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SYSTEMS ATTACKS AND DEFENSES 

S oftware contains bugs, and some 
bugs are exploitable. Mitigations 

protect our systems in the presence 
of these vulnerabilities, often stop
ping the program once a security 
violation has been detected. The alter
native is to discover bugs during de 
velopment and fix them 
in the code. The task of 
finding and reproducing 
bugs is difficult; however, 
fuzzing is an efficient way 
to find securitycritical 
bugs by triggering ex 
ceptions, such as crashes, 
memory corruption, or 
assertion failures automatically (or 
with a little help). Furthermore, fuzz
ing comes with a witness (proof of the 
vulnerability) that enables developers 
to reproduce the bug and fix it.

Software testing broadly focuses 
on discovering and patching bugs 
during development. Unfortunately, 
a program is only secure if it is free 
of unwanted exceptions. Security, 
therefore, requires proof of the ab 
sence of security violations. For exam
ple, a bug becomes a vulnerability if 
any attackercontrolled input reaches 
a program location that allows a 
security violation, such as memory 
corruption. Software security testing, 
therefore, requires reasoning about all 
possible executions of code at once 
to produce a witness that violates the 
security property. As Edsger W. Dijks
tra said in 1970: “Program testing can 
be used to show the presence of bugs, 
but never to show their absence!”

System software, such as a browser, 
a runtime system, or a kernel, is writ
ten in lowlevel languages (such as C 
and C++) that are prone to exploit
able, lowlevel defects. Undefined 
behavior is at the root of lowlevel 
vulnerabilities, e.g., invalid pointer 

dereferences resulting in memory 
corruption, casting to an incompat
ible type leading to type confusion, 
integer overflows, or application 
programming interface (API) con
fusion. To cope with the complexity 
of current programs and find bugs, 
companies such as Google, Micro
soft, and Apple integrate dynamic 
testing into their software develop
ment cycle.

Fuzzing, the process of provid
ing random input to a program to 
intentionally trigger crashes, has been 
around since the early 1980s. A revival 
of fuzzing techniques is taking place 
as evidenced by papers presented at 
toptier security conferences show
ing improvements in the techniques’ 
effectiveness. The idea of fuzzing is 
simple: execute a program in a test 
environment with random input and 
see if it crashes. The fuzzing process is 
inherently sound but incomplete. By 
producing trial cases and observing 
whether the tested program crashes, 
fuzzing produces a witness for each 

discovered crash. As a dynamic testing 
technique, fuzzing is incomplete for 
nontrivial programs as it will neither 
cover all possible program paths nor 
all dataflow paths except when run 
for an infinite amount of time. Fuzz
ing strategies are inherently optimiza

tion problems where the 
available resources are 
used to discover as many 
bugs as possible, covering 
as much of the program 
functionality as possible 
through a probabilistic 
exploration process. Due 
to its nature as a dynamic 

testing technique, fuzzing faces several 
unique challenges:

 ■ Input generation: Fuzzers generate 
inputs based on a mutation strat
egy to explore a new state. Because 
the fuzzer is aware of the program 
structure, it can tailor input gener
ation to the program. The under
lying strategy determines how 
effectively the fuzzer explores a 
given state space. A challenge for 
input generation is finding the 
balance between exploring new 
paths (control flow) and execut
ing the same paths with different 
input (data flow).

 ■ Execution engine: The execution 
engine takes newly generated input 
and executes the program under 
test with that input to detect flaws. 
Fuzzers must distinguish between 
benign and buggy executions. Not 
every bug results in an immediate 
segmentation fault, and detecting a 
state violation is a challenging task, 
especially as code generally does 
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The idea of fuzzing is simple: execute 

a program in a test environment with 

random input and see if it crashes.



not come with a formal model. 
Additionally, the fuzzer must dis
ambiguate crashes to identify bugs 
without missing true positives.

