Milkomeda: Safeguarding the Mobile GPU Interface Using
WebGL Security Checks

Zhihao Yao*, Saeed Mirzamohammadi*, Ardalan Amiri Sani*, Mathias PayerT

*UC Irvine, "EPFL and Purdue University

ABSTRACT

GPU-accelerated graphics is commonly used in mobile applications.
Unfortunately, the graphics interface exposes a large amount of
potentially vulnerable kernel code (i.e., the GPU device driver) to
untrusted applications. This broad attack surface has resulted in
numerous reported vulnerabilities that are exploitable from un-
privileged mobile apps. We observe that web browsers have faced
and addressed the exact same problem in WebGL, a framework
used by web apps for graphics acceleration. Web browser vendors
have developed and deployed a plethora of security checks for the
WebGL interface.

We introduce Milkomeda, a system solution for automatically
repurposing WebGL security checks to safeguard the mobile graph-
ics interface. We show that these checks can be used with minimal
modifications (which we have automated using a tool called Check-
Gen), significantly reducing the engineering effort. Moreover, we
demonstrate an in-process shield space for deploying these checks
for mobile applications. Compared to the multi-process architecture
used by web browsers to protect the integrity of the security checks,
our solution improves the graphics performance by eliminating
the need for Inter-Process Communication and shared memory
data transfer, while providing integrity guarantees for the evalu-
ation of security checks. Our evaluation shows that Milkomeda
achieves close-to-native GPU performance at reasonably increased
CPU utilization.
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1 INTRODUCTION

Mobile GPUs have reached performance that rivals that of dedicated
gaming machines. Many mobile applications (apps) such as games,
3D apps, Artificial Reality (AR) apps, and apps with high fidelity
user interfaces (UI) leverage these high-performance GPUs. Mobile
GPUs are typically accessed through the OpenGL ES API, which is
a subset of the infamous OpenGL API and is designed for embedded
systems.

Unfortunately, allowing untrusted apps to use the GPU has re-
sulted in serious security issues. The GPU device driver in the
operating system kernel is large (e.g., 32,000 lines of code for the
Qualcomm Adreno device driver) and potentially vulnerable. Yet,
to enable OpenGL ES, the operating system exposes the GPU de-
vice driver interface to unprivileged apps. This enables malicious
mobile apps to issue requests directly to the device driver in the ker-
nel, triggering deep vulnerabilities that can result in a full system
compromise.

Historically, apps that require GPU acceleration have been be-
nign. On desktops, these apps include popular games, accelerated
video decoders, parallel computational workloads, and crypto cur-
rency mining. Such apps are typically developed by well-known
entities and are therefore trusted. On mobile devices, apps are un-
trusted and potentially malicious. Mobile apps run in a sandbox (i.e.,
the operating system process as well as the Java virtual machine)
and are isolated from the rest of the system. Yet, direct access to
the GPU device driver exposes a large unvetted attack surface to
malicious apps. Unfortunately, this direct access seems unavoidable
since it allows the app to get the best possible performance from
the GPU. This has left the system designers with no choice but to
sacrifice security for performance.

Another platform has faced a similar problem: web browser.
WebGL exposes GPU acceleration to untrusted web apps written in
JavaScript running in the browser. To mitigate the security threat,
browsers perform various runtime security checks and keep state
across WebGL calls. The WebGL API is mostly based on the OpenGL
ES API and hence WebGL checks are designed based on the OpenGL
ES specification [12] as well as newly reported vulnerabilities and
exploits. Only calls with valid arguments (considering the current
GPU state) are allowed, effectively whitelisting safe API interactions.
Such an interposition layer greatly reduces the attack surface and
restricts API calls to well-defined state transitions.

Browser vendors have invested significant resources into the de-
velopment of security checks for WebGL. We introduce Milkomeda,
a system that allows us to repurpose these security check for mo-
bile apps. Milkomeda immediately safeguards the mobile graphics
interface without reinventing the wheel.
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Figure 1: (a) Graphics stack in a mobile operating system. (b) WebGL stack in a web browser. (c) Graphics stack in Milkomeda.

We solve two important challenges in Milkomeda: minimizing
porting effort and maintaining high graphics performance. First, try-
ing to manually extract WebGL security checks from the browser’s
source code and package them for the mobile graphics stack is chal-
lenging and time-consuming, a lesson that we soon learned in the
initial stages of this work. Milkomeda addresses this challenge with
a tool, called CheckGen, that automatically extracts and packages
WebGL security checks for the mobile graphics stack, making small
interface modifications to the original code for resolving interface
incompatibilities.

Second, maintaining high graphics performance for mobile apps
is challenging. To protect the integrity of WebGL security checks,
web browsers use a multi-process architecture. In this architec-
ture, a web app process cannot directly invoke the GPU device
driver needed for WebGL; it must instead communicate with a
“GPU process” for WebGL calls. Hence, this architecture requires
Inter-Process Communication (IPC) as well as shared memory data
copying, which incur significant performance overhead. While such
an overhead might be acceptable for web apps, it is intolerable for
mobile apps, which demand high graphics performance. Milkomeda
addresses this issue with a novel in-process shield space design,
which enables the evaluation of the security checks in the app’s
process while protecting their integrity. The shield space allows
to securely isolate the code and data of the graphics libraries as
well as the security checks within an untrusted process. It provides
three important properties: (i) it only allows threads within the
shield space to issue system calls directed at the GPU device driver
in the kernel; (ii) it allows the application’s untrusted threads to
enter the shield only through a designated call gate so that secu-
rity checks cannot be circumvented; and (iii) it protects the code
and data within the shield space from being tampered with. These
properties, collectively, allow Milkomeda to ensure that the secu-
rity checks automatically ported from WebGL can efficiently vet
graphics API calls within a mobile app.

We implement Milkomeda for Android and use the Chrome
browser WebGL security checks in it. Our implementation is geared

for ARMv8 processors, used in modern mobile devices. We evalu-
ate Milkomeda on a Nexus 5X smartphone. We show that (i) for
several benchmarks with a framerate of 60 Frames Per Second
(FPS), which is the display refresh rate, Milkomeda achieves the
same framerate, (ii) for a benchmark with lower FPS, Milkomeda
achieves close-to-native performance, and (iii) Milkomeda incurs
additional CPU utilization (from 15% for native execution to 26%,
on average). Moreover, we show that the multi-process architecture
increases the execution time of OpenGL ES calls by an average
of 440% compared to Milkomeda, demonstrating the efficiency of
Milkomeda in providing isolation.
We make the following contributions in this paper.

e We demonstrate the feasibility of using a web browser’s
WebGL security checks to guard the mobile operating system
graphics interface.

e We present a solution for extracting these checks from the
browser and packaging them for mobile apps with minimal
engineering effort.

e We provide a system solution for securely evaluating these
checks in the app’s own process in order to achieve high
graphics performance.

2 BACKGROUND & MOTIVATION
2.1 Current Graphics Stack in Mobile Devices

To leverage GPUs for graphics acceleration, mobile apps use the
OpenGL for Embedded System (OpenGL ES) API, which is a subset
of the OpenGL API targeted for embedded systems. The OpenGL
ES library on a mobile device is provided by the GPU vendor and
handles the standardized OpenGL ES API calls of the application.
In doing so, it interacts with the GPU device driver in the operating
system kernel by issuing system calls (syscalls for short). In Android,
which is the focus of our paper, this is done by issuing syscalls on a
device file (e.g., /dev/kgs1-3d0 for the Adreno GPU in a Nexus 5X
smartphone). More specifically, this is done by opening the GPU
device file and then issuing syscalls, e.g., ioctl and mmap, on the
returned file descriptor. Figure 1a shows this architecture.
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Table 1: List of CVEs for Android GPU driver vulnerabilities in NVD. The letter in the parenthesis shows the GPU driver
containing the vulnerability. Q, M, and N stand for Qualcomm, MediaTek, and NVIDIA GPU device drivers, respectively.

