
Block Oriented Programming: Automating Data-Only Attacks
Kyriakos K. Ispoglou

ispo@purdue.edu
Purdue University

Bader AlBassam
balbassa@purdue.edu
Purdue University

Trent Jaeger
tjaeger@cse.psu.edu

Pennsylvania State University

Mathias Payer
mathias.payer@nebelwelt.net
EPFL and Purdue University

ABSTRACT
With the widespread deployment of Control-Flow Integrity (CFI),
control-flow hijacking attacks, and consequently code reuse at-
tacks, are significantly more difficult. CFI limits control flow to
well-known locations, severely restricting arbitrary code execution.
Assessing the remaining attack surface of an application under ad-
vanced control-flow hijack defenses such as CFI and shadow stacks
remains an open problem.

We introduce BOPC, amechanism to automatically assesswhether
an attacker can execute arbitrary code on a binary hardened with
CFI/shadow stack defenses. BOPC computes exploits for a target
program from payload specifications written in a Turing-complete,
high-level language called SPL that abstracts away architecture and
program-specific details. SPL payloads are compiled into a program
trace that executes the desired behavior on top of the target binary.
The input for BOPC is an SPL payload, a starting point (e.g., from a
fuzzer crash) and an arbitrary memory write primitive that allows
application state corruption. To map SPL payloads to a program
trace, BOPC introduces Block Oriented Programming (BOP), a new
code reuse technique that utilizes entire basic blocks as gadgets
along valid execution paths in the program, i.e., without violating
CFI or shadow stack policies. We find that the problem of mapping
payloads to program traces is NP-hard, so BOPC first reduces the
search space by pruning infeasible paths and then uses heuristics to
guide the search to probable paths. BOPC encodes the BOP payload
as a set of memory writes.

We execute 13 SPL payloads applied to 10 popular applications.
BOPC successfully finds payloads and complex execution traces –
which would likely not have been found through manual analysis
– while following the target’s Control-Flow Graph under an ideal
CFI policy in 81% of the cases.
ACM Reference Format:
Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
2018. Block Oriented Programming: Automating Data-Only Attacks. In 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS
’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3243734.3243739

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243739

1 INTRODUCTION
Control-flow hijacking and code reuse attacks have been challeng-
ing problems for applications written in C/C++ despite the de-
velopment and deployment of several defenses. Basic mitigations
include Data Execution Prevention (DEP) [63] to stop code injec-
tion, Stack Canaries [12] to stop stack-based buffer overflows, and
Address Space Layout Randomization (ASLR) [48] to probabilis-
tically make code reuse attacks harder. These mitigations can be
bypassed through, e.g., information leaks [28, 38, 42, 51] or code
reuse attacks [3, 37, 56, 57, 66].

Advanced control-flow hijacking defenses such as Control-Flow
Integrity (CFI) [1, 4, 41, 61] or shadow stacks/safe stacks [23, 40]
limit the set of allowed target addresses for indirect control-flow
transfers. CFImechanisms typically rely on static analysis to recover
the Control-Flow Graph (CFG) of the application. These analyses
over-approximate the allowed targets for each indirect dispatch
location. At runtime, CFI checks determine if the observed target
for each indirect dispatch location is within the allowed target
set for that dispatch location as identified by the CFG analysis.
Modern CFImechanisms [41, 44, 45, 61] are deployed in, e.g., Google
Chrome [60], Microsoft Windows 10, and Edge [59].

However, CFI still allows the attacker control over the execu-
tion along two dimensions: first, due to imprecision in the analysis
and CFI’s statelessness, the attacker can choose any of the targets
in the set for each dispatch; second, data-only attacks allow an
attacker to influence conditional branches arbitrarily. Existing at-
tacks against CFI leverage manual analysis to construct exploits for
specific applications along these two dimensions [6, 24, 29, 31, 53].
With CFI, exploits become highly program dependent as the set of
reachable gadgets is severely limited by the CFI policy, so exploits
must therefore follow valid paths in the CFG. Finding a path along
the CFG that achieves the exploit goals is much more complex than
simply finding the locations of gadgets. As a result, building attacks
against advanced control-flow hijacking defenses has become a
challenging, predominantly manual process.

We present BOPC (Block Oriented Programming Compiler) , an
automatic framework to evaluate a program’s remaining attack
surface under strong control-flow hijacking mitigations. BOPC au-
tomates the task of finding an execution trace through a buggy
program that executes arbitrary, attacker-specified behavior. BOPC
compiles an “exploit” into a program trace, which is executed on
top of the original program’s CFG. To express the desired exploits
flexibly, BOPC provides a Turing-complete, high-level language:
SPloit Language (SPL). To interact with the environment, SPL pro-
vides a rich API to call OS functions, direct access to memory, and

https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1145/3243734.3243739

an abstraction for hardware registers. BOPC takes as input an SPL
payload and a starting point (e.g., found through fuzzing or manual
analysis) and returns a trace through the program (encoded as a set
of memory writes) that encodes the SPL payload.

The core component of BOPC is the mapping process through
a novel code reuse technique we call Block Oriented Programming
(BOP). First, BOPC translates the SPL payload into constraints for
individual statements and, for each statement, searches for basic
blocks in the target binary that satisfy these constraints (called can-
didate blocks). At this point, SPL abstracts register assignments from
the underlying architecture. Second, BOPC infers a resource (regis-
ter and state) mapping for each SPL statement, iterating through
the set of candidate blocks and turning them into functional blocks.
Functional blocks can be used to execute a concrete instantiation
of the given SPL statement. Third, BOPC constructs a trace that
connects each functional block through dispatcher blocks. Since
the mapping process is NP-hard, to find a solution in reasonable
time BOPC first prunes the set of functional blocks per statement
to constrain the search space and then uses a ranking based on
the proximity of individual functional blocks as a heuristic when
searching for dispatcher gadgets.

We evaluate BOPC on 10 popular network daemons and setuid
programs, demonstrating that BOPC can generate traces from a set
of 13 test payloads. Our test payloads are both reasonable exploit
payloads (e.g., calling execve with attacker-controlled parameters)
as well as a demonstration of the computational capabilities of SPL
(e.g., loops and conditionals). Applications of BOPC go beyond an
attack framework. We envision BOPC as a tool for defenders and
software developers to highlight the residual attack surface of a
program. For example, a developer can test whether a bug at a
particular statement enables a practical code reuse attack in the
program. Overall, we present the following contributions:

• Abstraction: We introduce SPL, a C dialect with access to
virtual registers and an API to call OS and other library
functions, suitable for writing exploit payloads. SPL enables
the necessary abstraction to scale to large applications.
• Search: Development of a trace module that allows execution
of an arbitrary payload, written in SPL, using the target
binary’s code. The trace module considers strong defenses
such as DEP, ASLR, shadow stacks, and CFI alone or in
combination. The trace module enables the discovery of
viable mappings through a search process.
• Evaluation: Evaluation of our prototype demonstrates the
generality of our mechanism and uncovers exploitable vul-
nerabilities where manual exploitation may have been infea-
sible. For 10 target programs, BOPC successfully generates
exploit payloads and program traces to implement code reuse
attacks for 13 SPL exploit payloads for 81% of the cases.

