis of the
code using libraries, tracking arguments and return values
across API calls. Static alias analysis has the advantage of be-
ing complete, i.e., allowing any valid data-flow combinations
but comes at the disadvantage of imprecision. For example,
if two API calls both leverage a parameter of type struct
libcontext then our static analysis may be unable to dis-
ambiguate if the parameters point to the same instance or
to different instances. This over-approximation can result in
spurious crashes. FuzzGen leverages backward and forward
slicing on a per-method basis to reduce the imprecision due
to basic alias analysis.

Second, FuzzGen identifies dependencies across functions:
For each edge in the A2DG, FuzzGen performs another data
flow analysis for each pair of arguments and return values to
infer whether whether they are dependent on each other.

Two alternative approaches could either (i) leverage con-
crete runtime executions of the example code which would
result in an under-approximation with the challenge of gener-
ating concrete input for the runtime execution or (ii) leverage
an inter-function alias analysis that would come at high anal-
ysis cost. Our approach works well in practice and we leave
exploration of more precise approaches as future work.

The A2DG (i.e., API layout) exposes the order and the
dependencies between the previously discovered API calls.
However, the arguments for the various API calls may expose
further dependencies. The task of this part is twofold: First,
it finds dependencies between arguments. For example, if an
argument corresponds to a context that is passed to multiple
consecutive API calls it should likely not be fuzzed between
calls. Second, it performs backward slicing to analyze the data
flow for each argument. This gives FuzzGen some indication
on how to initialize arguments.

4.4 Fuzzer stub synthesis
Finally, FuzzGen creates fuzzer stubs for the different API
calls and its arguments through the now complete A2DG.
An important challenge when synthesizing fuzzer stubs is to
balance between depth and breadth of the A2DG exploration.
For example, due to loops, a fuzzer stub could continuously

call the same API function without making any progress.
Instead of generating many fuzzer stubs for each A2DG,

FuzzGen creates a single stub that leverages the fuzzer’s en-
tropy to traverse the A2DG. At a high level, a stub encodes all
possible paths (to a certain depth) through the A2DG. The first
bits of the fuzzer input encode the path through the API calls
of the A2DG. Note that FuzzGen only encodes the sequence
of API calls through the bits, not the complete control flow
through the library functions themselves. The intuition is that
an effective fuzzer will “learn” that if certain input encodes an
interesting path, mutating later bits to explore different data-
flow along that path. As soon as the path is well-explored, the
fuzzer will flip bits to follow an alternate path.

5 Implementation

The FuzzGen prototype is written in about 19,000 lines of
C++ code, consisting of LLVM/Clang [25] passes that imple-
ment the analyses and code to generate the fuzzers. FuzzGen
generated fuzzers use libFuzzer [33] and are compiled with
Address Sanitizer [34].

FuzzGen starts with a target library and performs a whole
system analysis to discover all consumers of the library. The
library and all consumers are then compiled to LLVM bitcode
as our passes work on top of LLVM IR. Figure 4 shows a high
level overview of the different FuzzGen phases.

The output of FuzzGen is a collection (one or more) of
C++ source files. Each file is a fuzzer stub that utilizes lib-
fuzzer [33] to fuzz the target library.

Target API inference. FuzzGen infers the library API by
intersecting the functions implemented in the target library
and those that are declared in the consumers’ header files.

A2DG construction. FuzzGen constructs a per-consumer
A2DG by filtering out all non-API calls from each consumer’s
CFG, starting from the root functions. For program con-
sumers, the root function is main. To support libraries as
consumers, root functions are functions with no incoming
edges (using a backwards data-flow analysis to reduce the
imprecision through indirect control-flow transfers).



Attribute Description
dead Argument is not used
invariant Argument is not modified
predefined Argument takes a constant value from a set
random Argument takes any (random) value
array Argument is an array (pointers only)
array size Argument represents an array size
output Argument holds output (destination buffer)
by value Argument is passed by value
NULL Argument is a NULL pointer
function pointer Argument is a function pointer
dependent Argument is dependent on another argument

Table 1: Inferable argument attributes from value-set analysis.