There are two reasons why this architecture is prone to attacks by
malicious apps. First, while well-behaved apps only use the OpenGL
ES library to (indirectly) communicate with the GPU device driver,
nothing stops the app from interacting with the GPU device driver
in the kernel directly (as shown in Figure 1a). This is because the
operating system gives the mobile app process permission to access
the GPU device file to enable the OpenGL ES framework within
the app process. Therefore, any code within the process can simply
invoke the device driver in the kernel. This exposes a huge and easy-
to-exploit attack surface to the app. For example, the ioctl syscall
enables about 40 different functions for the Qualcomm Adreno
GPU device driver, which is about 32,000 lines of kernel code in
Nexus 5X’s LineageOS Android source tree (v14.1) and has many
vulnerabilities (Table 1).

Second, even indirect communication with the GPU driver through
the OpenGL ES API is unsafe since this API is not designed with
security in mind. Several attacks against a related interface, WebGL
API (which is very similar to the OpenGL ES API - see §6.2), have
been demonstrated [63]. Indeed, these attacks using the WebGL
interface inspired many security checks in web browsers, which vet
arguments of WebGL calls. These checks have, over time, hardened
the WebGL interface. However, mobile apps lack such a checking
framework for the OpenGL ES interface. Here we show that we can
repurpose the security checks in WebGL for mobile apps.

2.2 Mobile Graphics Vulnerabilities

Reported vulnerabilities. We study Android GPU vulnerabilities
by searching the National Vulnerability Database (NVD) [8] (note
that we lack direct access to the bug trackers of Android and GPU
vendors). We search for Android GPU driver vulnerabilities in NVD
using the “Android” and “GPU” keywords. Table 1 shows the full
list of CVEs we found. Overall, we found 64 CVEs, out of which
47 CVEs are privilege escalations, 13 are unauthorized memory
accesses, 3 are memory corruptions, and one is a Denial of Service
(DoS).

Figure 2 shows the year and severity of these CVEs. There are
two important observations. First, 73% of the reported vulnerabil-
ities have the maximum severity level. The severity levels in the
figure show NVD’s score based on the Common Vulnerability Scor-
ing System Version 2 (CVSSv2) [11]. The high severity of these
vulnerabilities is because the GPU driver runs in kernel mode and
is directly accessible by unprivileged apps. Second, the majority of
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Figure 2: Severity and year of Android GPU vulnerabili-
ties in NVD. The legend captures the severity according to
CVSSv2.

these vulnerabilities are recent, i.e., reported in 2016 and 2017. This
large number of mostly critical and new vulnerabilities show the
pressing need to protect the interaction between unprivileged apps
and the GPU driver.

Reproducing the vulnerabilities. We reproduce 3 of the afore-
mentioned vulnerabilities by writing Proof-of-Concept (PoC) ex-
ploits to trigger them from an unprivileged Android app. We write
the PoCs in C++ and integrate them in an Android application using
the Android Native Development Kit (NDK) [13]. The three vulner-
abilities are CVE-2016-2503, CVE-2016-2504, and CVE-2016-2468.
Our PoCs trigger the reported vulnerabilities and force a kernel
panic.

2.3 Graphics Stack in Web Browsers

To provide enhanced graphics functionality for web apps, web
browsers introduced a framework called WebGL. WebGL provides
an OpenGL ES-like API for web apps, enabling them to render
high-performance 3D content using GPUs. Yet, browser vendors
have been mindful of the security vulnerabilities in GPU device
drivers. These vulnerabilities have been a great concern to them
since web apps are completely untrusted and can be launched with
a single click on a URL. As a result, supporting WebGL seemed like
a significant security risk in the beginning, causing a large amount
of discussions. For example, Microsoft first announced that WebGL
is harmful and “is not a technology Microsoft can endorse from a
security perspective” [2].

WebGL security solution. To mitigate these security concerns,
the WebGL framework is equipped with a set of runtime security



checks. Whenever a WebGL API is called by a web app, the param-
eters of the call are vetted before being passed to the underlying
graphics library (which can be OpenGL ES, OpenGL, or Direct3D
depending on the platform and operating system). These checks are
mostly derived from the OpenGL ES specification [12], given that
the WebGL API is similar to the OpenGL ES API (see §6.2 for in-
compatibilities). Moreover, when a new vulnerability or an exploit
is discovered, a new check is added to prevent future exploits. For
example, recently, a drive-by Rowhammer attack was demonstrated
using the GPU through the WebGL API [38]. To mitigate it, Google
and Mozilla both blocked a certain extension in WebGL [17]. While
these security checks cannot protect against all unknown attacks
(e.g., zero-day exploits), their accumulation over the past few years
has greatly improved the state of WebGL security.

One might wonder whether existing checks in GPU device dri-
vers are enough to guard them and whether WebGL security checks
are redundant given the driver checks. Unfortunately, GPU device
drivers do not include a comprehensive set of security checks and
are vendor specific. While some simple checks (such as checking
for a null pointer) might exist, they are not systematically designed
to properly vet the driver API calls. This is one important rea-
son behind so many vulnerabilities in mobile GPU device drivers
(Figure 2). On the other hand, WebGL checks have been compre-
hensively designed to protect against potentially malicious web
apps.

However, deploying WebGL checks has an important cost for
browsers: performance loss. This is mainly due to the architecture
needed to protect integrity of check evaluation. More specifically,
in order to control a web app’s access to the GPU device driver,
WebGL is deployed in a multi-process architecture [3, 5]. In this
architecture, the web app cannot directly communicate with the
GPU device driver as enforced by the operating system. Instead, it
is only granted permission to communicate with the GPU driver
through a proxy process, called the GPU process, which executes
the WebGL API on behalf of the web app, albeit after security
checking. The GPU process is a privileged process in the browser
with access to the GPU device driver.

Figure 1b illustrates this architecture. The web app process uses
a WebGL frontend framework, which uses Inter-Process Communi-
cation (IPC) and shared memory to serialize and pass the WebGL
API calls of the web app to the WebGL backend in the GPU process.
The backend performs the aforementioned security checks on these
API calls, executes them if they pass the checks, and then returns
the result to the web app process. This architecture degrades the
performance of WebGL. This is because a WebGL call is now an
IPC call rather than a function call and it requires serialization and
deserialization of arguments. Moreover, the graphics data need to
be copied to a shared memory segment by the web app.

2.4 WebGL Security Checks

In this subsection, we provide a high-level review of WebGL security
checks based on available documents, e.g., [4], and our own study
of Chromium browser source code. While our study focused on
WebGL in Chromium, we believe that the provided review is valid
for other browsers too. We group WebGL security checks into four
categories.

Category I: checks on numeric values. WebGL validates nu-
meric arguments passed as input to its APIs. For example, it checks
for some arguments to be positive and rejects deprecated values.
Some simple checks are hard-coded in the WebGL implementation
using conditional statements. The rest are handled by Validators,
which are automatically generated with a python script from a
checklist manually derived from the OpenGL ES specification.

Category II: checks on correctness of API calls. WebGL
(built on top of the OpenGL ES) is highly stateful. That is, some We-
bGL calls update the “rendering state”. At any rendering state, only
some WebGL API and arguments are valid according to the OpenGL
ES specification. WebGL performs checks to enforce correct API
usage. It records the API calls and uses them to infer the rendering
state. It then uses this state to validate subsequent API calls. As
an example, a call for a graphics operation on a graphics object is
only valid if that object (identified by an integer handle) has already
been created in a previous call. Therefore, upon handling such calls,
WebGL first checks the existence of the corresponding graphics
object.

Category III: checks on the shader code. Hardware acceler-
ation using GPUs is primarily done through “shaders”, which are
submitted to the GPU for execution. The WebGL implementation
translates the shader source code to the format used on the plat-
form and validates it. For example, it does not allow non-ASCII
characters in the shader source code as it has been reported that
such characters can crash some shader compilers [1]. The transla-
tion and validation is done through the Almost Native Graphics
Layer Engine (ANGLE) compatibility layer. Also, WebGL disables
the glShaderBinary API, which submits a compiled shader binary
to the GPU, since it bypasses shader validation.