2 BACKGROUND AND RELATEDWORK
Initially, exploits relied on simple code injection to execute arbitrary
code. The deployment of Data Execution Prevention (DEP) [63]
mitigated code injection and attacks moved to reusing existing code.
The first code reuse technique, return to libc [26], simply reused
existing libc functions. Return Oriented Programming (ROP) [56]
extended code reuse to a Turing-complete technique. ROP locates

small sequences of code which end with a return instruction, called
“gadgets.” Gadgets are connected by injecting the correct state, e.g.,
by preparing a set of invocation frames on the stack [56]. A number
of code reuse variations followed [3, 9, 32], extending the approach
from return instructions to arbitrary indirect control-flow transfers.

Several tools [30, 46, 52, 54] seek to automate ROP payload gen-
eration. However, the automation suffers from inherent limitations.
These tools fail to find gadgets in the target binary that do not
follow the expected form “inst1; inst2; ... retn;” as they
search for a set of hard coded gadgets that form pre-determined
gadget chains. Instead of abstracting the required computation,
they search for specific gadgets. If any gadget is not found or if a
more complex gadget chain is needed, these tools degenerate to
gadget dump tools, leaving the process of gadget chaining to the
researcher who manually creates exploits from discovered gadgets.

The invention of code reuse attacks resulted in a plethora of new
detection mechanisms based on execution anomalies and heuris-
tics [10, 25, 35, 47, 50] such as frequency of return instructions.
Such heuristics can often be bypassed [7].

While the aforementioned tools help to craft appropriate pay-
loads, finding the vulnerability is an orthogonal process. Automatic
Exploit Generation (AEG) [2] was the first attempt to automatically
find vulnerabilities and generate exploits for them. AEG is limited
in that it does not assume any defenses (such as the now basic DEP
or ASLR mitigations). The generated exploits are therefore buffer
overflows followed by static shellcode.

2.1 Control Flow Integrity
Control Flow Integrity [1, 4, 41, 61] (CFI) mitigates control-flow
hijacking to arbitrary locations (and therefore code reuse attacks).
CFI restricts the set of potential targets that are reachable from
an indirect dispatch. While CFI does not stop the initial memory
corruption, it validates the code pointer before it is used. CFI infers
an (overapproixmate) CFG of the program to determine the allowed
targets for each indirect control-flow transfer. Before each indirect
dispatch, the target address is checked to determine if it is a valid
edge in the CFG, and if not an exception is thrown. This limits the
freedom for the attacker, as she can only target a small set of targets
instead of any executable byte in memory. For example, an attacker
may overwrite a function pointer through a buffer overflow, but the
function pointer is checked before it is used. Note that CFI targets
forward edges, i.e., virtual dispatchers for C++ or indirect function
calls for C.

With CFI, code reuse attacks become harder, but not impossi-
ble [6, 29, 31, 53]. Depending on the application and strength of the
CFI mechanism, CFI can be bypassed with Turing-complete pay-
loads, which are often highly complex to comply with the CFG. So
far, these code-reuse attacks rely on manually constructed payloads.

Deployed CFI implementations [41, 44, 45, 49, 61] use a static
over-approximation of the CFG based on method prototypes and
class hierarchy. PittyPat [27] and PathArmor [64] introduce path
sensitivity that evaluates partial execution paths. Newton [65] in-
troduced a framework that reasons about the strength of defenses,
including CFI. Newton exposes indirect pointers (along with their
allowed target set) that are reachable (i.e., controllable by an ad-
versary) through given entry points. While Newton displays all

usable “gadgets,” it cannot stitch them together and effectively is a
CFI-aware ROP gadget search tool that helps an analyst to manually
construct an attack.

2.2 Shadow Stacks
While CFI protects forward edges in the CFG (i.e., function pointers
or virtual dispatch), a shadow stack orthogonally protects backward
edges (i.e., return addresses). Shadow stacks keep a protected copy
(called shadow) of all return addresses on a separate, protected
stack. Function calls store the return address both on the regular
stack and on the shadow stack. When returning from a function,
the mitigation checks for equivalence and reports an error if the
two return addresses do not match. The shadow stack itself is
assumed to be at a protected memory location to keep the adversary
from tampering with it. Shadow stacks enforce stack integrity and
protect the binary from any control-flow hijacking attack against
the backward edge.

2.3 Data-only Attacks
While CFI mitigates code-reuse attacks, CFI cannot stop data-only
attacks. Manipulating a program’s data can be enough for a success-
ful exploitation. Data-only attacks target the program’s data rather
than its control flow. E.g., having full control over the arguments to
execve() suffices for arbitrary command execution. Also, data in a
program may be sensitive: consider overwriting the uid or a vari-
able like is_admin. Data Oriented Programming (DOP) [34] is the
generalization of data-only attacks. Existing DOP attacks rely on
an analyst to identify sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the
program and apply Data Flow Integrity (DFI) [8] to it. However, to
the best of our knowledge, there are no practical DFI-based defenses
due to prohibitively high overhead of data-flow tracking.

In comparison to existing data-only attacks, BOPC automatically
generates payloads based on a high-level language. The payloads
follow the valid CFG of the program but not its Data Flow Graph.

3 ASSUMPTIONS AND THREAT MODEL
Our threat model consists of a binary with a known memory cor-
ruption vulnerability that is protected with the state-of-the-art
control-flow hijack mitigations, such as CFI along with a Shadow
Stack. Furthermore, the binary is also hardened with DEP, ASLR
and Stack Canaries.

We assume that the target binary has an arbitrary memory
write vulnerability. That is, the attacker can write any value to
any (writable) address. We call this an Arbitrary memory Write
Primitive (AWP). To bypass probabilistic defenses such as ASLR, we
assume that the attacker has access to an information leak, i.e., a
vulnerability that allows her to read any value from any memory
address. We call this an Arbitrary memory Read Primitive (ARP).
Note that the ARP is optional and only needed to bypass orthogonal
probabilistic defenses.