Internal Argument Value-Set inference. Possible values
and their corresponding types for the function arguments are
calculated through a per-function data flow analysis. FuzzGen
assigns different attributes to each argument based on these
observations. These attributes allow the fuzzer to better ex-
plore the data space of the library. Note that this process is
imprecise due to aliasing. Table 1 shows the set of possi-
ble attributes. For example, if an argument is only used in
a switch statement, it can be encoded as a set of predefined
values. Similarly, if the first access to an argument is a write,
the argument is used to output information. Arguments that
are not modified (such as file descriptors or buffer lengths)
receive the invariant attribute.

External Argument Value-Set inference. Complement-
ing the internal argument value-set inference, FuzzGen per-
forms a backward slice from each API call through all con-
sumers, assigning the same attributes to the arguments.

Argument Value-Set Merging. Due to imprecision in the
analysis or potential misuses of the library, the attributes of
the arguments may differ. We need to carefully consolidate
the different attributes for each argument when merging the
attributes. Generally, FuzzGen’s analysis is more accurate
with external arguments. These arguments tend to provide
real use-cases of the function. Any internal assignments that
give concrete values, are used to complement the externally
observed values. Value-set merging is based on heuristics and
may be adjusted in future work.

Dependence analysis. Knowing the possible values for
each argument is not enough, the fuzzer must additionally
know when to reuse the same variable across multiple func-
tions. The dependence analysis infers when to reuse vari-
ables and when to create new ones between function calls.
FuzzGen performs a per-consumer data-flow analysis using
precise intra-procedural and coarse-grained inter-procedural
tracking to connect multiple API calls. While a coarse-grained
inter-procedural analysis may result in imprecision, it remains
tractable and scales to large consumers. The analysis records
any data flow between two API functions in the A2DG. Simi-
larly to other steps, aliasing may lead to further imprecision.

Failure Heuristics. To handle some corner cases, FuzzGen
uses a heuristic to discard error paths and dependencies.
Many libraries contain ample error checking. Arguments are
checked between API calls and, if an error is detected, the
program signals an error. The argument analysis will detect
theses checks as argument constraints. Instead of adding these
checks to the A2DG, we discard them. FuzzGen detects func-
tions that terminate the program or pass on errors and starts
the detection from there.

A2DG Coalescing. After initial A2DG construction, each
consumer results in a set of at least one A2DG. To create
fuzzers that explore more state, FuzzGen tries to coalesce dif-
ferent A2DG. Starting from an A2DG node where an API call
shares the exact same argument types and attributes, FuzzGen
continuously merges the nodes or adds new nodes that are
different. If the two graphs cannot be merged, i.e., there is a
conflict for an API call then FuzzGen returns two A2DGs. If
desired, the analyst can override merging policies based on
the returned A2DGs. However, coalescing may combine an
API call sequence that results in a state inconsistency (see
Appendix A for an example). An analyst may optionally dis-
able coalescing and produce a less generic fuzzer for each
consumer. Although this approach cannot expose deeper de-
pendencies, it increases parallelism, as different fuzzers can
target different aspects of the library.

A2DG Flattening. So far, the A2DG may contain complex
control flow and loops. To create simple fuzzers, we “flat-
ten” the A2DG before synthesizing a fuzzer. Our flattening
heuristic is to traverse the A2DG and to visit each API call
at least once by removing backward edges (loops) and then
applying a (relaxed) topological sort on the acyclic A2DG
to find a valid order for API calls. While a topological sort
would provide a total order of functions (and therefore result
in an overly rigid fuzzer), we relax the sorting. At each step
our algorithm removes all API functions of the same order
and places them in a group of functions that may be called in
random order.

Fuzzer Synthesis. Based on a flattened A2DG, FuzzGen
translates nodes into API calls and lays out the variables
according to the inferred data flow. The fuzzer leverages some
fuzz input to decode a concrete sequence for each group of
functions of the same order, resulting in a random sequence
at runtime. Before compiling the fuzzer, FuzzGen must also
include all the necessary header files. During the consumer
analysis, FuzzGen records a dependence graph of all includes
and, again, uses a topological sort to find the correct order for
all the header files.

FuzzGen Preprocessor. The source code to LLVM IR
translation is a lossy process. To include details such as
header declarations, dependencies across header files, pointer
arguments, array types, argument names, and struct names,
FuzzGen leverages a preprocessor pass that records this infor-
mation for later analysis.