Category IV: platform workarounds. Chromium maintains
a list of known graphics bugs and their respective workarounds.
Then at runtime, depending on the platform (e.g., GPU model), it
applies the necessary workarounds. For our experiment platform
(i-e., Nexus 5X smartphone with a Qualcomm Adreno GPU), there
are 15 workarounds at the time of this writing. For example, due
to a bug in the Adreno OpenGL ES library, the initialization of
shader variables in a loop causes the shader compiler to crash [7].
Chromium avoids this problem by disallowing the use of loops to
initialize shader variables.

Preventing TOCTTOU attacks. Many parameters passed to
the WebGL API are pointers. To prevent Time of Check to Time
of Use (TOCTTOU) attacks, the WebGL implementation makes
a “shadow copy” of the sensitive data pointed by these pointers,
then validates and uses the shadow copies. Only security-sensitive
data is shadowed. Others, such as a texture data passed to the
glTextImage2D API, are not shadowed as they can only affect the
rendered content. This selective shadowing helps with performance
as it minimizes the required data copying.

Case Study: glTexImage2D in WebGL. The glTexImage2D
API specifies a two-dimensional texture image [18]. Figure 3 shows
a simplified version (for readability) of the IPC handler function
for glTexImage2D in WebGL in Chrome (HandleTexImage2D). This
function first retrieves non-pointer arguments from the IPC data
structure. It then enforces simple checks on the width and height
parameters and uses safe arithmetic functions to validate the image
data size. It then calls ValidateAndDoTexImage for more security



error::Error HandleTexImage2D(void* ipc_data) {
TexImage2D_args& c = *static_cast<TexImage2D_args*>(ipc_data);
GLenum target = static_cast<GLenum>(c.target);
/* Get all other parameters from ipc_data */

/* Get shared memory ID for image data */
uint32_t pixels_shm_id = static_cast<uint32_t>(c.pixels_shm_id);
uint32_t pixels_shm_offset = static_cast<uint32_t>(c.pixels_shm_offset);

if (width < @ || height < @) {
LOCAL_SET_GL_ERROR(GL_INVALID_VALUE, func_name, "dimensions < @");
return error::kNoError;

3

/* Validate image data size */
if (!GLES2Util::ComputeImageDataSizesES3( ... ) {
return error: :kOutOfBounds;

}

/* Get image data pointer from shared memory */
const void* pixels;
if (pixels_shm_id) {
pixels = GetSharedMemoryAs<const void#>(
pixels_shm_id, pixels_shm_offset, pixels_size);
if (!pixels)
return error::kOutOfBounds;
} else {
pixels = reinterpret_cast<const voidx>(pixels_shm_offset);

3

ValidateAndDoTexImage( ... );
return error: :kNoError;

}

void ValidateAndDoTexImage( ... ) {
if (((args.command_type == DoTexImageArguments::kTexImage2D) &&
!validators->texture_target.IsValid(args.target)) || ... ) {
return false;

ValidateTextureParameters( ... );
ValidForTarget( ... );

TextureRef* local_texture_ref = GetTextureInfoForTarget(state, args.target);
if (!local_texture_ref) {
return false;

3

/* Apply necessary platform workarounds */

/* DoTexImage updates the bookkeeping info for the affected objects and
eventually call glTexImage2D */

DoTexImage(texture_state, state, framebuffer_state, function_name,
texture_ref, args);

Figure 3: WebGL’s (simplified) handling of the glTexIm-
age2D API including several security checks.

checks. This function uses validators to check whether the target
texture type, the command type, and image data parameters are
allowed according to the OpenGL ES specification [18]. Then, it
checks the target texture’s ability to work with the dimension and
level of the image data. It then attempts to retrieve the target texture
information, which is collected when handling previous calls to
create and operate on the texture. If the target texture information
does not exist, it returns an error. After the arguments are validated,
the function looks for and applies necessary platform workarounds.
It then calls DoTexImage to update the bookkeeping state for the
affected objects. Finally, it calls the actual OpenGL ES API function:
glTexImage2D.

3 THREAT MODEL

We assume that mobile apps are untrusted and potentially malicious,
similar to web apps. This is because many mobile apps are developed
by untrusted developers. Moreover, an “instant app” [19] can be
launched with a single URL click and without installation.

We assume that the attacker uses one such mobile app to attack
the system. This malicious app has full control over the user space
process it runs in (excluding the shield space). It can run both
Java and native code. It does the latter by loading arbitrary native
libraries and calling them through the Java Native Interface (JNI).
We assume that this malicious app tries to exploit vulnerabilities in
the GPU device driver. To do so, the app uses the GPU device driver
syscall interface (e.g., ioctl and mmap syscalls) or the OpenGL ES
API (which indirectly invokes the GPU device driver syscalls). We
do not trust any libraries used directly by the app in its process,
including system libraries. We do trust the kernel, which we also
leverage to set up a trusted shield space in the process address space.
We set up the shield at application load time and before loading the
application’s code. Therefore, we assume that the shield is set up
correctly and hence can be trusted.

4 MILKOMEDA'’S DESIGN

Milkomeda protects the GPU kernel device driver from malicious
apps by disallowing direct access to the driver and routing all
OpenGL ES calls through a vetting layer. We repurpose the se-
curity checks developed for the WebGL framework for this layer.
Note that this is fundamentally feasible since WebGL API is based
on OpenGL ES (in §6, we describe how we automate porting and
overcome incompatibilities). The question now becomes: what is
the right architecture that satisfies security and performance con-
straints for deploying these checks for mobile apps? We first discuss
two straw-main solutions before presenting ours.

Straw-man design I. One straight-forward design is the multi-
process architecture used in the browser. That is, we can deploy a
special process and force the app to communicate to this process for
OpenGL ES support. This process then performs the security checks
adopted from the browser and invokes the GPU device driver. This
design provides isolation between the app code and the security
checks since they execute in different processes. Therefore, the
web app cannot easily circumvent the checks, unless it manages to
compromise this specialized process or the operating system.

Unfortunately, there is one major drawback for this design: de-
graded performance. The graphics performance in this design is
lower than that of the existing graphics stack for mobile apps due to
the overhead of (i) IPC calls and shared memory data copy, needed
for communication between the two processes, and (ii) serialization
and deserialization of the API calls’ parameters.

Straw-man design II. Another potential design is to deploy the
checks in the app process itself. That is, we can deploy the checks
as a shim layer on top of the existing OpenGL ES library. When the
app calls the OpenGL ES API, the API call is first evaluated through
the shim before being passed to the underlying API handlers. While
this design achieves high graphics performance (only degraded by
the minor performance overhead of evaluating the security checks),
it suffers from an important problem: the checks are circumventable.
First, the app can directly call the GPU device driver itself, bypassing



the library altogether. Second, the app can load and use a different
OpenGL ES library, which does not incorporate the security checks.
Third, the app can bypass the security checks in the existing library
by jumping past the checks but before the API handlers.

Required guarantees. Based on these straw-man solutions, we
come up with a set of principled guarantees that a solution must
provide including three security guarantees and one performance
guarantee.

e Security guarantee I: Untrusted app code cannot directly
interact with the GPU device driver. All interactions between
the app and the driver are vetted by security checks.

e Security guarantee II: the control-flow integrity of the
security checks is preserved.

e Security guarantee III: the data integrity of the security
checks and their intermediate states is preserved.

e Performance guarantee: the security check framework
does not cause significant performance degradation for mo-
bile graphics.

Milkomeda’s design. In Milkomeda, we present a design that
provides these guarantees. Milkomeda achieves security guaran-
tee I by restricting the communications between the app and the
GPU driver through a vetting layer, which can then perform secu-
rity checks on the OpenGL ES API calls before passing them to the
underlying GPU device driver. It does so using a novel shield space
in the app’s address space for executing the security checks. The
operating system kernel only allows the threads in the shield space
to interact with the GPU device driver. In Milkomeda, we reuse
WebGL’s security checks as the vetting layer for mobile graph-
ics. Milkomeda achieves security guarantee II by enforcing the
app’s normal threads to enter the shield at a single designated
entry point in order to issue an OpenGL ES API call. The call is
then vetted by the aforementioned security checks and, if safe, is
passed to the OpenGL ES library in the shield space. Therefore,
the app cannot jump to arbitrary code locations in the graphics li-
braries. Milkomeda achieves security guarantee III by protecting
the memory pages of the shield space from the rest of the app, even
though the shield space is within the app process address space.
All the graphics libraries and their dependencies are loaded in the
shield space and their code and data are protected from tampering
by the app. Finally, Milkomeda achieves the performance guaran-
tee since the graphics libraries execute in the same address space
as the app, hence eliminating the need for IPC, shared memory
data copy, and serialization/deserialization of API arguments. We
will show in §8.2 that Milkomeda achieves high graphics perfor-
mance for various mobile apps, although at the cost of moderately
increased CPU utilization. Figure 1c illustrates Milkomeda’s design.