We also assume that there exists an entry point, i.e., a location
that the program reaches naturally after completion of all AWPs
(and ARPs). Thus BOPC does not require code pointer corruption
to reach the entry point. Determining an entry point is considered

to be part of the vulnerability discovery process. Thus, finding this
entry point is orthogonal to our work.

Note that these assumptions are in line with the threat model of
control-flow hijack mitigations that aim to prevent attackers from
exploiting arbitrary read and write capabilities. These assumptions
are also practical. Orthogonal bug finding tools such as fuzzing
often discover arbitrary memory accesses that can be abstracted to
the required arbitrary read and writes, placing the entry point right
after the AWP. Furthermore, these assumptions map to real bugs.
Web servers, such as nginx, spawn threads to handle requests and a
bug in the request handler can be used to read or write an arbitrary
memory address. Due to the request-based nature, the adversary
can repeat this process multiple times. After the completion of the
state injection, the program follows an alternate and disjoint path
to trigger the injected payload.

These assumptions enable BOPC to inject a payload into a tar-
get binary’s address space, modifying its memory state to execute
the payload. BOPC assumes that the AWP (and/or ARP) may be
triggered multiple times to modify the memory state of the target
binary. After the state modification completes, the SPL payload
executes without using the AWP (and/or ARP) further. This sepa-
rates SPL execution into two phases: state modification and payload
execution. The AWP allows state modification, BOPC infers the
required state change to execute the SPL payload.

4 DESIGN
Figure 1 shows how BOPC automates the analysis tasks necessary
to leverage AWPs to produce a useful exploit in the presence of
strong defenses, including CFI. First, BOPC provides an exploit
programming language, called SPL, that enables analysts to define
exploits independent of the target program or underlying architec-
ture. Second, to automate SPL gadget discovery, BOPC finds basic
blocks from the target program that implement individual SPL
statements, called functional blocks. Third, to chain basic blocks
together in a manner that adheres with CFI and shadow stacks,
BOPC searches the target program for sequences of basic blocks
that connect pairs of neighboring functional blocks, which we call
dispatcher blocks. Fourth, BOPC simulates the BOP chain to produce
a payload that implements that SPL payload from a chosen AWP.

The BOPC design builds on two key ideas: Block Oriented Pro-
gramming and Block Constraint Summaries. First, defenses such as
CFI impose stringent restrictions on transitions between gadgets,
so an exploit no longer has the flexibility of setting the instruc-
tion pointer to arbitrary values. Instead, BOPC implements Block
Oriented Programming (BOP), which constructs exploit programs
called BOP chains from basic block sequences in the valid CFG of
a target program. Note that our CFG encodes both forward edges
(protected by CFI) and backward edges (protected by shadow stack).

(1) SPL Payload (2) Selecting
functional blocks

(3) Searching for
dispatcher blocks

(4) Stitching
BOP gadgets

Figure 1: Overview of BOPC’s design.

Functional
Dispatcher

BOP
Gadget

Figure 2: BOP gadget structure. The functional part consists
of a single basic block that executes an SPL statement. Two
functional blocks are chained together through a series of
dispatcher blocks, without clobbering the execution of the
previous functional blocks.

For BOP, gadgets are chains of entire basic blocks (sequences of
instructions that end with a direct or indirect control-flow transfer),
as shown in Figure 2. A BOP chain consists of a sequence of BOP
gadgets where each BOP gadget is: one functional block that imple-
ments a statement in an SPL payload and zero or more dispatcher
blocks that connect the functional block to the next BOP gadget in
a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual in-
structions into Block Constraint Summaries, enabling blocks to be
employed in a variety of different ways. That is, a single block
may perform multiple functional and/or dispatching operations by
utilizing different sets of registers for different operations. That is,
a basic block that modifies a register in a manner that may fulfill
an SPL statement may be used as a functional block, otherwise it
may be considered to serve as a dispatcher block.

BOPC leverages abstract Block Constraint Summaries to apply
blocks in multiple contexts. At each stage in the development of
a BOP chain, the blocks that may be employed next in the CFG
as dispatcher blocks to connect two functional blocks depend on
the block summary constraints for each block. There are two cases:
either the candidate dispatcher block’s summary constraints indi-
cate that it will modify the register state set and/or the memory
state by the functional blocks, called the SPL state, or it will not,
enabling the computation to proceed without disturbing the effects
of the functional blocks. A block that modifies a current SPL state
unintentionally, is said to be a clobbering block for that state. Block
summary constraints enable identification of clobbering blocks at
each point in the search.

An important distinction between BOP and conventional ROP
(and variants) is that the problem of computing BOP chains is NP-
hard, as proven in Appendix B. Conventional ROP assumes that
indirect control-flows may target any executable byte in memory
while BOP must follow a legal path through the CFG for any chain
of blocks, resulting in the need for automation.

4.1 Expressing Payloads
BOPC provides a programming language, called SPloit Language
(SPL) that allows analysts to express exploit payloads in a com-
pact high-level language that is independent of target programs

Simple loop Spawn a shell
void payload () {

__r0 = 0;

LOOP:

__r0 += 1;

if (__r0 != 128)

goto LOOP;

returnto 0x446730;

}

void payload () {

string prog = "/bin/sh\0";

int64 *argv = {&prog , 0x0};

__r0 = &prog;

__r1 = &argv;

__r2 = 0;

execve(__r0 , __r1 , __r2);

}

Table 1: Examples of SPL payloads.

or processor architectures. SPL is a dialect of C. Compared to min-
DOP [34], SPL allows use of both virtual registers and memory for
operations and declaration of variables/constants. Table 1 shows
some sample payloads. Overall, SPL has the following features:
• It is Turing-complete;
• It is architecture independent;
• It is close to a well known, high level language.

Compared to existing exploit development tools [30, 52, 54], the
architecture independence of SPL has important advantages. First,
the same payload can be executed under different ISAs or operat-
ing systems. Second, SPL uses a set of virtual registers, accessed
through reserved volatile variables. Virtual registers increase flex-
ibility, which in turn increases the chances of finding a solution:
virtual registers may be mapped to any general purpose register
and the mapping may be changed dynamically.

To interact with the environment, SPL defines a concise API
to access OS functionality. Finally, SPL supports conditional and
unconditional jumps to enable control-flow transfers to arbitrary
locations. This feature makes SPL a Turing-complete language, as
proven in Appendix C. The complete language specifications are
shown in Appendix A in Extended Backus–Naur form (EBNF).