Library Information Consumer Information Final A2DG
Name Type Src Files Total LoC Funcs API Total Used Total LoC Avg Dc UAPI Graphs Coal. Nodes Edges

A
nd

ro
id

libhevc video 303 113049 314 1 2 2 3880 0.002 1 10 5 29 58
libavc video 190 83942 581 1 2 2 4064 0.002 1 9 4 29 53
libmpeg2 video 118 19828 179 1 2 2 4230 0.001 1 9 5 30 56
libopus audio 315 50983 276 65 23 4 1079 0.074 12 4 4 24 30
libgsm speech 41 6145 31 8 9 4 396 0.060 7 4 4 57 88

D
eb libvpx video 1003 352691 1210 130 40 4 594 0.075 13 4 4 29 46

libaom video 955 399645 4232 86 39 4 491 0.106 17 4 4 40 51

Table 2: Codec libraries and consumers used in our evaluation. Library Information: Src Files = Number of source files, Total
LoC = Total lines of code (without comments and blank lines), Funcs = Number of functions found in the library, API = Number
of API functions. Consumer Information: Total = Total number of library consumers on the system, Used = Library consumers
included in the evaluation, Total LoC = Total lines of code of all library consumers (without comments and blank lines), Avg Dc
= Average consumer density, UAPI = Number of API functions used in the consumers. Final A2DG: Graphs = Total number of
A2DGs, Coalesced = Number of nodes coalesced (same as the number of A2DGs merges, since our algorithm uses a single node
for merging), Nodes, Edges = Total number of nodes and edges (respectively) in the final A2DG.

6 Evaluation

Evaluating fuzzing is challenging due to its inherent non-
determinism. Even similar techniques may exhibit vastly dif-
ferent performance characteristics due to randomness of input
generation. Klees. et al [24] set out guidelines and recom-
mendations on how to properly compare different fuzzing
techniques. Key to a valid comparison are (i) a sufficient num-
ber of test runs to assess the distribution using a statistical
test, (ii) a sufficient length for each run, and (iii) standardized
common seeds (i.e., a small set of valid corpus files in the
right format).

Following these guidelines, we run our fuzzers five (5)
times each (since results from a single run can be misleading),
with twenty-four (24) hour timeouts. In the FuzzGen exper-
iments, coverage tails off after a few hours with only small
changes during the remainder of the test run (see Figure 5).
Longer timeouts appear to have a negligible additional effect
on our results.

The effectiveness of a fuzzer depends on the number of
discovered bugs. However, code coverage is a complement-
ing metric that reflects a fuzzer’s effectiveness to generate
inputs that cover large portions of the program. Performance
is an orthogonal factor as more executed random tests broadly
increase the chances of discovering a bug.

Due to the lack of extensive previous work on library
fuzzing, we cannot compare FuzzGen to other automatic li-
brary fuzzers. As mentioned in Section 1, the primary method
for library fuzzing is to (manually) write a fuzzer stub that
leverages the libFuzzer [33] engine. We evaluate our Fuz-
zGen prototype on AOSP and Debian. Evaluating and testing
FuzzGen on two different systems demonstrates the ability
to operate in different environments with different sets of li-
brary consumers. Additionally, we compare FuzzGen against
libFuzzer stubs written by a human analyst. A second method
is to find a library consumer (which is a standalone applica-
tion) and use any of the established fuzzing techniques. We

forfeit the second method as the selection of the standalone
application will be arbitrary and highly influence the results.
There is no good metric on how an analyst would select the
“best” standalone application.

To compare FuzzGen, we select seven (7) widely deployed
codec libraries to fuzz. There are two main reasons for se-
lecting codec libraries. First, codec libraries present a broad
attack surface especially for Android, as they can be remotely
reached from multiple vectors as demonstrated in the Stage-
Fright [17] attacks. Second, codec libraries must support a
wide variety of encoding formats. They consist of complex
parsing code likely to contain more bugs and vulnerabilities.

We manually analyzed the API usage of each library and
wrote manual fuzzer stubs for libhevc, libavc, libmpeg2, and
libgsm. Luckily AOSP already provides manually written
fuzzers libopus, libvpx, and libaom which we can readily use.
Some libraries such as libmpeg2 have complicated interface
(see Section 2) and it took several weeks to sufficiently under-
stand all libraries and write the corresponding fuzzer stubs.
In comparison, FuzzGen generates a fuzzer in a few minutes
given the LLVM IR of the library and the consumers.