5 SHIELD SPACE

Milkomeda’s shield space regulates an app’s access to the GPU
device driver and enforces the app to interact with the OpenGL
ES library at a designated entry point. Figure 4 shows a simpli-
fied view of shield’s design. We create a shield space within the
normal operating system process. A thread executing normally
(i.e., outside the shield space) cannot access the memory addresses
reserved for the shield space. It cannot execute syscalls targeted
at the GPU device driver either. To execute an OpenGL ES API, a
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Figure 4: A simplified view of shield’s design highlighting
how a thread can use a shield-call to enter the shield space
to interact with the GPU device driver.

thread needs to issue a shield-call, which transfers the execution
to a single designated call gate within the shield space (allocated in
the shield memory). This thread is now trusted and can access the
shield memory and interact with the GPU device driver. It executes
the API call (after vetting it) and then returns from the shield-call.
The shield space can be thought of as a more privileged execution
mode for the process, similar to existing privilege modes such as
kernel or hypervisor.

Shield’s design has two components: protected shield space mem-
ory and effective syscall filtering. The former enables the protection
of the shield’s code and data. The latter limits the GPU driver ac-
cess permission to threads executing within the shield. We next
elaborate on these two components. We then finish the section
by providing details on the execution flow of an OpenGL ES API
call in Milkomeda and by explaining how Milkomeda satisfies the
guarantees of §4.

5.1 Protected Shield Space Memory

We isolate the shield space memory within the process address
space. This space is a range of virtual addresses in the process
address space that can only be accessed if the thread of execution
has entered the shield space through a shield-call. Other threads
within the process are not allowed to access the shield’s memory.

We implement this protected memory space in the operating
system kernel and by leveraging page table translations. That is,
we allocate two sets of page tables for the process, one to be used
for threads executing outside the shield space (i.e., untrusted page
tables) and one for threads executing within it (i.e., trusted page
tables). The address space mapped by these two sets of page tables
are mostly identical. They only differ in a fixed range of addresses,
which is mapped by a single entry (or, if needed, a few entries) in the
first-level page table. These addresses are marked as inaccessible
in the untrusted page tables. They are however accessible in the
trusted page tables. We choose to use the first-level page table entry
to map the shield memory for performance: this design minimizes
the operations needed to synchronize the trusted and untrusted
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Figure 5: Implementation of shield space memory using
page tables. The untrusted and trusted address spaces
(mapped by the untrusted and trusted page tables and used,
respectively, for the threads outside and within the shield
space) are almost identical except for a contiguous range of

addresses reserved for the shield space and accessible only
through the trusted page tables.

page tables as synchronization is only needed when the first-level
table is updated, which is rare. Figure 5 illustrates this concept.

All threads within the process use the untrusted page tables
by default. They can, however, request to enter the shield and
use the trusted page tables. To do this, a thread needs to make
a shield-call. We implement the shield-call with a syscall. Upon
handling this syscall, the kernel programs the CPU core executing
the thread to use the trusted page tables and resumes the execution
at a designated call gate for the shield space. The code in the shield
then handles the request and exits the shield space using another
syscall. This exit syscall programs the CPU core to use the untrusted
page tables, flushes the TLB, and returns. The thread can then
resume its execution outside the shield. Note that the shield entry
syscall does not need a TLB flush since the addresses used for
the shield space are inaccessible in the untrusted page tables. Also,
cache flush is not needed for the shield entry and exit syscalls for the
same reason (i.e., the protected address range is inaccessible outside
the shield and hence accesses to these addresses from outside the
shield always fail).

While executing in the shield, a thread uses secure stack and heap
memory. The secure stack is deployed by the kernel at shield entry
syscall and removed upon exit. Heap allocation requests by threads
within the shield are served from the reserved shield address range.
This is guaranteed by the kernel, which simply checks the state
of the requesting thread (i.e., whether it is executing in the shield
or not) before allocating the virtual addresses. Our shield’s design
can support concurrent threads executing within the shield space.
This is important as Android apps use multiple threads for graphics

(e.g., one for hardware-accelerated UI compositing and one for 3D
acceleration).

When in the shield, a thread can access all the process address
space since the trusted page tables map all the address space. This
allows the graphics libraries to access the memory allocated by
the app directly, e.g., for data passed to the OpenGL ES API calls,
avoiding the performance overhead of additional copies.

5.2 Effective Syscall Filtering

Milkomeda limits access to the GPU driver to only the shield space.
More specifically, it allows only the threads in the shield space to
interact with the GPU device driver. It achieves this using a set of
checks at the entry points of the device driver in the kernel. These
checks look at the state of the thread that issues the syscall for
the GPU device driver. More specifically, in the kernel, Milkomeda
marks the application’s thread as either trusted (i.e., executing in-
side the shield) or untrusted (i.e., executing outside the shield) in
the thread’s Thread Control Block (e.g., Linux’s task_struct). It
only allows a syscall targeted at the GPU device driver if the thread
issuing the syscall is marked as trusted. This requires adding only
a handful of light-weight checks as the number of these syscall
handlers in device drivers are limited (e.g., 6 handlers for the Qual-
comm Adreno GPU driver including the handlers for ioctl1, mmap,
and open syscalls).

Note that we considered and even implemented another syscall
filtering mechanism as our initial prototype. In this solution, we
leveraged the Linux Seccomp syscall filtering mechanism, which
allows us to configure the filter fully from user space [53]. We
eventually settled for the aforementioned solution for two reasons:
(i) our Seccomp filter required several comparisons to be evalu-
ated for every syscall. While this overhead might not be noticeable
for graphics operations, the filter needs to be evaluated for every
syscall and hence can negatively affect the performance of apps that
make many (even non-graphics) syscalls, such as apps stressing
network or file I/O. (ii) Due to the limited functionality of the filter
(e.g., inability to parse strings, access file systems, and dereference
pointers), we had to implement a scheme that forwards all the open
and close syscalls to the shield space for evaluation. While we
managed to successfully build such a scheme, we noticed that it
adds noticeable complexity to our system. Therefore, in light of
better efficiency and lower complexity, we opted for the aforemen-
tioned solution, which only requires a few simple kernel checks
that are executed only for GPU syscalls and hence do not affect
other syscalls. Also, note that while we add the checks in the driver
entry points, they can also be added outside the driver right where
the kernel calls into the driver entry points.

5.3 OpenGL ES API Call Execution Flow

In this subsection, we describe, the execution flow of an OpenGL ES
API call in Milkomeda. Figure 6 shows this flow using pseudocode.
First, the untrusted app code makes an OpenGL ES call. Second,
this call is handled by a simple stub function in the untrusted part
of the process. This stub function simply calls the syscall to enter
the shield. Before doing so, it stores the arguments of the OpenGL
ES call as well as the API number on the CPU registers. In our
prototype based on ARMvS, up to 5 arguments are passed in CPU



registers and the rest in memory. The OpenGL ES API numbers
are known both in the stub function and in the shield space. In
fact, existing OpenGL ES libraries already number the APIs. In case
of an API number update by future OpenGL ES libraries, only the
relevant libraries need to be updated.

Third, the shield entry syscall handler in the kernel securely
transfers the execution to the designated call gate function in the
shield space. To do so, the syscall handler saves the current state
of CPU registers (to be restored on exit from the shield), sets up a
secure stack for the thread, sets the program counter to the address
of the call gate function, marks the thread as secure (§5.2), switches
to use the secure page tables on the CPU core executing the thread,
and finally exits, which then resumes the execution in user space
in the designated call gate function.