The environment for SPL differs from that of conventional lan-
guages. Instead of running code directly on a CPU, our compiler
encodes the payload as a mapping of instructions to functional
blocks. That is, the underlying runtime environment is the target
binary and its program state, where payloads are executed as side
effects of the underlying binary.
4.2 Selecting functional blocks
To generate a BOP chain for an SPL payload, BOPC must find a
sequence of blocks that implement each statement in the SPL pay-
load, which we call functional blocks. The process of building BOP
chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL state-
ment to determine if the block can implement the statement. How-
ever, blocks are in terms of machine code and SPL statements are
high-level program statements. To provide flexibility for matching
blocks to SPL statements, BOPC computes Block Constraint Sum-
maries, which define the possible impacts that the block would
have on SPL state. Block Constraint Summaries provide flexibility
in matching blocks to SPL statements because there are multiple
possible mappings of SPL statements and their virtual registers to
the block and its constraints on registers and state.

The constraint summaries of each basic block are obtained by
isolating and symbolically executing it. The effect of symbolically

(a) (b) (c)

Figure 3: Visualisation of BOP gadget volatility, rectangles:
SPL statements, dots: functional blocks (a). Connecting any
two statements through dispatcher blocks constrains re-
maining gadgets (b), (c).

executing a basic block creates a set of constraints, mapping input
to the resultant output. Such constraints refer to registers, memory
locations, jump types and external operations (e.g., library calls).

To find a match between a block and an SPL statement the block
must perform all the operations required for that SPL statement.
More specifically, the constraints of the basic block should contain
all the operations required to implement the SPL statement.

4.3 Finding BOP gadgets
BOPC computes a set of all potential functional blocks for each
SPL statement or halts if any statement has no blocks. To stitch
functional blocks, BOPC must select one functional block and a
sequence of dispatcher blocks that reach the next functional block
in the payload. The combination of a functional block and its dis-
patcher blocks is called a BOP gadget, as shown in Figure 2. To build
a BOP gadget, BOPC must select exactly one functional block from
each set and find the appropriate dispatcher blocks to connect to a
subsequent functional block.

However, dispatcher paths between two functional blocks may
not exist either because there is no legal path in the CFG between
them, or the control flow cannot reach the next block due to un-
satisfiable runtime constraints. This constraint imposes limits on
functional block selection, as the existence of a dispatcher path
depends on the previous BOP gadgets.

BOP gadgets are volatile: gadget feasibility changes based on the
selection of prior gadgets for the target binary. This is illustrated in
Figure 3. The problem of selecting a suitable sequence of functional
blocks, such that a dispatcher path exists between every possible
control flow transfer in the SPL payload, is NP-hard, as we prove
in Appendix B. Even worse, an approximation algorithm does not
exist.

As the problem is unsolvable in polynomial time in the general
case, we propose several heuristics and optimizations to find solu-
tions in reasonable amounts of time. BOPC leverages basic block
proximity as a metric to “rank” dispatcher paths and organizes this
information into a special data structure, called a delta graph that
provides an efficient way to probe potential sequences of functional
blocks.

4.4 Searching for dispatcher blocks
While each functional block executes a statement, BOPC must
chain multiple functional blocks together to execute the SPL pay-
load. Functional blocks are connected through zero or more basic

Function_1:
<instructions >

...

call Function_2 Function_2:
<insn_after_call > <prologue >

... ...

B:

<instructions > <instructions >

A:

<nop_sled > ...

call Function_2 retn

<insn_after_call >

retn
1

4

2 3

Figure 4: Existing shortest path algorithms are unfit to mea-
sure proximity in the CFG. Consider the shortest path from
A to B. A context-unaware shortest path algorithmwill mark
the red path as solution, instead of following the blue arrow
upon return from Function_2, it follows the red arrow (3).

blocks that do not clobber the SPL state computed thus far. Finding
such non-clobbering blocks that transfer control from one func-
tional statement to another is challenging as each additional block
increases the constraints and path dependencies. Thus, we propose
a graph data structure, called the delta graph, to represent the state
of the search for dispatcher blocks. The delta graph stores, for each
functional block for each SPL statement, the shortest path to the
next candidate block. Stitching arbitrary sequences of statements is
NP-hard as each selected path between two functional statements
influences the availability of further candidate blocks or paths, we
therefore leverage the delta graph to try likely candidates first.

The intuition behind the proximity of functional blocks is that
shorter paths result in simpler and more likely satisfiable con-
straints. Although this metric is a heuristic, our evaluation (Sec-
tion 6) shows that it works well in practice.

The delta graph enables quick elimination of sets of functional
blocks that are highly unlikely to have dispatcher blocks and thus
constitute a BOP gadget. For instance, if there is no valid path in the
CFG between two functional blocks (e.g., if execution has to traverse
the CFG “backwards”), no dispatcher will exist and therefore, these
two functional blocks cannot be part of the solution.

The delta graph is a multi-partite, directed graph that has a set
of functional block nodes for every payload statement. An edge
between two functional blocks represents the minimum number
of executed basic blocks to move from one functional block to the
other, while avoiding clobbering blocks. See Figure 7 for an example.

Indirect control-flow transfers pose an interesting challenge
when calculating the shortest path between two basic blocks in a
CFG: while they statically allow multiple targets, at runtime they
are context sensitive and only have one concrete target.

Our context-sensitive shortest path algorithm is a recursive ver-
sion of Dijkstra’s [11] shortest path algorithm that avoids all clob-
bering blocks.. Initially, each edge on the CFG has a cost of 1. When
it encounters a basic block with a call instruction, it recursively
calculates the shortest paths starting from the calling function’s en-
try block, BE (a call stack prevents deadlocks for recursive callees).
If the destination block, BD , is inside the callee, the shortest path
is the concatenation of the two individual shortest paths from the
beginning to BE and from BE to BD . Otherwise, our algorithm finds

Long path with simple constraints Short path with complex constraints

a, b, c, d, e = input();

// point A

if (a == 1) {

if (b == 2) {

if (c == 3) {

if (d == 4) {

if (e == 5) {

// point B

a = input();

X = sqrt(a);

Y = log(a*a*a - a)

// point A

if (X == Y) {

// point B

Table 2: A counterexample that demonstrates why proxim-
ity between two functional blocks can be inaccurate. Left, we
can move from point A to point B even if they are 5 blocks
apart from each other. Right, it is much harder to satisfy the
constrains and to move from A to B, despite the fact that A
and B are only 1 block apart.

the shortest path from the BE to the closest return point and uses
this value as an edge weight for that callee.