Table 2 shows all libraries that we used in the evaluation
for AOSP and Debian. Note that the libhevc, libavc, and libm-
peg2 libraries have a single API call (see Figure 2 for an
example) that acts as a dispatcher to a large set of internal
functions. To select the appropriate operation, the program ini-
tializes a command field of a special struct which is passed
to the function. Such dispatcher functions are challenging for
fuzzer synthesis and we chose these libraries to highlight the
effectiveness of FuzzGen.

6.1 Consumer Ranking

When synthesizing fuzzers, methods for consumer selection
are important. Fuzzers based on more consumers tend to in-
clude more functionality. This functionality, represented by
new API calls and transitions between API functions, can



Library
Manual fuzzer information FuzzGen fuzzer information Difference

Total
LoC

Edge Coverage (%) Bugs Found exec/
sec

Total
LoC

Edge Coverage (%) Bugs Found exec/
sec p Cov BugsMax Avg Min Std T U Max Avg Min Std T U

libhevc 308 56.15 55.70 55.32 0.32 2493 23 83 1170 74.50 74.16 74.01 0.18 404 7 29 0.012 +18.46 -16
libavc 306 54.91 50.30 44.71 4.28 283 1 *8 1155 70.62 65.98 64.65 2.33 0 0 151 0.008 +15.68 -1
libmpeg2 457 51.39 49.59 45.42 2.14 1509 3 20 1204 56.95 56.60 56.26 0.26 6753 3 47 0.012 +7.01 0
libopus 125 15.85 15.71 15.16 0.27 0 0 174 624 39.99 35.22 32.63 3.08 110 3 218 0.012 +19.51 +3
libgsm 121 75.55 75.55 75.31 0.00 0 0 5966 490 69.40 68.20 67.40 0.77 229 1 4682 0.012 -7.35 +1
libvpx 122 54.79 54.13 53.61 0.49 0 0 63 481 52.17 50.99 48.05 1.52 464652 1 2060 0.012 -3.14 +1
libaom 69 44.54 35.03 30.40 5.12 57 2 111 1132 41.10 33.43 25.96 5.87 75 2 166 0.674 -1.60 0

Table 3: Results from fuzzer evaluation on codec libraries. We run each fuzzer 5 times. Total LoC = Total lines of fuzzer
code, Edge Coverage % = edge coverage (max: maximum covarage from best run, avg: average coverage across all runs, min:
maximum coverage from the worst run, std: standard deviation of the coverage), Bugs found = Number of total (T) and unique
(U) bugs found, exec/sec = Average executions per second (from all runs), Difference = The difference between FuzzGen and
manual fuzzers (p value from Mann-Whitney U test, unique bugs and maximum edge coverage). *The executions per second in
this case are low because all 283 discovered bugs are timeouts.

increase the fuzzer’s complexity. An efficient fuzzer must
take both the amount of API calls and the underlying com-
plexity into account. It is important to consider how much
initialization state should be constructed before fuzz input
is injected into the process. It is also important to determine
how many API calls should be used in a single fuzzer to tar-
get a particular aspect of the library. During the evaluation,
we observed that adding certain consumers increased A2DG
complexity without increasing the API diversity or covering
new functionality. Merging too many consumers increases
A2DG complexity without resulting in more interesting paths.
Adding other consumers lead to the state inconsistency prob-
lem. Restricting the analysis to few consumers resulted in a
more representative A2DG, but opens another question: which
set of consumers provide a representative set of API calls?

FuzzGen ranks the “quality” of consumers from a fuzzing
perspective and creates fuzzers from high quality consumers.
The intuition is the number of API calls per lines of consumer
code (i.e., the fraction of API calls in a consumer) correlates
to a relatively high usage of the target API. That is, FuzzGen
selects consumers that are “library oriented”. We empirically
found that using four consumers demonstrates all features
of our prototype, such as A2DG coalescing, and results in
small fuzzers that are easy to verify. For the evaluation, the
generated fuzzers are manually verified to not violate the
implicit API dependencies or generate false positives.