 ■ Coverage wall: Fuzzing struggles 
with some aspects of code. It may, 
for example, have difficulty han
dling a complex API, checksums 
in file formats, or hard compari
sons, such as a password check. 
Preparing the fuzzing environ
ment is a crucial step to increase 
the efficiency of fuzzing.

 ■ Evaluating fuzzing effectiveness: 
Defining the metrics for evaluat
ing the effectiveness 
of a fuzzing campaign 
is chal lenging. For 
most programs, the 
state space is (close to) 
infinite, and fuzzing is 
a bruteforce search in 
this state space. Decid
ing, for example, when 
to move to another target, path, or 
input is a crucial aspect of fuzzing. 
Orthogonally, comparing differ
ent fuzzing techniques requires an 
understanding of the strengths of 
a fuzzer and the underlying statis
tics to enable a fair comparison.

Input Generation
Input generation is essential to the 
fuzzing process as every fuzzer must 
automatically generate test cases to 
be run on the execution engine. The 
cost of generating a single input must 
be low, following the underlying 
philosophy of fuzzing where itera
tions are cheap. Through input gen
eration, the fuzzer implicitly selects 
which parts of the tested program 
are executed. Input generation must 
balance dataflow and controlflow 
exploration (discovering new code 
areas compared to revisiting previ
ously executed code areas with alter
nate data) while considering what 
areas to focus on. There are two fun
damental forms of input generation: 
model and mutationbased input 
generation. The first is aware of the 
input format while the latter is not.

Knowledge of the input structure 
given through a formal description 
enables modelbased input genera
tion to produce (mostly) valid test 
cases. The model specifies the input 
format and implicitly indicates the 
explorable state space. Based on the 
model, the fuzzer can produce valid 
test cases that satisfy many checks 
in the program, such as valid state 
checks, dependencies between fields, 
or checksums such as a CRC32. For 
example, without an input model, 
most randomly generated test cases 
will fail the equality check for a cor

rect checksum and quickly error 
out without triggering any complex 
behavior. The model allows input 
generation to balance the created test 
inputs according to the underlying 
input protocol. The disadvantage of 
modelbased input generation is that 
it needs an actual model. Most input 
formats are not formally described 
and will require an analyst to define 
the intricate dependencies.

Mutationbased input genera
tion requires a set of seed inputs 
that trigger valid functionality in the 
program and then leverages random 
mutation to modify these seeds. Pro
viding a set of valid inputs is signifi
cantly easier than formally specifying 
an input format. The inputmutation 
process then constantly modifies 
these input seeds to trigger behavior 
that researchers want to study.

Regardless of the inputmutation 
strategy, fuzzers need a fitness func
tion to assess the quality of the new 
input and guide the generation of 
new input. A fuzzer may leverage the 
program structure and code coverage 
as fitness functions. There are three 
approaches to observing the program 

during fuzzing to provide input to 
the fitness function. Whitebox fuzz
ing infers the program specification 
through program analysis but often 
results in untenable cost. For exam
ple, the scalable automated guided 
execution whitebox fuzzer leverages 
symbolic execution to explore differ
ent program paths. Blackbox fuzzing 
blindly generates new input without 
reflection. The lack of a fitness func
tion limits blackbox fuzzing to func
tionality close to the provided test 
cases. Greybox fuzzing leverages 
lightweight program instrumenta

tion instead of heavier 
program analysis to infer 
coverage during the fuzz
ing campaign itself, merg
ing analysis and testing.

Coverageguided gray 
box fuzzing combines 
mutationbased input 
generation with program 

instrumentation to detect whenever 
a mutated input reaches new cover
age. Program instrumentation tracks 
which areas of the code are executed, 
and the coverage profile is tied to 
specific inputs. Whenever an input 
mutation generates new coverage, it 
is added to the set of inputs for muta
tion. This approach is highly efficient 
due to the lowcost instrumentation 
but still results in broad program cov
erage. Coverageguided fuzzing is the 
current de facto standard, with Amer
ican fuzzy lop1 and honggfuzz2 as the 
most prominent implementations. 
These fuzzers leverage execution feed
back to tailor input generation with
out requiring the analyst to have deep 
insight into the program structure.