After creation of the delta graph, our algorithm selects exactly
one node (i.e., functional block) from each set (i.e., payload state-
ment), to minimize the total weight of the resulting induced sub-
graph 1. This selection of functional blocks is considered to be the
most likely to give a solution, so the next step is to find the exact
dispatcher blocks and create the BOP gadgets for the SPL payload.

4.5 Stitching BOP gadgets
The minimum induced subgraph from the previous step determines
a set of functional blocks that may be stitched together into an SPL
payload. This set of functional blocks has minimal distance to each
other, thus making satisfiable dispatcher paths more likely.

To find a dispatcher path between two functional blocks, BOPC
leverages concolic execution [55] (symbolic execution along a given
path). Along the way, it collects the required constraints that are
needed to lead the execution to the next functional block. Sym-
bolic execution engines [5, 58] translate basic blocks into sets of
constraints and use Satisfiability Modulo Theories (SMT) to find
satisfying assignments for these constraints; symbolic execution is
therefore NP-complete. Starting from the (context sensitive) short-
est path between the functional blocks, BOPC guides the symbolic
execution engine, collecting the corresponding constraints.

To construct an SPL payload from a BOP chain, BOPC launches
concolic execution from the first functional block in the BOP chain,
starting with an empty state. At each step BOPC tries the first K
shortest dispatcher paths until it finds one that reaches the next
functional block (the edges in the minimum induced subgraph in-
dicate which is the “next” functional block). The corresponding
constraints are added to the current state. The search therefore
incrementally adds BOP gadgets to the BOP chain. When a func-
tional block represents a conditional SPL statement, its node in the
induced subgraph contains two outgoing edges (i.e., the execution
can transfer control to two different statements). However during
the concolic execution, the algorithm does not know which one will
be followed, it clones the current state and independently follows
both branches, exactly like symbolic execution [5].

1The induced subgraph of the delta graph is a subgraph of the delta graph with one
node (functional block) for each SPL statement and with edges that represent their
shortest available dispatcher block chain.

Reaching the last functional block, BOPC checkswhether the con-
straints have a satisfying assignment and forms an exploit payload.
Otherwise, it falls back and tries the next possible set of functional
blocks. To repeat that execution on top of the target binary, these
constraints are concretized and translated into a memory layout
that will be initialized through AWP in the target binary.

5 IMPLEMENTATION
Our open source prototype, BOPC, is implemented in Python and
consists of approximately 14,000 lines of code. The current pro-
totype focuses on x64 binaries, we leave the (straightforward) ex-
tension to other architectures such as x86 or ARM as future work.
BOPC requires three distinct inputs:
• The exploit payload expressed in SPL,
• The vulnerable application on top of which the payload runs,
• The entry point in the vulnerable application, which is a
location that the program reaches naturally and occurs after
all AWPs have been completed.

The output of BOPC is a sequence of (address,value, size) tuples
that describe how the memory should be modified during the state
modification phase (Section 3) to execute the payload. Optionally, it
may also generate some additional (stream,value, size) tuples that
describe what additional input should be given on any potentially
open “streams” (file descriptors, sockets, stdin) that the attacker
controls during the execution of the payload.

A high level overview of BOPC is shown in Figure 5. Our algo-
rithm is iterative; that is, in case of a failure, the red arrows, indicate
which module is executed next.

5.1 Binary Frontend
The Binary Frontend uses angr [58] to lift the target binary into
the VEX intermediate representation to expose the application’s
CFG. Operating directly on basic blocks is cumbersome and heavily
dependent on the Application Binary Interface (ABI). Instead, we
translate each basic block into a block constraint summary. Abstrac-
tion leverages symbolic execution [39] to “summarize” the basic
block into a set of constraints encoding changes in registers and
memory, and any potential system, library call, or conditional jump
at the end of the block – generally any effect that this block has on
the program’s state. BOPC executes each basic block in an isolated
environment, where every action (such as accesses to registers or
memory) is monitored. Therefore, instead of working with the in-
structions of each basic block, BOPC utilizes its abstraction for all
operations. The abstraction information for every basic block is
added to the CFG, resulting in CFGA.

5.2 SPL Frontend
The SPL Front end translates the exploit payload into a graph-based
Intermediate Representation (IR) for further processing. To increase
the flexibility of the mapping process, statements in a sequence
can be executed out-of-order. For each statement sequence we
build a dependence graph based on a customized version of Kahn’s
topological sorting algorithm [36], to infer all groups of independent
statements. Independent statements in a subsequence are then
turned into a set of statements which can be executed out-of-order.

Binary
Frontend

Binary

SPL
Frontend

SPL
payload

Find
Candidate
Blocks

Find
Functional
Blocks

Build
Delta
Graph

Minimum
Induced

Subgraphs
Simulation Output (addr, value)

(addr, value)

(addr, value)

. . .

(addr, value)

N KPL

CFGA

IR

RG

VG

CB

FB

MAdj

δG Hk Cw

Figure 5: High level overview of the BOPC implementation. The red arrows indicate the iterative process upon failure. CFGA:
CFG with basic block abstractions added, IR: Compiled SPL payload RG : Register mapping graph, VG : All variable mapping
graphs, CB : Set of candidate blocks, FB : Set of functional blocks, MAdj : Adjacency matrix of SPL payload, δG: Delta graph,
Hk : Induced subgraph, Cw : Constraint set. L: Maximum length of continuous dispatcher blocks, P : Upper bound on payload
“shuffles”, N : Upper bound on minimum induced subgraphs, K : Upper bound on shortest paths for dispathers.

This results in a set of equivalent payloads that are permutations
of the original. Our goal is to find a solution for any of them.

5.3 Locating candidate block sets
SPL is a high level language that hides the underlying ABI. There-
fore, BOPC looks for potential ways to “map” the SPL environment
to the underlying ABI. The key insight in this step is to find all
possible ways to map the individual elements from the SPL envi-
ronment to the ABI (though candidate blocks) and then iteratively
selecting valid subsets from the ABI to “simulate” the environment
of the SPL payload.

Once the CFGA and the IR are generated, BOPC searches for
and marks candidate basic blocks, as described in Section 4.2. For a
block to be a candidate, it must “semantically match” with one (or
more) payload statements. Table 3 shows the matching rules. Note
that variable assignments, unconditional jumps, and returns do not
require a basic block and therefore are excluded from the search.

All statements that assign or modify registers require the basic
block to apply the same operation on the same, as yet undetermined,
hardware registers. For function calls, the requirement for the basic
block is to invoke the same call, either as a system call or as a library
call (if the arguments are different, the block is clobbering). Note
that the calling convention exposes the register mapping.