Fourth, the call gate function identifies the called OpenGL ES
API using the API number passed on a CPU register. It performs the
security checks needed for the specific API call. If rejected, it returns
an error. If passed, it calls the actual API handler in the OpenGL ES
library. This handler then executes the API call, interacting with
the GPU device driver when needed, and gives back a return value.
The call gate function then exits the shield using another syscall,
passing the return value along.

Finally, the shield exit syscall handler in the kernel securely
transfers the execution to the original caller of the shield entry
syscall. To do so, it switches to use the untrusted page tables on the
CPU core executing the thread, flushes the TLB (§5.1), marks the
thread as untrusted, restores the previously saved CPU registers,
gives the aforementioned return value to the caller by putting it on a
CPU register, and exits. The app code then resumes its execution. To
the app, it looks as if the shield entry syscall executed the graphics
AP, returning the result.

5.4 Satisfying the Required Guarantees

In this subsection, we discuss how Milkomeda achieves the four
required guarantees discussed in §4.

Security guarantee I. The first guarantee states that only the
threads within the shield be allowed to invoke the GPU device
driver. We achieve this by using our syscall filtering mechanism
(§5.2). The filter rejects syscalls targeted at the GPU device driver
when issued by threads executing from outside the shield.

Security guarantee II. The second guarantee states that the
control-flow integrity of the checks be preserved by forcing the

app code to enter the shield space only at a designated call gate.

We achieve this using our protected shield memory (§5.1). A thread
cannot normally access the memory of the shield space as this
region of memory is marked as inaccessible in the untrusted page
tables. As a result, if it does attempt to jump to any location within
the shield, it will result in a page translation fault. The only way
to access the shield is to issue a shield-call, which resumes the
execution at a predetermined call gate in the shield.

Security guarantee III. The third guarantee states that the
code and data within the shield are protected from tampering by
untrusted code. This prevents untrusted code from compromising
the integrity of the security checks in the shield since these checks
rely not only on correct code for the checks but also on several
global variables, e.g., to maintain state information about prior calls

/* Untrusted application code */
long foo(void)
{

/* Calls an OpenGL ES API */
return some_opengles_api(argl, arg2, ...);

3

/* Stub function for the OpenGL ES API in an untrusted user space library */
long some_opengles_api(long argl, long arg2, ...)
{
/% Store as many arguments on the CPU registers as possible.
* If any, store the rest of the arguments in a memory buffer
* Enter the shield with a syscall */
return syscall(NR_SHIELD_ENTER, API_NUM, argl, arg2, ...);
)

/* Kernel implementation of shield entry syscall */

SYSCALL_DEFINE(shield_enter, long, api_num, long, argl, long, arg2, ...)

{
/* 1. Save current CPU registers

2. Prepare secure stack for the thread

3. Update the stack pointer and the program counter

4. Mark the thread as secure

5. Switch to the secure page tables

6. Exit (which transfers the execution to the predefined userspace
location for the call gate function) */

* ok %k %k

/* The call gate function in the shield space */
void call_gate_func(long api_num, long argl, long arg2, ...)
{
/* 1. Determine the requested OpenGL ES API based on api_num
* 2. Execute security checks for this API, return error if not safe %/
if (!is_opengles_call_safe(api_num, argl, arg2, ...))
return -1;

/* 3. Call the actual OpenGL ES API */
long rv = some_opengles_api_actual_function(argl, arg2, ...)

/* 4. Return from the shield, return the OpenGL ES call return value (rv) */
syscall(NR_SHIELD_EXIT, rv);

/* The execution never reaches here. */

/* Kernel implementation of shield_exit syscall %/

SYSCALL_DEFINE(shield_exit, long, rv)

{
/* 1. Switch to the untrusted page tables

2. Flush the TLB

3. Mark the thread as untrusted

4. Restore previously saved CPU registers

5. Store the return value (rv) on a CPU register

6. Exit (which returns to the untrusted app code outside the shield,
to right after the shield entry syscall) */

* % ok Ok Ok %

Figure 6: Pseudocode demonstrating an OpenGL ES API call
in Milkomeda.

(§2.4). We achieve this by using our protected shield memory (§5.1).
All the code and data of these security checks (including the stack
and heap) are allocated within the shield and hence are protected.
Performance guarantee. The last guarantee states that perfor-
mance loss should be minimized. Our solution eliminates the need
for IPC, shared memory data copy, and serialization/deserialization
of API calls. It does however add some overhead including two
syscalls per OpenGL ES API call (one syscall to enter the shield
space and one to exit it), saving and restoring the register state as
well as changing the page tables at entry and exit syscalls, and TLB
flushes in the exit syscall as well as in some context switches (§7.1).
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6 REUSING WEBGL SECURITY CHECKS FOR
MOBILE GRAPHICS

One of our key design principles is to aim for minimal engineering
effort to port and reuse WebGL'’s security checks for mobile graph-
ics. This is because these checks are still under active development.
For instance, our study shows that 12 new patches have been added
to these checks in just 2 months recently (March and April 2018). A
solution that requires significant effort to port these checks to mo-
bile graphics makes it challenging to keep the checks up-to-date. As
aresult, we developed a tool, called CheckGen, which automatically
ports the WebGL security checks to be used for mobile graphics.

Figure 7 illustrates the role of the CheckGen tool. The left side
of the figure depicts the WebGL stack, all the way from the web
app to the underlying graphics library (OpenGL ES, OpenGL, or
Direct3D depending on the platform and operating system). A
WebGL API call is first serialized in the web app process and sent,
using IPC and shared memory, to the GPU process. Inside the GPU
process, the IPC is deserialized. Some simple security checks, such
as validation of numeric values (§2.4) are performed in the same
procedure that performs the deserialization. Some select API calls
are then forwarded for more security checks and others are directly
passed to the underlying graphics library. Therefore, as can be seen
in the figure, the security checks are spread across two layers in
the WebGL stack, a layer dedicated for checks and the deserializer.
Our CheckGen tool receives the source code for these two layers
and generates one single vetting layer with the OpenGL ES API as
its input and output, which can then be used in the mobile graphics
stack, shown on the right side of the same figure.

In the rest of this section, we discuss the challenges that we
addressed in CheckGen.

6.1 Fixing the Interface for Security Checks

CheckGen transforms the input interface of WebGL’s deserializer to
the OpenGL ES interface, as expected by mobile apps (see Figure 7).
The deserializer interface accepts a pointer to and the size of a
shared memory segment as arguments for a WebGL call. It contains
the code that extracts OpenGL ES API arguments from this shared
memory segment, and then performs simple security checks. To

transform this interface to the OpenGL ES interface, CheckGen uses
the OpenGL ES interface definition. Moreover, it removes all the
deserialization code and only keeps the simple security checks of
this layer using pattern matching. The bulk of the security checks
provided in the next layer (Figure 7) are then used without any
modifications.

6.2 WebGL and OpenGL ES Incompatibilities

The WebGL and OpenGL ES API have a few differences. More
specifically, the Chromium project documents two incompatibilities
between WebGL and OpenGL ES 2.0 [20]. First, WebGL does not
support client-side vertex arrays [16], which store vertices and their
attributes in the system memory instead of the GPU memory. This
is not due to security and mainly because this API is slow (indeed, it
is being deprecated in OpenGL ES 3.0). Therefore, WebGL fails calls
to this API. However, this feature is required by the OpenGL ES 2.0
specification, and indeed used by many mobile apps, e.g., by two
of the mobile app benchmarks used in our evaluation. Therefore,
we enable this feature in Milkomeda and remove a Chrome WebGL
check due to this incompatibility. An alternative option is to emulate
this feature on top of other OpenGL ES APIs.

Second, WebGL does not support the GL_FIXED attribute type.
It suggests using GL_FLOAT instead since GL_FIXED “requires
the same amount of memory as GL_FLOAT, but provides a smaller
range of values” [6]. Chromium converts this type [20]. Because
Milkomeda is built on top of OpenGL ES, which requires support
for GL_FIXED, we modify the checks to accept GL_FIXED. Our
understanding is that this does not cause a security problem. Alter-
natively, we can also convert this type.