However, in Appendix B we demonstrate how the number
of consumers affects the set of API functions and how the
generated A2DGs participate in the fuzzer. The number of
applied consumers tail off at a certain point. That is, addi-
tional consumers increase fuzzer complexity without adding
new “interesting” coverage of the API. In future work we
plan to explore other heuristics or even random selections of
consumers to construct potentially more precise A2DGs.

Formally, our heuristic for ranking consumers, is called
consumer density, Dc, and defined as follows:

Dc←
# distinct API calls

Total lines o f real code
(2)

6.2 Measuring code coverage

Code coverage is important both as feedback for the fuzzer
during execution and to compare different fuzzers’ ability
to explore a given program. Code overage can be measured
at different granularities: function, basic block, instruction,
basic block edges, and even lines of source code. FuzzGen,
like AFL and libFuzzer, uses basic block edge coverage.

For the evaluation, FuzzGen uses SanitizerCoverage [9], a
feature that is available in Clang. During compilation, Sani-
tizerCoverage adds instrumentation functions between CFG
edges to trace program execution. To optimize performance,
SanitizerCoverage does not add instrumentation functions on
every edge as many edges are considered redundant. This
means that the total number of edges that are available for
instrumentation during fuzzing do not correspond to the total
number of edges in the CFG.

Measuring code coverage for a single fuzzing run may
be misleading [24]. To address this, statistical testing is con-
ducted across the five runs to calculate the average coverage
over time. Since new code paths are found at different times,
we cannot simply calculate the average coverage for a given
time. To overcome this problem we use linear interpolation
to approximate the coverage for each fuzzing run at given
time intervals. Then we calculate the average code coverage
on each interval and visualize it in Figure 5 and Figure 6. Fi-
nally, we also report the results of the Mann-Whitney U test,
comparing the maximum coverage across all runs for man-
ual/generated fuzzers, according to [3]. The coverage of the
FuzzGen generated fuzzers are better (p < 0.05, two-tailed)
than the manually written fuzzers for all libraries except for
libaom, where the result is not statistically significant.

6.3 Android evaluation

To evaluate FuzzGen on Android, we set up a small device
cluster (details are shown in Appendix D) to fuzz the first
five (5) libraries. Table 3 shows the results of our fuzzing
execution. The first observation is that manual fuzzers are
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(c) libmpeg2
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(d) libopus
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(e) libgsm
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(f) libvpx
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Figure 5: Code coverage (%) over time for each library. Blue line shows the average edge coverage over time for manual fuzzers
and orange line shows the edge coverage for the best single run (among the 5) for manual fuzzers. Similarly, the green line shows
the average edge coverage for FuzzGen fuzzers, and the red line the edge coverage from best single run for FuzzGen fuzzers.
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Figure 6: Code coverage over time for libaom.

smaller in size as they target only a specific part of the library
(e.g., a decoding routine). Second, manual fuzzers are more
targeted. Due to the focus on a single component, manual
fuzzers can expose more bugs in that component compared to
FuzzGen fuzzers. Meanwhile, FuzzGen fuzzers are broader
and achieve a higher code coverage as they encode more
diverse API interactions. This however imposes complexity
which results in performance overhead, reducing the number
of executions per second. Given more additional resources,
FuzzGen fuzzers therefore allow the exploration of a broader
program surface in the long run.

To get a better intuition on the evolution of the fuzzing
process, we visualize the edge coverage over time as shown
in Figure 5a through Figure 5e. The libopus library has lower

total coverage (39.99%) than the other libraries tested. This
is because all selected consumers focused on the decoding
functionality. This aspect is highlighted in Table 2, where the
fuzzer includes only 12 API calls while the API exposes 65
functions. A different selection of library consumers that uti-
lize more aspects of the library (e.g., encoding functionality),
would result in higher coverage, illustrating that selection of
library consumers is crucial for FuzzGen fuzzing.

One of the key advantages of FuzzGen compared to man-
ual fuzzer collection is the scalability and automation that
FuzzGen provides. FuzzGen can leverage different sets of
consumers to create many different fuzzers (e.g., a fuzzer stub
focusing on encoding while another fuzzer stub focuses on
decoding), allowing an analyst to explore different parts of
the API in depth without having to manually create individual
fuzzer stubs. These automatically created fuzzers can run at
scale, simplifying the work of the analyst.