Upon a successful matching, BOPC builds the following data
structures:
• RG , the Register Mapping Graph which is a bipartite undi-
rected graph. The nodes in the two sets represent the virtual
and hardware registers respectively. The edges represent po-
tential associations between virtual and hardware registers.
• VG , the Variable Mapping Graph, which is very similar to
RG , but instead associates payload variables to underlying
memory addresses. VG is unique for every edge in RG i.e.:

∀(rα , reдγ) ∈ RG ∃!V αγ
G

• DM , the Memory Dereference Set, which has all memory ad-
dresses that are dereferenced and their values are loaded
into registers. Those addresses can be symbolic expressions
(e.g., [rbx + rdx*8]), and therefore we do not know the
concrete address they point to until execution reaches them
(see Section 5.6).

After this step, each SPL statement has a set of candidate blocks.
Note that a basic block can be candidate for multiple statements.
If for some statement there are no candidate blocks, the algorithm
halts and reports that the program cannot be synthesized.

5.4 Identifying functional block sets
After determining the set of candidate blocks, CB , BOPC iteratively
identifies, for each SPL statement, which candidate blocks can serve
as functional blocks, i.e., the blocks that perform the operations.
This step determines for each candidate block if there is a resource
mapping that satisfies the block’s constraints.

BOPC identifies the concrete set of hardware registers and mem-
ory addresses that execute the desired statement. A successful map-
ping identifies candidate blocks that can serve as functional blocks.

To find the hardware-to-virtual register association, BOPC searches
for a maximum bipartite matching [11] in RG . If such a mapping
does not exist, the algorithm halts. The selected edges indicate the
set of VG graphs that are used to find the memory mapping, i.e.,
the variable-to-address association (see Section 5.3, there can be a
VG for every edge in RG). Then for every VG the algorithm repeats
the same process to find another maximum bipartite matching.

This step determines, for each statement, which concrete regis-
ters and memory addresses are reserved. Merging this information
with the set of candidate blocks constructs each block’s SPL state,
enabling the removal of candidate blocks that are unsatisfiable.

However, there may be multiple candidate blocks for each SPL
statement, and thus the maximum bipartite match may not be
unique. The algorithm enumerates allmaximumbipartitematches [62],
trying them one by one. If no match leads to a solution, the algo-
rithm halts.

5.5 Selecting functional blocks
Given the functional block set FB , this step searches for a subset
that executes all payload statements. The goal is to select exactly
one functional block for every IR statement and find dispatcher
blocks to chain them together. BOPC builds the delta graph δG,
described in Section 4.4.

Once the delta graph is generated, this step locates theminimum
(in terms of total edge weight) induced subgraph, Hk0 , that contains

Statement Form Abstraction Actions Example

Register Assignment
rα = C

reдγ ← C

RG ∪
{
(rα , reдγ)

} – movzx rax, 7h

reдγ ← ∗A DM ∪ {A} mov rax, ds:fd

rα = &V reдγ ← C, C ∈R∧W
V
αγ
G ∪

{
(V ,A)

} – lea rcx, [rsp+20h]

reдγ ← ∗A DM ∪ {A} mov rdx, [rsi+18h]

Register Modification rα ⊙= C reдγ ← reдγ ⊙ C RG ∪
{
(rα , reдγ)

}
dec rsi

Memory Read rα = ∗ rβ reдγ ← ∗reдδ RG ∪
{
(rα , reдγ), (rβ , reдδ)

} mov rax, [rbx]

Memory Write ∗ rα = rβ ∗reдγ ← reдδ mov [rax], [rbx]

Call call(rα , rβ , ...) Ijk_Call to call RG ∩
{
(rα ,%rdi), (rβ ,%rsi), ...

}
call execve

Conditional Jump
i f (rα ⊙= C)

дoto LOC

Ijk_Boring ∧
condition = reдγ ⊙ C RG ∪

{
(rα , reдγ)

} test rax, rax
jnz LOOP

Table 3: Semantic matching of SPL statements to basic blocks. Abstraction indicates the requirements that the basic block
abstraction needs to have to match the SPL statement in the Form. Upon a match, the appropriate Actions are taken. rα ,
rβ : Virtual registers, reдγ , reдδ : Hardware registers, C: Constant value, V : SPL variable, A: Memory address, RG : Register

mapping graph, VG : Variable mapping graph, DM : Dereferenced Addresses Set, Ijk_Call: A call to an address, Ijk_Boring: A
normal jump to an address.

the complete set of functional blocks to execute the SPL payload.
If Hk0 , does not result in a solution, the algorithm tries the next
minimum induced subgraph,Hk1 , until a solution is found or a limit
is reached.

If the resulting delta graph does not lead to a solution, this
step “shuffles” out-of-order payload statements, see Section 5.2,
and builds a new delta graph. Note that the number of different
permutations may be exponential. Therefore, our algorithm sets an
upper bound P on the number of tried permutations.

Each permutation results in a different yet semantically equiv-
alent SPL payload, so the CFG of the payload (called Adjacency
Matrix,MAdj) needs to be recalculated.

5.6 Discovering dispatcher blocks
The simulation phase takes the individual functional blocks (con-
tained in the minimum induced subgraph Hki) and tries to find
the appropriate dispatcher blocks to compose the BOP gadgets. It
returns a set of memory assignments for the corresponding dis-
patcher blocks, or an error indicating un-satisfiable constraints for
the dispatchers.

BOPC is called to find a dispatcher path for every edge in the
minimum induced subgraph. That is, we need to simulate every
control flow transfer in the adjacency matrix, MAdj of the SPL
payload. However, dispatchers are built on the prior set of BOP
gadgets and their impact on the binary’s execution state so far, so
BOP gadgets must be stitched with the respect to the program’s
current flow originating from the entry point.

Finding dispatcher blocks relies on concolic execution. Our algo-
rithm utilizes functional block proximity as a metric for dispatcher
path quality. However, it cannot predict which constraints will take
exponential time to solve (in practice we set a timeout). Therefore
concolic execution selects the K shortest dispatcher paths relative
to the current BOP chain, and tries them in order until one produces
a set of satisfiable constraints. It turns that this metric works well
in practice even for small values of K (e.g., 8). This is similar to the
k-shortest path [67] algorithm used for the delta graph.

When simulation starts it also initializes any SPL variables at the
locations that are reserved during the variablemapping (Section 5.4).

These addresses are marked as immutable, so any unintended mod-
ification raises an exception which stops this iteration.