7 IMPLEMENTATION

We implement Milkomeda for Android operating system on 64-
bit ARMv8 processors, which are commonly used in all recent
mobile devices (see §10 for a discussion on support for ARMv7
processors). We use Google Chromium’s WebGL security checks
in our implementation. Milkomeda’s implementation consists of
two parts: the shield and the CheckGen tool. Below, we provide
implementation details on these two components.

7.1 Shield Integration

The core of the shield’s functionality is implemented in the Linux
kernel. This includes the implementation of the protected memory
space and syscall filtering. Our implementation consists of about
500 LoC, making the solution easy to reason about and easy to port.

The shield space needs to be set up by the process at its initializa-
tion time. This is done through one syscall that activates the shield
for a range of addresses in the address space. The activation syscall
creates the secondary set of page tables and marks the designated
address range as inaccessible in the default page tables. Moreover,
the same syscall sets the shield’s call gate address and prepares
secure stacks for threads to execute in the shield. Note that once the
shield is activated, it cannot be deactivated by the process anymore.

In our current prototype, we fix the shield address space size
to be 1 GB. This is because (i) 1 GB of address space is mapped
by a single entry in the first-level page table (when using the 4
kB translation granulate with three levels of address translation in



ARMvS [28]), simplifying the implementation and (ii) 1 GB is large
enough for all the trusted code (including the graphics libraries,
security checks, and the libraries they depend on). Note that we
do not allocate memory for the shield space unless needed. That is,
we only reserve 1 GB of the address space, but the actual backing
memory is only allocated and mapped when needed (e.g., when a
library is loaded or when trusted code performs dynamic memory
allocation). Increasing the shield address space size, if needed, is
trivial by using more of the first-level page table entries. Also, note
that reserving 1 GB of the address space does not put pressure on
the operating system memory management for finding unallocated
memory addresses for the app. This is because the virtual address
space in ARMvS8 is large (256 GB of address space when using the
aforementioned paging mode, which uses 38-bit virtual addresses
effectively [28]). Finally, when setting up the shield, we choose one
entry in the first-level page table that is yet unused. The chosen
entry then determines the start and end addresses of the shield
space.

To protect the integrity of the security checks, it is important
that all code and data used by these checks are isolated from the
rest of the app. To do this, we load the security checks, the graphics
libraries, as well as all the libraries they rely on in the shield space.
This means that we have duplicate copies of several libraries in
the process address space, one for use by the untrusted code in
the app and one to be used by the protected code in the shield.
One noteworthy example is LibC. We initialize two instances of
LibC, one for the untrusted code and one for the graphics-related
code in the shield. This ensures that all the global variables and
dynamic allocations of LibC and other libraries used by the trusted
code are in the shield space as well and hence protected. This
design increases the memory usage of the app (since it needs to
load more libraries). Moreover, it puts more pressure on the code
cache. However, these libraries are shared between all apps hence
amortizing the overhead. Moreover, as part of our future work, we
plan to investigate sharing the library code (but not data) between
the trusted and untrusted space in the process address space to
eliminate this additional overhead.

These libraries need to be loaded and the shield needs to be
activated before untrusted app code is loaded. We implement this
for Android in the app’s launch sequence. We bypass the Zygote
process (which forks a pre-configured process) and execute the
launch sequence from scratch. In the future, to accelerate the launch
time of Milkomeda apps, we can create a secondary Zygote process
with Milkomeda’s shield preconfigured. Our implementation allows
us to select the apps that need to be protected by Milkomeda by
specifying the app’s package name in Android system properties.
This capability can be used by the operating system admin or the
user in various ways: first, it is possible to enable Milkomeda on
all apps. Second, it is possible to enable Milkomeda by default but
whitelist some trusted apps. Finally, it is possible use Milkomeda
for only a set of blacklisted apps.

Milkomeda does not require any modifications to the app. In-
deed, it can support binary code, i.e., .apk executable packages
in Android. To achieve this, Milkomeda employs a shim graphics
library outside the shield space that implements the OpenGL ES
API When called by the app, it issues a shield-call and passes the

API number and its arguments (see the OpenGL ES stub function
in Figure 6).

Milkomeda does not allow any OpenGL ES API call to register a
callback. Otherwise, such a callback can be exploited by malware to
execute arbitrary code within the shield space. Fortunately, there is
only one OpenGL ES API with a callback: glDebugMessageCallback.
We disable this debug API in Milkomeda.

Milkomeda’s shield implementation is thread-safe. Each thread
entering the shield has its own secure stack. Indeed, our benchmarks
in §8.2 use multiple threads for graphics. These threads enter the
shield separately and potentially concurrently. Thread scheduling
is also safely done in Milkomeda. We have modified the kernel
context switch procedure so that the right page tables (secure vs.
untrusted) are used for a thread, and the TLB is flushed, when
needed, to prevent an untrusted thread from accessing the TLB
entries for the shield space.

Milkomeda does not allow delivering a signal to a thread within
the shield space. This is important to ensure the integrity of execu-
tion within the shield.

7.2 CheckGen’s Implementation

We implement CheckGen in Python. It compiles the security checks
as a set of shared libraries by reusing part of the Chromium source
code. In addition to the regular build process, which produces the
unified browser executable, Chromium also supports a component
build. We leverage the component build to generate the aforemen-
tioned shared libraries.

OpenGL ES represents the graphics state with a context object.
In order to properly vet the graphics API calls, we create a separate
instance of the security checks for each graphics context (similar
to WebGL).

Chromium implements GPU driver and library bug workarounds
for specific vendors and operating systems (§2.4). Similarly, we
apply the workarounds for the GPU used in the target mobile device,
e.g., the Adreno GPU in our prototype.

We solve one challenge with respect to the IDs of graphics objects
in OpenGL ES. OpenGL ES assigns integer IDs to graphics resource
objects, such as texture objects. In WebGL, in order to minimize
the round trip delay for management of IDs, the web app process
itself generates the ID immediately upon creating an object and
uses these locally generated IDs in future operations [20]. The GPU
process uses the real IDs returned by the OpenGL ES library, and
maintains a mapping between the web app process-generated IDs
and the real IDs. As this is a performance optimization needed in
the multi-process architecture [20], we disable it in CheckGen. Note
that this does not affect the security of Milkomeda because the real
IDs are not considered secrets.

8 EVALUATION

We evaluate Milkomeda on a Nexus 5X smartphone. This smart-
phone has 2 GB of memory, four ARM Cortex-A53 cores as well as
two ARM Cortex-A57 cores (ARM big.LITTLE), and an Adreno 418
GPU. We use Android 7.1.2 (LineageOS 14.1).
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Figure 8: Graphics benchmarks used in evaluation. We derive B5 from B4 by increasing the number of cubes significantly.

8.1 Security Analysis

In this section, we discuss the attacks that Milkomeda can and
cannot protect against and compare with the multi-processor ar-
chitecture deployed in web browsers.

First, an attacker may try to directly invoke the GPU device
driver syscalls. Milkomeda prevents this attack as only the shield
space is allowed to interact with the GPU device driver. The multi-
process architecture prevents this attack too as the web app process
is not given permission to interact with the GPU driver. Second,
the attacker may try to jump past the security checks and directly
execute the unvetted OpenGL EL API. Milkomeda prevents this
attack since a thread cannot enter the shield space at arbitrary
entry points. Similarly, the multi-process architecture does not al-
low this attack since a thread in one process cannot jump to and
execute code in a different process. Third, an attacker may try to
trigger the driver vulnerabilities through the OpenGL ES API calls.
Milkomeda leverages WebGL'’s security checks to stop these attacks.
Any such attack that is successful against Milkomeda is also suc-
cessful against the multi-process architecture. Fourth, an attacker
may try to leverage a vulnerability in the Trusted Computing Base
(TCB) of Milkomeda in order to bypass the security checks. The
TCB of Milkomeda is the operating system kernel as well as all the
code inside the shield space. This is almost a subset of the TCB
in the multi-process architecture, which does not need the small
amount of kernel code needed to implement the shield space but
requires more code in the GPU process to support composing of
the browser’s Ul as well as IPC and shared memory code used for
communication. Therefore, most such attacks are also effective
against the multi-process architecture.

