
SpecROP: Speculative
Execution of ROP chains

Atri Bhattacharyya*, Andrés Sánchez*, Esmaeil M. Koruyeh+,

Nael Abu-Ghazaleh+, Chengyu Song+, Mathias Payer*

* +

Speculative Execution Attacks (SEA)

SpecROP is based on SEA

SEA execute gadgets speculatively
• Gadgets must already exist in the target

• Existing gadgets are monolithic

Monolithic gadget
• accesses secrets, and

• leaks secrets (side-channel dependent)

Misprediction
if (x < length)

Gadget
y = array1[x]
z = array2[y*4096]

The “power” of SEAs depend on the existing gadgets

2

Spectre-v1

SEA requires powerful monolithic gadgets

Requirements:
1. Accesses the right secret (requires pointer to the secret), or

2. Leaks the right secret (requires the secret in the correct register)

3. Must exist (long, unusual sequences might not exist).

Reality:
• SMoTherSpectre cannot leak AES key from OpenSSL

• No pointer to key (1)

• Key not in a register (2)

• No monolithic Spectre gadget in real programs (3)

Jetpack:
- Fuel tank
- Jet engine
- Controls

SEA suffer from the lack of appropriate gadgets
Icons made by photo3idea_studio from Flaticon 3

https://www.flaticon.com/authors/photo3idea-studio
https://www.flaticon.com/

Divide and conquer

SpecROP is inspired by ROP attacks

Return Oriented Programming (ROP) attacks
• Non-speculative, code reuse attacks

• Sequence of small gadgets (more likely to exist)

• End in ret (can be chained to next gadget)

SpecROP principles
• Use simpler gadgets ending in jmp/ret

• Train branch predictor to chain gadgets

• Use intermediate gadgets to modify state
(increment pointers, left/right shift registers, move data between registers)

SpecROP enables SEA and makes it more powerful

4

First Gadget

SpecROP principle

Starts at a indirect jump
• Holds secrets/pointers to secrets in registers

Secret-dependent microarchitectural change

5

SpecROP links small, simple gadgets into a powerful gadget chain

Indirect Jump

Second Gadget

…

Leakage

St
ar

t
o

f
sp

ec
u

la
ti

o
n

P
ro

ce
ss

in
g

ga
d

ge
ts

Le
ak

ag
e

o
f

se
cr

et

Prepares secret for leakage
Arithmetic gadgets
Shift gadgets
Data movement gadgets

Spectre v1 with chains

The Spectre v1 gadget reads a secret, then makes a secret-dependent load

C: y = array1[x]

z = array2[y*4096]

Monolithic gadget not found in the wild

6

mov (rax,rdi,8), rax
shl 0xc, rax
mov (rdx,rax,8), rax

mov (rdx, rax,1), edx
call *(rbx + 0x20)

shl 0x20, rdx
..
ret

mov (rbx,rdx,8), rsi

Assumptions:
rax = array1
rdx = array2
rdi = x

Assumptions:
rdx = array1
rbx = array2
rax = x

SpecROP chain for Spectre v1 exists!

OpenSSL key leakage

(De)Encryption calls do_cipher(ctx, …) using indirect call

7

SpecROP chains are expressive

mov 0x78(rdi),rdi
mov (rdi),rax
test 0x1,rax
jmp …
crc32
popcnt

lea 0x20(rdi),rdi
rdi = &ctx + 0x20

mov 0x58(rdi),rax
rax = cipher_data

= &AES key

testb 0x1,(rax)
jmp …

Processing Leakage

Required gadget

call *0x20(rax)
rdi = &ctx

SpecROP gadget chain

Evaluation (1/3): Attacker models

i7-6700K i7-8700 i7-9700 i7-10510U

Cross process N N N N

Cross thread Y Y N N

Aliased Y Y Y Y

8

Tried 3 attacker models:
• Cross process between SMT threads

• Cross thread between SMT threads

• Single thread, aliased instructions

4 “generations” of Intel processors

Aliased attacks are a practical threat

Evaluation (2/3): Length of gadget chain

Setup:

• Attacker trains BTB
• Goes through gadgets J0 to J15

• Each gadget ends with indirect jump

• Victim
• (architecturally) jumps to J15

• (speculatively) uses predictions from BTB,
executes some gadgets

• We track executed gadgets, each loading a unique address

9

J0

J2

J13

J4

J10

…

J15

J0

J2

J13

J4

J15

Attacker Victim

Thread 0 Thread 1

Start Start

Evaluation (2/3): Length of gadget chain

Testbed:
• Tested on i7-6700K and i7-8700

• With and without microcode updates

Results:
• Up-to 4 gadgets can reasonably be chained

• Microcode does not affect success rate

10

Practical attacks may use up-to 4 gadgets

Evaluation (3/3): Characterization of gadgets

We created a gadget-search tool: SpecFication

SpecFication phases:
• Disassembly: Get a list of potential processing gadgets

• Characterisation: Express gadgets semantics

• Solving: Express wanted gadget as constraints, check constraints

11

Library Binary size Gadgets

libcrypto 3.3M 13k

libc 1.8M 15k

libdl 15K 266

mod_ssl 235K 490

mod_proxy 131K 338

mod_http2 244K 1,113

Evaluation (3/3): Characterization of gadgets

Large skew in availability of arithmetic gadgets for different registers

Plentiful data-movement gadgets between pairs of <source, destination> registers (max 240)

12

Library rax rbx rcx rdx rdi r11
libcrypto 665 259 34 78 69 0
libc 889 317 128 171 419 0
libdl 25 6 0 0 0 0
mod_ssl 12 8 0 4 0 0
mod_proxy 12 6 0 0 2 0
mod_http2 46 5 0 5 0 0

Arithmetic + data movement gadgets allow expressive computation

Library Register-pairs Chained

libcrypto 116 210

libc 101 204

Limitations

Lower signal-to-noise ratio

• Leakage gadget reached less often

Processing gadgets:

• Are limited by speculation window

• Cannot reuse gadgets ending in indirect jump

• Cannot write to the jump target

Advantage:

• Can fault without ending speculation

For discussion of ret, see paper

13

SpecROP introduces noise from gadget chaining

First Gadget

Indirect Jump

Second Gadget

…

Leakage

St
ar

t
o

f
sp

ec
u

la
ti

o
n

P
ro

ce
ss

in
g

ga
d

ge
ts

Le
ak

ag
e

o
f

se
cr

et

Mitigations

Prevent branch misprediction:
• SW only: retpolines

• SW/HW: IBRS/IBPB

• HW only: Intel CET and other CFI (control-flow integrity) measures

Finding potential chains through static analysis:
• State explosion, potentially incomplete

• Side-channel specific

Practically:
• Find vulnerable branches (with sensitive information/pointers) statically

• Protect with retpolines

14

Comprehensive mitigation for SpecROP require speculative CFI in hardware

Conclusions

SpecROP breaks monolithic gadget into several, simple gadgets
• Gadgets chained by training branch predictor

• Enables certain attacks previously impossible (e.g. Spectre-v1)

• Extend leakage of other attacks (e.g. SMoTherSpectre)

Practicality of SpecROP is limited
• Branch poisoning much harder today

• The attack surface still remains

• Proper hardware CFI is needed

Gadget search using symbolic analysis of binaries is effective

15

Code available at https://github.com/HexHive/specrop
Questions in Q&A (or atri[dot]bhattacharyya[at]epfl[dot]ch)

https://github.com/HexHive/specrop

Evaluation

Q1: Which attacker models allow SpecROP?

Q2: How many gadgets can I chain?

Q3: How many processing gadgets exist in real binaries?

16

Overview

• Introduction

• SpecROP attack principle
• Spectre v1 case-study

• OpenSSL case-study

• Evaluation

• Limitations

• Mitigations

• Conclusion

17