A difficulty for input generation is 
finding the perfect balance between 
the need to discover new paths and 
the need to evaluate existing paths 
with different data. While the first 
increases coverage and explores new 
program areas, the latter explores 
already covered code through the 
use of different data. Existing metrics 
have a heavy controlflow focus as 
coverage measures how much of the 

Through input generation, the fuzzer 

implicitly selects which parts of the 

tested program are executed.
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program has already been explored. 
Dataflow coverage is only measured 
implicitly with inputs that execute 
the same paths but with different 
data values. A good inputgeneration 
mechanism balances the explicit 
goal of extending coverage with the 
implicit goal of rerunning the same 
input paths with different data.

Execution Engine
After the fuzzer generates test cases, 
it must execute them in a controlled 
environment and detect when a 
bug is triggered. The 
execution engine takes 
the fuzz input, executes 
the program under test, 
extracts runtime infor
mation, such as cover
age, and detects crashes 
(Figure 1). Ideally, a program would 
terminate whenever a flaw is trig
gered. For example, an illegal pointer 
dereference on an unmapped mem
ory page results in a segmentation 
fault, which terminates the program, 
allowing the executing engine to 
detect the flaw. Unfortunately, only 
a small subset of security violations 
will result in program crashes. Buf
fer overflows into adjacent memory 
locations, for instance, may never 
be detected at all or may only be 
detected later if the overwritten 

data are used. The challenge for this 
component of the fuzzing process 
is to efficiently enable the detec
tion of security violations. For 
example, without instrumentation, 
only illegal pointer dereferences to 
unmapped memory, controlflow 
transfers to nonexecutable memory, 
division by zero, or similar viola
tions will trigger an exception.

To detect security violations 
early, the tested program may be 
instrumented with additional soft
ware guards. It is especially tricky 

to find security violations through 
undefined behavior for code writ
ten in system languages. Sanitiza
tion analyzes and instruments the 
program during the compilation 
process to detect security violations. 
Address Sanitizer,3 the most com
monly used sanitizer, employs prob
ability to detect spatial and temporal 
memory safety violations by placing 
red zones around allocated memory 
objects, keeping track of allocated 
memory, and checking mem
ory accesses. Other LLVMbased 

sanitizers cover undefined behav
ior, uninitialized memory, or type 
safe  ty violations through illegal 
casts.4 Each sanitizer requires a cer
tain type of instrumentation, which 
increases the performance cost. 
The use of sanitizers for fuzz
ing, therefore, has to be carefully 
evaluated as, on one hand, it makes  
error detection more likely but, on 
the other hand, it reduces fuzz
ing throughput.

The main goal of the execution 
engine is to conduct inputs as fast 
as possible. Several fuzzing optimi
zations, such as fork servers, per
sistent fuzzing, or special operating 
system (OS) primitives, reduce the 
time for each execution by adjust
ing system parameters. Fuzzing 
with a fork server executes the pro
gram up to a certain point and then 
forks new processes at that location 
for each new input. This allows the 
execution engine to skip over ini
tialization code that would be the 
same for each execution. Persistent 
fuzzing allows the execution engine 
to reuse processes in a pool with 
new fuzzing input, resetting the 
state between executions. Different 
OS primitives for fuzzing reduce 
the cost of process creation by, for 

example, simplifying the 
creation of page tables and 
optimizing scheduling for 
shortlived processes.