6.4 Debian evaluation

The Debian evaluation shows similar results to the Android
evaluation. Two (2) additional codec libraries were selected
for FuzzGen fuzzer generation. It is important to note the
difference in library consumer selection. On Android, con-
sumers are limited to those present in AOSP. On Debian, the



package manager is referenced to search for consumers that
depend on the given library. In both cases we leverage a “fi-
nite” ecosystem where we can iterate through all available
packages and select candidates to synthesize our fuzzers.

The last two columns of Table 3 show the results of run-
ning libvpx and libaom on Debian. The edge coverage over
time is shown in Figure 5f and Figure 6 respectively. The first
observation is that manual fuzzers have a lower rate of execu-
tions per second even though they are much smaller in size.
This is because they contain loops. That is, they use a loop
to continuously feed random input to the decoder. FuzzGen
fuzzers are loop-free, which implies they spend less time on
individual random inputs. For both libvpx and libaom, decod-
ing multiple frames results in building a more complicated
decoding state, which in turn triggers deeper code paths. It
is better to have a fuzzer that contains loops for these cases,
even though it achieves lower executions per second. For libo-
pus, the decoding state is much simpler—since it is an audio
library—so decoding multiple frames on each random input,
affects performance, which results in a lower coverage.

7 Discussion and future work

Our prototype demonstrates the power of automatic fuzzer
generation and API dependency analysis. As this is a first
step towards automation, we would like to highlight several
opportunities for improvement.

Maximum code coverage FuzzGen generated fuzzers
achieve 54.94% coverage on average compared to manually
written fuzzers that achieve only 48.00%. While FuzzGen
vastly simplifies the generation of fuzzers, it remains an open
question if the additional coverage substantially improves the
fuzzing effectiveness in itself and if full cumulative coverage
can be achieved by improving FuzzGen. The coverage we
report is the cumulative coverage across all inputs in a single
run. Given a fuzzer stub, only a certain amount of coverage
can be achieved given through a combination of the used API
functions and the arguments used for those functions. The
problem of the maximum possible coverage that a fuzzer can
achieve given a fuzzer stub is left for future work.

Single library focus. For now, FuzzGen focuses on a sin-
gle target library and does not consider interactions between
libraries. FuzzGen could be extended to support multiple
libraries and interactions between libraries. This extension
poses the interesting challenge of complex inter-dependencies
but will allow the exploration of such inter-dependencies
through an automated fuzzer. We leave this as future work.

Coalescing dependence graphs into a unifying A2DG.
When multiple library consumers are available, FuzzGen has
to either coalesce all generated A2DG into a single one or
generate a separate fuzzer of each library consumer While the
first approach can expose deeper dependencies and therefore

achieve deeper coverage, it could potentially result in state
inconsistencies. The latter approach increases parallelism, as
different clusters can fuzz different aspects of the library.

False positives. Imprecision in the static analysis and the
A2DG coalescing may result in spurious paths that result in
false positives. Fuzzing libraries is inherently challenging as
the API dependencies are not known. The analysis could trace
benign executions and extract benign API sequences to con-
struct the A2DG. This would result in an under-approximation
of all valid API sequences. However, the static analysis com-
bined with A2DG coalescing results in an over-approximation.
We argue that the over-approximation results in additional
freedom for the fuzzer to generate more interesting path com-
binations, allowing FuzzGen to trigger deep bugs at the cost of
a small false positive rate. In general, we propose to validate
the API sequence during triaging. The analyst can trace the
set of API calls and their parameters and manually check, for
each reported crash, that the API sequence is valid. We em-
pirically discovered that for some but few merged consumers,
the likelihood of false positives is low. For our evaluation, we
manually verified that the fuzzers cannot create false positives
by double checking all API sequences.

8 Conclusion

Despite their effectiveness in vulnerability discovery, existing
fuzzing techniques do not transfer well to libraries. Libraries
cannot run as standalone applications and fuzzing them re-
quires either a manually written libFuzzer stub that utilizes
the library, or to fuzz the library through a library consumer.
The wide diversity of the API and the interface of various
libraries further complicates this task. To address this chal-
lenge, we presented FuzzGen, a framework that automatically
infers API interactions from a library and synthesizes a target-
specific fuzzer for it. FuzzGen leverages a whole system anal-
ysis to collect library consumers and builds an Abstract API
Dependence Graph (A2DG) for them.