In Table 3, we introduce the set of Dereferenced Addresses, DM ,
which is the set of memory addresses whose contents are loaded
into registers. Simulation cannot obtain the exact location of a
symbolic address (e.g., [rax + 4]) until the block is executed
and the register has a concrete value. Before simulation reaches a
functional block, it concretizes any symbolic addresses from DM
and initializes the memory cell accordingly. If that memory cell
has already been set, any initialization prior to the entry point
cannot persist. That is, BOPC cannot leverage an AWP to initialize
this memory cell and the iteration fails. If a memory cell has been
used in the constraints, its concretization can make constraints
unsatisfiable and the iteration may fail.

Simulation traverses the minimum induced subgraph, and incre-
mentally extends the SPL state from one BOP gadget to the next,
ensuring that newly added constraints remain satisfiable. When
encountering a conditional statement (i.e., a functional block has
two outgoing edges), BOPC clones the current state and continues
building the trace for both paths independently, in the same way
that a symbolic execution engine handles conditional statements.
When a path reaches a functional block that was already visited,
it gracefully terminates. At the end, we collect all those states and
check whether the constraints of all these paths are satisfied or not.
If so, we have a solution.

5.7 Synthesizing exploits
If the simulation module returns a solution, the final step is to en-
code the execution trace as a set of memory writes in the target
binary. The constraint set Cw collected during simulation reveals a
memory layout that leads to a flow across functional blocks accord-
ing to the minimum induced subgraph. Concretizing the constraints
for all participating conditional variables at the end of the simula-
tion can result in incorrect solutions. Consider the following case:

a = input();
if (a > 10 && a < 20) {

a = 0;
/* target block */

}

Vulnerable Application CFG Time
(m:s)

Total number of functional blocks
Program Vulnerability Prim. Nodes Edges RegSet RegMod MemRd MemWr Call Cond Total
ProFTPd CVE-2006-5815 [18] AW 27,087 49,862 10:08 40,143 387 1,592 199 77 3,029 45,427
nginx CVE-2013-2028 [14] AW 24,169 44,645 12:36 31,497 1,168 1,522 279 35 3375 37,876
sudo CVE-2012-0809 [20] FMS 3,399 6,267 01:14 5,162 26 157 18 45 307 5715
orzhttpd BugtraqID 41956 [17] FMS 1,354 2,163 00:27 2,317 9 39 8 11 89 2473
wuftdp CVE-2000-0573 [22] FMS 8,899 17,092 03:22 14,101 62 274 11 94 921 15,463
nullhttpd CVE-2002-1496 [15] AW 1,488 2,701 00:27 2,327 77 54 7 19 125 2,609
opensshd CVE-2001-0144 [16] AW 6,688 12,487 01:53 8,800 98 214 19 63 558 9,752
wireshark CVE-2014-2299 [21] AW 74,186 162,111 29:41 12,4053 639 1,736 193 100 4555 131276
apache CVE-2006-3747 [13] AW 18,790 34,205 10:22 33,615 212 490 66 127 1,768 36,278
smbclient CVE-2009-1886 [19] FMS 166,081 351,309 82:25 265,980 1,481 6,791 951 119 28,705 304,027

Table 4: Vulnerable applications. The Prim. column indicates the primitive type (AW = Arbitrary Write, FMS = ForMat String).
Time is the amount of time needed to generate the abstractions for every basic block. Functional blocks show the total number
for each of the statements (RegSet = Register Assignments, RegMod = Register Modifications, MemRd = Memory Load, MemWr =
Memory Store, Call = system/library calls, Cond = Conditional Jumps). Note that the number of call statements is small because
we are targeting a predefined set of calls. Also note that MemRd statements are a subset of RegSet statements.

Payload Description |S | flat?
regset4 Initialize 4 registers with arbitrary values 4 ✓

regref4 Initialize 4 registers with pointers to arbitrary memory 8 ✓

regset5 Initialize 5 registers with arbitrary values 5 ✓

regref5 Initialize 5 registers with pointers to arbitrary memory 10 ✓

regmod Initialize a register with an arbitrary value and modify it 3 ✓

memrd Read from arbitrary memory 4 ✓

memwr Write to arbitrary memory 5 ✓

print Display a message to stdout using write 6 ✓

execve Spawn a shell through execve 6 ✓

abloop Perform an arbitrarily long bounded loop utilizing regmod 2 ✗

infloop Perform an infinite loop that sets a register in its body 2 ✗

ifelse An if-else condition based on a register comparison 7 ✗

loop Conditional loop with register modification 4 ✗

Table 5: SPL payloads. Each payload consists of |S | state-
ments. Payloads that produce flat delta graphs (i.e., have no
jump statements), are marked with ✓.memwr payloadmod-
ifies programmemory on the fly, thus preserving the Turing
completeness of SPL (recall from Section 3 that AWP/ARP-
based state modification is no longer allowed).

The symbolic execution engine concretizes the symbolic variable
assigned to a upon assignment. When execution reaches “target
block”, a is 0, which is contradicts the precondition to reach the
target block. Hence, BOPC needs to resolve the constraints during
(i.e., on the fly), rather than at the end of the simulation.

Therefore, constraints are solved inline in the simulation. BOPC
carefully monitors all variables and concretizes them at the “right”
moment, just before they get overwritten. More specifically, mem-
ory locations that are accessed for first time, are assigned a symbolic
variable. Whenever a memory write occurs, BOPC checks whether
the initial symbolic variable still exists in the new symbolic expres-
sion. If not, BOPC concretizes it, adding the concretized value to
the set of memory writes.

There are also some symbolic variables that do not participate
in the constraints, but are used as pointers. These variables are
concretized to point to a writable location to avoid segmentation
faults outside of the simulation environment.

Finally, it is possible for registers or external symbolic variables
(e.g., data from stdin, sockets or file descriptors) to be part of the
constraints. BOPC executes a similar translation for the registers
and any external input, as these are inputs to the program that are
usually also controlled by the attacker.

6 EVALUATION
To evaluate BOPC, we leverage a set of 10 applications with known
memory corruption CVEs, listed in Table 4. These CVEs correspond
to arbitrary memory writes [6, 33, 34], fulfilling our AWP primitive
requirement. Table 4 contains the total number of all functional
blocks for each application. Although there are many functional
blocks, the difficulty of finding stitchable dispatcher blocks makes
a significant fraction of them unusable.