Modern fuzzing is heav
ily optimized and focuses 
on efficiency, measured 

by the number of bugs found per 
unit of time. Sometimes fuzzing 
efficiency is implicitly measured by 
the number of crashes found per 
unit of time. However, crashes are 
not necessarily unique, and many 
crashes could point to the same 
bug. Disambiguating crashes to 
locate unique bugs is an important 
but challenging task. Multiple bugs 
may cause a program crash at the 
same location, whereas one input 
may trigger multiple bugs. A fuzzer 
must triage crashes conservatively 

Input Generation
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Debug
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Figure 1. Fuzzing consists of an execution engine and an input-generation process that runs executables, 
which are often instrumented with explicit memory safety checks. (a) The input-generation mechanism 
(the blue box marked “Input Generation”) may leverage existing test cases (“Tests”) and execution 
coverage to generate new test inputs. For each discovered crash, the fuzzer provides a witness (the 
input that triggers the crash). (b) The execution engine. (c) A “bug” triggers the crash. The icon marked 
“Coverage” indicates input that has passed through the execution engine. Some of that input may pass 
through the input-generation process again. Arrows indicate the direction of process. Exe: executable.

The main goal of the execution engine is 

to conduct inputs as fast as possible.
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so that no true bugs are removed. 
Yet the triaging must not overload 
the analyst with redundant crashes.

Coverage Wall
In addition to massive parallelism, a 
key advantage of fuzzing compared 
to more heavyweight analysis tech
niques is its simplicity. However, 
due to this simplicity, fuzzing can 
get stuck in local minima in front 
of a coverage wall. When this hap
pens, continuous input generation 
will not result in either 
additional crashes or 
new coverage. A com
mon approach to cir
cumvent the coverage 
wall is to extract seed val
ues used for compari
sons. These seed values 
are then used during the 
inputgeneration pro
cess. Orthogonally, a developer 
can comment out hard checks, such 
as CRC32 comparisons, or checks 
for magic values. Removing these 
noncritical checks from the program 
requires a knowledgeable developer 
to tailor fuzzing for each program.

Several recent extensions5–8 try 
to bypass the coverage wall by auto
matically detecting when the fuzzer 
gets stuck and, then, if the problem 
is detected, leveraging an auxil
iary analysis to either produce new 
inputs or modify the program. It is 
essential that this (sometimes heavy
weight) analysis is executed only 
rarely, as alternating between analy
sis and fuzzing is costly and reduces 
fuzzing throughput.

Fuzzing libraries also face the 
challenge of experiencing low cov
erage during unguided fuzzing cam
paigns. Programs often call exported 
library functions in sequence, build
ing up a complex state in the pro
cess. The library functions execute 
sanity checks and quickly detect an 
illegal or missing state. These checks 
make library fuzzing challenging, as 
the fuzzer is not aware of the depen
dencies between library functions. 

Existing approaches, such as Lib
Fuzzer, require an analyst to prepare 
a test program that calls the library 
functions in a valid sequence to 
build up the necessary state to fuzz 
complex functions.

Evaluating Fuzzing
In theory, evaluating fuzzing is straight
forward: in a given domain, if tech
nique A finds more unique bugs than 
technique B, then technique A is 
superior to technique B. In practice, 

evaluating fuzzing is very difficult 
due to the randomness of the pro
cess and domain specialization (e.g., 
a fuzzer may only work for a certain 
type of bug or in a certain environ
ment). Rerunning the same experi
ment with a different random seed 
may result in vastly different numbers 
of crashes, discovered bugs, and itera
tions. A recent overview of the state 
of the art9 evaluated the common 
practices of recently published fuzz
ing techniques. The study’s authors, 
after identifying common bench
marking mistakes when comparing 
different fuzzers, drew four observa
tions from their findings:

 ■ Multiple executions: A single exe
cution is not enough due to the 
randomness in the fuzzing pro
cess. Input mutation relies on ran
domness to decide, according to 
the mutation strategy, where to 
mutate input and what to mutate. 
In a single run, one mechanism 
could discover more bugs simply 
by chance. To evaluate different 
mechanisms and measure noise, 
we require multiple trials and sta
tistical tests. 