We evaluated FuzzGen on 7 codec libraries —which are no-
torious for having a complicated interface— and in all cases,
the generated fuzzers were able to discover 17 previously
unknown vulnerabilities and received 6 CVEs.

The source code of our prototype is available online at
https://github.com/HexHive/FuzzGen.
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A State Inconsistency

Although coalescing increases the generality of the fuzzers,
it suffers from the state inconsistency problem. Consider for
instance a fuzzer of a socket library and two library consumers
(a) and (b) as shown below:

1 /* consumer #1 */
2 sd = socket(...);
3 connect(...);
4

5 // send only sock
6 shutdown(sd,
7 SHUT_RD);
8 write(sd, ...);
9

10 close(sd);

(a)

/* consumer #2 */
sd = socket(...);
connect(...);

// send & recv
write(sd, ...);

read(sd, ...);

close(sd);

(b)

/* coalesced */
sd = socket(...);
connect(...);

shutdown(sd,
SHUT_RD);

write(sd, ...);
read(sd, ...);

close(sd);

(c)

The first module connects to a server and terminates the
read side of the socket (as it only sends data). The second
module both sends and receives data. If we ignore the argu-
ments for now, the functions socket, connect and write
are shared between the two consumers and they are therefore
coalesced. The result is the coalesced fuzzer shown in (c).
However this results in an inconsistency where the fuzzer
closes the read side of the socket and later tries to read from
it. Although the fuzzer does not crash, the coalesced module
violates the state and is therefore not a useful fuzzer.
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Consumers API A2DG
Used Found Total Nodes Edges

0 0 0 1 0 0
1 6 34 1 7 12
2 6 34 1 9 14
3 10 34 1 16 22
4 12 34 1 24 30
5 25 51 1 142 289
6 31 51 2 148 303
7 33 65 2 181 438
8 44 65 1 540 1377
9 47 65 2 551 1393

10 50 65 2 611 1473
11 51 65 2 613 1475
12 53 65 2 697 1587
13 56 65 2 883 1773
14 56 65 2 885 1778
15 56 65 2 885 1778

Table 4: Complexity increase for the libopus library. Con-
sumers: Total number of consumers used. API: Used: Total
number of distinct API calls used in the final fuzzer. Found:
Total number of distict API calls identified in headers. A2DG:
Total: Total number of A2DG graphs produced (if coalesc-
ing is not possible there are more than one graphs). Nodes
& edges: The total number of nodes and edges across all
A2DGs.
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Figure 7: Consumer tail off for distinct API calls for libopus
library.

A2DG coalescing results in aggressive fuzzers that achieve
deeper coverage and find more bugs. The downside is that
coalescing may introduce false positives where the API is vio-
lated, resulting in false bugs. Without coalescing, the fuzzers
are redundant and will not achieve coverage as deep as the
coalesced fuzzers but will not introduce any false positives.
In our empirical evaluation we discovered that the number of
false positives is low and we therefore enable coalescing but
leave it as a configurable option. In future work, we will look
at how to tune coalescing aggressiveness, i.e., deciding how
and when to coalesce based on a heuristic.

B Library Consumer Complexity

We empirically determined that a maximum of four consumers
is a reasonable balance between complexity, breadth of ex-
plored API, and fuzzing effectiveness. To demonstrate the loss
of effectiveness and the unnecessary increase in complexity

CVE number Severity Component Description

CVE-2019-2176 Critical libhevc
Heap Buffer Overflow in
ihevcd_parse_buffering_period_sei

CVE-2019-2108 Critical libhevc
Stack buffer overflow in
ihevcd_ref_list

CVE-2019-2107 Critical libhevc
Multiple heap buffer overflows in
ihevcd_decode

CVE-2019-2106 Critical libhevc
Stack buffer underflow in
ihevc_sao_edge_offset_class2_chroma_ssse3

CVE-2017-13187 High libhevc
Out of bounds read in
ihevcd_nal_unit

CVE-2017-0858 Medium libavc
NULL pointer dereference in
ih264d_parse_decode_slice

Table 5: Assigned CVEs for the vulnerabilities found by Fuz-
zGen.