We evaluate the effectiveness of Milkomeda in preventing vul-
nerability exploits. We have investigated all 64 CVEs in Table 6. We
managed to find enough information on 45 of them for analysis
(including patches, source code, and PoC). For these 45, we have
confirmed that Milkomeda prevents all of them. This is because all
of these CVEs directly invoke the GPU device driver APIs, which
are prevented in Milkomeda.

With these CVEs neutralized, an attacker can try to use the
OpenGL ES API to mount attacks. Similar attacks have been at-
tempted through the WebGL APIs (which is quite similar to the
OpenGL ES API) [63]. Since WebGL checks are designed to protect

against such attacks in the browser, they protect against similar
attacks on mobile devices.

We note that the WebGL security checks may miss some zero-
day attacks [63]. However, these checks provide two benefits. First,
they prohibit attacks using known vulnerabilities in the GPU driver.
Second, they limit unknown attacks due to the additional state
verification. The WebGL security checks limit the arguments of the
graphics APIs (e.g., they return early if an argument is not valid
per OpenGL ES specification). Some vulnerabilities are caused by
invalid arguments that violate the OpenGL ES specification. There-
fore, constraining API calls prevents invalid OpenGL ES API inputs
and thereby stops some, but not all, unknown attacks. Milkomeda is
therefore a mitigation, comparable to ASLR or stack canaries, that
stops some attack vectors and makes other attack vectors harder.

8.2 Graphics Performance & CPU Usage

We measure the mobile graphics performance using the achieved
framerate, which determines the number of frames rendered in one
second. We use 5 mobile app benchmarks in our evaluation. We
choose these apps as they focus on GPU-based graphics and they
span a range of apps with simple to complex graphics operations.
Figure 8 shows snapshots of these benchmarks (B1-B5). We derive
the fifth benchmark (B5) by modifying B4 to render 64,000 (40%)
cubes rather than 27 (3%). We run each benchmark six times. We
discard the first 100 frames in each run to eliminate the effect of
initialization in the measurements.

Figure 9a shows the framerate in our benchmarks. It shows
the measurement for three different configurations: normal app,
normal app + checks, and Milkomeda. The first configuration is
the performance of the benchmarks using an unmodified graphics
stack, i.e., the state of the art. The second configuration represents
the performance of the security checks without the shield’s space to
protect their integrity. This configuration is not secure. Yet, it allows
us to measure the overhead needed for evaluating the security
checks on OpenGLES APIs. The third configuration is Milkomeda,
in which not only the security checks are evaluated, but also the
shield space is used to protect the integrity of the checks.

The results show the following. First, for benchmarks with 60
FPS framerate, Milkomeda manages to maintain the 60 FPS graph-
ics performance. Note that in Android, framerate is capped at a
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Figure 9: (a) Graphics performance. (b) CPU utilization. In both of the figures, B1 to B5 represent the five benchmarks shown
in Figure 8. Each bar in the figure shows the average over six runs and the error bar shows the standard deviation.
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Figure 10: Execution time of several OpenGL ES API calls. Each bar in the figure shows the average over all invocations of the
API in three runs and the error bar shows the standard deviation.

maximum of 60 FPS, which is the display refresh rate. Therefore,
for these benchmarks, Milkomeda achieves the maximum graphics
performance. Second, for a benchmark with lower FPS, Milkomeda
achieves a close-to-native performance. Overall, the results show
that Milkomeda does not impact the user experience.

However, the extra security in Milkomeda comes at a cost: higher
resource usage. Figure 9b shows the CPU utilization of the system
when executing the same benchmarks. It shows that Milkomeda
increases the CPU utilization from 15% (for normal execution) to
26%, on average. We note that this additional CPU utilization is
not prohibitively high. However, if the system is highly utilized,
e.g., by various background tasks, then the graphics performance
gets affected more significantly in Milkomeda compared to normal

apps.

8.3 Comparison with the Multi-Process Design

As mentioned in §2.1, browsers deploy the WebGL security checks
in a separate process from the web app process to protect the
integrity of checks. To compare the overhead of this approach with
Milkomeda, we implement such a multi-process architecture for
mobile apps. That is, in the mobile app process, we forward the
OpenGL ES API calls over IPC (using sockets) to another process
for execution. We also use shared memory to pass the data.

Our multi-process prototype does not support all OpenGL ES API
calls (it supports around 30 of them) since supporting each API call

requires us to understand the semantics of the parameters and write
the proper serialization and deserialization code for it. Therefore,
we report the execution time of a few OpenGL ES API calls that
we do support (average of three runs of the experiment). Figure 10
shows the results. As can be seen, the multi-process architecture
increases the execution time of these API calls significantly (an
average increase of 440% compared to Milkomeda).

9 RELATED WORK

9.1 Graphics Security

Sugar [63] enhances WebGL’s security. It uses virtual GPUs avail-
able on modern Intel GPUs to fully sandbox the WebGL graphics
stack all the way down to the GPU device driver. A similar ap-
proach can be used to safeguard the graphics stack used by apps.
Unfortunately, mobile GPUs do not support virtualization. There-
fore, in Milkomeda, we attempt to improve the mobile graphics
security by leveraging existing software-based security checks in
web browsers.

SchrodinText [25], VButton [42], and Truz-Droid [65] protect
integrity or confidentiality of content shown on the mobile display.
SchrodinText achieves this by modifying the operating system
graphics stack to perform most of the text rendering stages without
access to the text to be displayed. It uses the hypervisor and ARM
TrustZone secure world to display the text. VButton and Truz-Droid
use the ARM TrustZone secure world to control the display and



touchscreen and use them to show content to the user securely,
collect inputs, and verify them. In all of these systems, the operating
system is assumed to be untrusted whereas the user and the app
are trusted. Unlike these systems, Milkomeda does not modify
the existing operating system graphics stack. It assumes that the
operating system is trusted but the app is not. It then safeguards
the graphics stack against malicious apps.

AdSplit [54], AdDroid [48], and LayerCake [52] isolate the code
used to render an embedded UI component, e.g., ads. Their goal
is to protect the app from untrusted embeddings. In contrast, in
Milkomeda, we protect the system from untrusted apps, which try
to exploit the vulnerabilities in the GPU device driver.

9.2 Device Driver Vulnerabilities & Mitigations

The core of most vulnerabilities in the graphics stack is the GPU de-
vice driver. Device drivers are known to have many vulnerabilities,
more than the rest of the kernel [34, 46, 67]. Other related work tries
to mitigate vulnerabilities in device drivers. Microkernels execute
the device drivers in user space daemons [36]. Microdriver [39] and
Glider [26] move parts of the device drivers to user space. Nooks
safeguard against faults in device drivers using lightweight protec-
tion domains in the kernel [56]. SafeDrive does so using language
techniques [68].

In Milkomeda, we target existing systems that unfortunately do
not leverage the aforementioned mitigation techniques. Instead, our
observation is that WebGL security checks have been successfully
deployed. Therefore, we try to leverage these solutions that can
mitigate the GPU device driver vulnerabilities without requiring
any modifications to the device drivers themselves and hence are
easily applicable to various platforms.

9.3 Operating System-level Access Control

Milkomeda employs a light-weight syscall filtering mechanism to
limit the process’s access to the GPU device driver to only the code
within the shield space. This is a form of access control enforced by
the operating system. Initial related work started with system call
vetting based on ptrace but quickly moved towards a kernel-level
caching mechanism [49]. AppArmor [15] enforces a configurable
system call policy on a per-process basis. SELinux [10] hardens
kernel and user-space and restricts interactions between processes
and the kernel without enforcing an explicit system call policy.
Capsicum [61] enforces capabilities on a per-process basis for Unix
systems. Seccomp is an efficient, kernel-based vetting mechanism
that evolved out of all these proposed systems and enables per-
process system call vetting [53]. These systems are restricted to
per-process checks with some context of the application. In contrast,
our access control mechanism enforces a policy for a subset of code
in the process address space.