 ■ Crash triaging: Heuristics cannot 
be the only way to measure per
formance. For example, collect
ing crashing inputs or even stack 
bucketing is insufficient to iden
tify unique bugs. Ground truth 
is needed to disambiguate crash
ing inputs and correctly count 
the number of discovered bugs. A 
benchmark suite with ground truth 
will help.

 ■ Seed justification: The choice of seed 
must be documented, as different 

starting seeds provide 
vastly different start
ing configurations, and 
not all techniques cope 
equally well with dif
ferent seed characteris
tics. Some mechanisms 
require a head start with 
seeds to execute reason
able functionality, while 

others are perfectly fine to start with 
empty inputs.

 ■ Reasonable execution time: Fuzzing 
campaigns are generally executed 
over days or weeks. Comparing 
different mechanisms based on 
a few hours of execution time is 
not enough. A realistic evaluation, 
therefore, must run fuzzing cam
paigns for at least 24 h.

These recommendations make 
fuzzing evaluation more com
plex. Evaluating each mechanism 
now takes considerable time with 
experiments running multiple days to 
get enough statistical data for a fair 
and valid comparison. Unfortu
nately, such a thorough evaluation 
is required for a true comparison and 
analysis of factors leading to better 
fuzzing results.

A Call for Future Work
With the advent of coverageguided 
greybox fuzzing,1,2 dynamic test
ing has seen a renaissance. Many 
new techniques that improve secu
rity testing have appeared. An 
important advantage of fuzzing is 
that each reported bug comes with 

Rerunning the same experiment with 

a different random seed may result in 

vastly different numbers of crashes, 

discovered bugs, and iterations.

www.computer.org/security 81



a witness that enables the deter
ministic reproduction of the bug. 
Sanitization, the process of instru
menting code with additional soft
ware guards, helps in discovering 
bugs closer to their source. Over
all, security testing remains chal
lenging, especially for libraries or 
complex code, such as kernels or 
large software systems. As fuzz
ers become more domain specific, 
an interesting challenge will be 
to make comparisons across dif
ferent domains (e.g., comparing a 
greybox kernel fuzzer for useafter
free vulnerabilities with a blackbox 
protocol fuzzer). Given the sig
nificant recent improvements in 
fuzzing, exciting new results can be 
expected. Fuzzing will help make 
our systems more secure by find
ing bugs during the development 
of code before they can cause harm 
during deployment.

Fuzzing is a hot research area 
with researchers striving to improve 
input generation, reduce the impact 
of each execution on performance, 
better detect security violations, 
and push fuzzing to new domains, 
such as kernel fuzzing or hardware 
fuzzing. These efforts bring excite
ment to the field. 
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P ubl ic interest   technolog y 
isn’t new. Many organizations are 
working in this area, from older or 
ganizations, such as EFF and EPIC,  
to newer ones, such as Verified 
Voting and Access Now. Many aca
demic classes and programs com
bine technology and public  policy. 
My cybersecurity policy class at  
the Harvard Kennedy School is 
just one example. Med ia  star t
ups like The Markup are doing 

technolog ydriven jour nalism. 
There are even programs and ini
tiatives related to publicinterest 
te c h n o l o g y  i n s i d e  f o r  p r o f i t 
corporations.

This might all seem like a lot, 
but it ’s really not. There aren’t 
enough people doing it, there 
aren’t enough people who know 
it needs to be done, and there 
aren’t enough places to do it. 
We need to build a world where 

there is a viable career path for 
publicinterest technologists.

There are many barriers. A report 
titled “A Pivotal Moment” (https://
www.netgainpartnership.org/s/pivot 
almoment.pdf) includes this quote: 

W hile we cite indiv idual 
instances of visionary leader
ship and successful deploy
ment of technology skill for 
the public interest, there was 
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