when adding too may consumers, we present a case study on
the libopus library where we continuously and iteratively
merge consumers. We start with one consumer and progres-
sively add more consumers (following our predetermined
ranking). We measure the total number of API calls found in
the consumer along with the size of the corresponding A2DG.
Table 4 shows how the number of consumers increases the
size of the explored API. Only 7 consumers are enough to
discover the complete API. However, the generated fuzzer
only executes 33 different API calls. With increasing number
of merged consumers, the fuzzer then executes more API calls
until we reach a plateau at 13 merged consumers. Note that
the fuzzer creates one path through the program that strings
these API calls together. Libraries expose different function-
ality that are hard to streamline. This additional complexity
slows down the fuzzer and prohibits it from discovering bugs
quickly. Additionally, the generated fuzzers are harder for an
analyst to analyze and, due to the repeated merging process,
we increase the chances of false positives. Our observation
is that it is better to create several smaller fuzzers than one
complex fuzzer.

Figure 7 visualizes the discovery of API calls relative to
the increasing set of merged library consumers. With 15 con-
sumers FuzzGen generates a fuzzer stub with 8,375 lines of
code. Despite this enormous size, it compiled and discovered
a crash. However verifying whether this crash is a false posi-
tive or not, is extremely challenging due to the complexity of
the API interactions in the fuzzer.

C Overview of Disclosed Vulnerabilities

During our evaluation, the generated fuzzers discovered 17
vulnerabilities, 6 of which were assigned CVEs (Table 5).
Following responsible disclosure, some vulnerabilities are
still under embargo.

CVE-2019-2106 [13] is a critical vulnerability found
in the High Efficiency Video Coding (HEVC) [38] library
on Android. The vulnerability is an out of bounds write—
which could lead to an arbitrary write—and resides in-
side ihevc_sao_edge_offset_class2_chroma_ssse3, as
shown below:



1 void ihevc_sao_edge_offset_class2_chroma_ssse3(UWORD8 *pu1_src,
2 WORD32 src_strd, UWORD8 *pu1_src_left, UWORD8 *pu1_src_top,
3 UWORD8 *pu1_src_top_left, UWORD8 *pu1_src_top_right,
4 UWORD8 *pu1_src_bot_left, UWORD8 *pu1_avail,
5 WORD8 *pi1_sao_offset_u, WORD8 *pi1_sao_offset_v,
6 WORD32 wd, WORD32 ht) {
7

8 WORD32 row, col;
9 UWORD8 *pu1_src_top_cpy, *pu1_src_left_cpy, *pu1_src_left_cpy2;

10

11 /* ... */
12

13 //availability mask creation
14 u1_avail0 = pu1_avail[0];
15 u1_avail1 = pu1_avail[1];
16 au1_mask[0] = u1_avail0;
17 au1_mask[1] = u1_avail0;
18 au1_mask[wd - 1] = u1_avail1;
19 au1_mask[wd - 2] = u1_avail1; // Crash. OOB write --->

CVE-2017-13187 [12] is another high severity vulnerabil-
ity found in the same component. This time, the vulnerability
is an out of bounds read—which can cause remote denial
of service—and resides inside ihevcd_nal_unit as shown
below:

1 IHEVCD_ERROR_T ihevcd_nal_unit(codec_t *ps_codec)
2 {
3 IHEVCD_ERROR_T ret = (IHEVCD_ERROR_T)IHEVCD_SUCCESS;
4

5 /* NAL Header */
6 nal_header_t s_nal;
7

8 ret = ihevcd_nal_unit_header(&ps_codec->s_parse.s_bitstrm,
9 &s_nal);

10

11 RETURN_IF((ret != (IHEVCD_ERROR_T)IHEVCD_SUCCESS), ret);
12

13 if(ps_codec->i4_slice_error)
14 s_nal.i1_nal_unit_type = // Crash. OOB read. --->
15 ps_codec->s_parse.ps_slice_hdr->i1_nal_unit_type;

Supplying a frame with malformed slices to the decoder
triggers both an out-of-bounds write (using the first vulnera-
bility) and an out-of-bounds read (using the second vulnera-
bility).

D Lab setup used for Android evaluation

To evaluate our fuzzers we utilized a set of twelve (12) Pixel-
2 (walleye) devices. This setup allowed us to run repeated
24-hour fuzzing sessions. Figure 8 shows our device cluster.

Figure 8: Our device fuzzing cluster.
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