CASE enforces isolation between modules of a mobile app [69].
CASE’s approach can be used to isolate some libraries within the
process. However, on its own, CASE is not able to restrict access
to the GPU device driver to only a subset of the code. Moreover,
CASE leverages information hiding to conceal the handlers of these
modules and hence prevent jump to arbitrary locations within the
modules. In contrast, Milkomeda leverages a hardware-protected
shield space to achieve this.

9.4 Process-Level & Thread-Level Partitioning

Several related work evaluates process-level partitioning at dif-
ferent levels of granularity. Related work primarily focuses on
separation policies and inference of a separation policy, not the
separation enforcement mechanism. Provos et al. [50] provide a
case study on how to break the OpenSSH server into smaller pro-
tected components (similar to how QMail compares to sendmail).
Privtrans [32] automates the privilege separation process through
an inference process. Wedge [31] extends Privtrans with capabili-
ties while Salus [55] provides dynamically adjustable enforcement
policies. Dune [30] leverages VT-x extensions to reduce separation
overhead on per-page basis, improving performance of separation
mechanisms. All these mechanisms share the limitation that they
cannot handle multiple threads in a single compartment.

Recently, process-level partitioning has been extended with
thread-awareness. Arbiter [60] provides fine-grained synchroniza-
tion of memory spaces between threads but incurs prohibitive over-
head. SMV [41] leverages a page-based separation scheme to enable
fast compartment switching on a per-thread basis and provides a
fine-grained APL

Light-weight Contexts [43] create independent protection units
within a process. SandTrap uses two sets of page tables for a process
to provide different address spaces for its threads [51]. In contrast,
Milkomeda’s shield space provides a protected space for graphics
code to execute and limits the process’ access to the GPU device dri-
ver to only this space. While the shield space share some underlying
techniques with these systems (e.g., using a syscall to change the
address space and using separate page tables for a process), shield
is specialized and designed for enforcing graphics security check
integrity. Specifically, using two first-level page tables to efficiently
implement an in-process shield space and enabling it to securely
control and vet the accesses of threads to the GPU driver is the
novelty of the shield’s design. IMIX provides hardware support for
in-process memory isolation [37]. In contrast, Milkomeda’s shield
space is designed for existing hardware.

9.5 Control-Flow Hijacking Mitigation

In Milkomeda, we protect the control flow of the execution of the
security checks by running them in an isolated shield space. An
orthogonal approach to protect the control flow inside a process
is control-flow integrity (CFI) [24, 33]. CFI restricts control flow
through indirect control flow transfers to well known and valid tar-
gets, prohibiting calls to unaligned instructions or indirect function
calls to invalid targets. The set of allowed targets depends on the
underlying analysis but is at least the set of valid functions. Even
the most basic CFI policy protects against an attacker hijacking the
control flow past the check at the beginning of a function. While
most existing CFI mechanisms are static and the set of valid targets
is tied solely to the code location, some recent CFI mechanisms
embrace context sensitivity. PathArmor [57] and PittyPat [35] track
path constraints, increasing precision of CFI mechanisms to path
awareness. Protecting applications against control-flow hijacking
is orthogonal to separating two execution contexts. CFI ensures
that bugs inside a context cannot compromise control flow, while
Milkomeda protects a privileged kernel component by leveraging
existing security checks from a different domain.



9.6 Fault Isolation

Fault isolation restricts interactions between (at least) two compart-
ments in a single address space. Software fault isolation [59] and
Native Client [64] leverage binary rewriting and restrictions on bi-
nary code to separate compartments and control interactions. Mem-
Trace [47] executes x86 programs and additional security checks in
an x86_64 process, protecting checks and metadata by moving them
past the 32-bit address space of the original program. Limitations of
these existing solutions are performance overhead and the need of
a priori rewriting and verification to ensure the encapsulation along
with restrictions on the address space. Milkomeda is oblivious to
the unprotected compartment and shield simply places a secure
compartment inside the untrusted process and controls interac-
tions between the untrusted part of the process and the trusted
component.

Instead of using a software-based mechanism, hardware-based
fault isolation enables separation at low performance overhead.
The early work on flicker [45] leverages a Trusted Platform Module
(TPM) chip to enforce strong isolation. TrustVisor [44] increases the
TCB by moving from the TPM chip to the hypervisor and leveraging
a software TPM to minimize overhead. Several architectures such
as Loki [66], CODOM [58], or CHERI [62] leverage some form of
tagged memory to enforce strong separation and isolation at low
overhead by overhauling the underlying memory architecture. All
these systems share that they require heavy hardware changes.
Milkomeda is geared towards existing hardware and does not need
any new CPU or memory features.

Milkomeda is also related to solutions that sandbox untrusted
code. For example, Boxify [29] and PREC [40] sandbox Android
apps and Native Client sandboxes native code in the Chrome web
browser [64]. In contrast, Milkomeda protects a vetting layer from
an untrusted app within its own process.

10 LIMITATIONS AND FUTURE WORK

Other GPU frameworks. While OpenGL ES is the main frame-
work using the GPU in mobile devices, it is not the only one. Notably,
OpenCL and CUDA leverage the GPU for computation. Milkomeda
disallows any code outside the shield space to interact with the GPU
device driver. Therefore, our current prototype blocks the usage
of such frameworks. We plan to address this problem in two steps.
First, we will load these frameworks in the shield space and allow
the app to use them by making proper shield-calls. Note that this
step immediately improves the state of the art, which needs to give
unrestricted access to the app for communication with the GPU
device driver. In our solution, the app’s access will be regulated and
limited to a higher-level API (i.e., the GPU framework API). Second,
we will evaluate the security of the interface of these frameworks
and, if needed, investigate adding proper vetting for them as well.

Use the shield space to improve WebGL performance. As
mentioned, web browsers deploy a multi-process architecture to
protect the integrity of the security checks (see Figure 1b). We plan
to use the shield space to employ the WebGL backend (including
the security checks) in the web app process and improve the WebGL
performance.

Supporting ANGLE. As mentioned in §2.4, WebGL uses AN-
GLE’s shader validator. ANGLE, in addition to the shader verifier,

is being orthogonally equipped with a set of security checks. While
it does not yet provide a comprehensive set of checks as current
WebGL checks (e.g., no support for OpenGL ES version 3.0), it is
under active development and will likely add the missing checks,
as evident from a discussion by Google on the potential integration
of all security checks [14]. We plan to update our CheckGen tool to
also automatically reuse ANGLE’s security checks for the mobile
graphics interface.

Supporting ARMv7 processors. Our shield implementation
in Milkomeda targets ARMv8 processors, used in modern mobile
devices. We plan to support older ARMv?7 processors as well. For
that, we will use a smaller part of the process address space for
the shield space since the address space is limited for these 32-bit
processors. We will also consider implementing the shield space
memory using ARM memory domains available in ARMv7 proces-
sors [27], which will not require changes to the kernel. Note that,
unfortunately, ARM memory domains are not available on ARMv8
processors. We believe that if such hardware support existed on
these processors, the shield’s overhead could be reduced.

11 CONCLUSIONS

We presented Milkomeda, a system solution to protect the mobile
graphics interface against exploits. We showed, through a study,
that the mobile graphics interface exposes a large amount of vulner-
able kernel code to potentially malicious mobile apps. Yet, mobile
apps’ access to the OpenGL ES interface is not vetted.

Browser vendors have invested significant effort to develop a
comprehensive set of security checks to vet calls for the WebGL
API, a framework for GPU-based graphics acceleration for web
apps. Milkomeda repurposes the existing WebGL security checks
to harden the security of the mobile graphics interface. Moreover,
it does so with almost no engineering effort by using a tool, Check-
Gen, which automates the porting of these checks to be used for
mobile graphics. We also introduced a novel shield space design
that allows us to securely deploy these checks in the app’s process
address space for better performance. Our evaluation shows that
Milkomeda achieves high graphics performance for various mobile
apps, although at the cost of moderately increased CPU utilization.
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