Basic block abstraction is a time consuming process – espe-
cially for applications with large CFGs – but these results may
be reused across iterations. Thus, as a performance optimization,
BOPC caches the resulting abstractions of the Binary Frontend
(Figure 5) to a file and loads them for each search, thus avoiding
the startup overhead listed in Table 4.

To demonstrate the effectiveness of our algorithm, we chose
a set of 13 representative SPL payloads 2 shown in Table 5. Our
goal is to “map and run” each of these payloads on top each of the
vulnerable applications. Table 6 shows the results of running each
payload. BOPC successfully finds a mapping of memory writes to
encode an SPL payload as a set of side effects executed on top of the
applications for 105 out of 130 cases, approximately 81%. In each
case, the memory writes are sufficient to reconstruct the payload
execution by strictly following the CFG without violating a strict
CFI policy or stack integrity.

Table 6 shows that applications with large CFGs result in higher
success rates, as they encapsulate a “richer” set of BOP gadgets.
Achieving truly infinite loops is hard in practice, as most of the
loops in our experiments involve some loop counter that is modified
in each iteration. This iterator serves as an index to dereference
an array. By falsifying the exit condition through modifying loop
variables (i.e., the loop becomes infinite), the program eventually
terminates with a segmentation fault, as it tries to access memory
outside of the current segment. Therefore, even though the loop
would run forever, an external factor (segmentation fault) causes
it to stop. BOPC aims to address this issue by simulating the same
loop multiple times. However, finding a truly infinite loop requires

2Results depend on the SPL payloads and the vulnerable applications. We chose the
SPL payloads to showcase all SPL features, other payloads or combination of payloads
are possible. We encourage the reader to play with the open-source prototype.

Program SPL payload
regset4 regref4 regset5 regref5 regmod memrd memwr print execve abloop infloop ifelse loop

ProFTPd ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 32 ✗1 ✓ 128+ ✓ ∞ ✓ ✓ 3
nginx ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✓ ✓ 128+ ✓ ∞ ✓ ✓ 128
sudo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✓ 128+ ✗4 ✗4
orzhttpd ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗1 ✗4 ✓ 128+ ✗4 ✗3
wuftdp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗1 ✓ 128+ ✓ 128+ ✗4 ✗3
nullhttpd ✓ ✓ ✓ ✓ ✓ ✓ ✗3 ✗3 ✓ ✓ 30 ✓ ∞ ✗4 ✗3
opensshd ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗4 ✗4 ✓ 512 ✓ 128+ ✓ ✓ 99
wireshark ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 4 ✗1 ✓ 128+ ✓ 7 ✓ ✓ 8
apache ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗4 ✓ ∞ ✓ 128+ ✓ ✗4
smbclient ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗1 ✓ 1057 ✓ 128+ ✓ ✓ 256

Table 6: Feasibility of executing various SPL payloads for each of the vulnerable applications. An✓means that the SPL payload
was successfully executed on the target binary while a ✗ indicates a failure, with the subscript denoting the type of failure
(✗1 = Not enough candidate blocks, ✗2 = No valid register/variable mappings, ✗3 = No valid paths between functional blocks
and ✗4 = Un-satisfiable constraints or solver timeout). Note that in the first two cases (✗1 and ✗2), we know that there is no
solution while, in the last two (✗3 and ✗4), a solution might exists, but BOPC cannot find it, either due to over-approximation
or timeouts. The numbers next to the ✓ in abloop, infloop, and loop columns indicate the maximum number of iterations. The
number next to the print column indicates the number of character successfully printed to the stdout.

BOPC to simulate it an infinite number of times, which is infeasible.
For some cases, we managed to verify that the accessed memory
inside the loop is bounded and therefore the solution truly is an
infinite loop. Otherwise, the loop is arbitrarily bounded with the
upper bound set by an external factor.

For some payloads, BOPC was unable to find an exploit trace.
This is is either due to imprecision of our algorithm, or because no
solution exists for the written SPL payload. We can alleviate the
first failure by increasing the upper bounds and the timeouts in our
configuration. Doing so, makes BOPC search more exhaustively at
the cost of search time.

The failure to find a solution exposes the limitations of the vul-
nerable application. This type of failure is due to the “structure” of
the application’s CFG, which prevents BOPC from finding a trace
for an SPL payload. Hence, a solution may not exist due to one the
following:

(1) There are not enough candidate blocks or functional blocks.
(2) There are no valid register / variable mappings.
(3) There are no valid paths between functional blocks.
(4) The constraints between blocks are unsatisfiable or symbolic

execution raised a timeout.

For instance, if an application (e.g., ProFTPd) never invokes
execve then there are no candidate blocks for execve SPL sate-
ments. Thus, we can infer from the execve column in Table 6 that
all applications with a ✗1 never invoke execve.

In Section 3 wemention that the determination of the entry point
is part of the vulnerability discovery process. Therefore, BOPC as-
sumes that the entry point is given. Without having access to actual
exploits (or crashes), the locations of entry points are ambiguous.
Hence, we have selected arbitrary locations as the entry points. This
allows BOPC to find payloads for the evaluation without having
access to concrete exploits. In practice, BOPC would leverage the
given entry points as starting points. We demonstrate several test
cases where the entry points are precisely at the start of functions,
deep in the Call Graph, to show the power of our approach. Or-
thogonally, we allow for vulnerabilities to exist in the middle of a

function. In such situations, BOPC would set our entry point to the
location after the return of the function.

The lack of the exact entry point complicates the verification
of our solutions. We leverage a debugger to “simulate” the AWP
and modify the memory on the fly, as we reach the given entry
point. We ensure as we step through our trace that we maintain the
properties of the SPL payload expressed. That is, blocks between
the statements are non-clobbering in terms of register allocation
and memory assignment.

7 CASE STUDY: NGINX
We utilize a version of the nginx web server with a known memory
corruption vulnerability [14] that has been exploited in the wild to
further study BOPC. When an HTTP header contains the “Transfer-
Encoding: chunked” attribute, nginx fails to properly bounds check
the received packet chunks, resulting in stack buffer overflow. This
buffer overflow [6] results in an arbitrary memory write, fulfilling
the AWP requirement. For our case study we select three of the
most interesting payloads: spawning a shell, an infinite loop, and
a conditional branch. Table 7 shows metrics collected during the
BOPC execution for these cases.

Payload Time |CB | Mappings |δG | |Hk |
execve 0m:55s 10,407 142,355 1 1
infloop 4m:45s 9,909 14 1 1
ifelse 1m:47s 10,782 182 4 2

Table 7: Performance metrics (run on Ubuntu 64-bit with an
i7 processor) for BOPC on nginx. Time = time to synthesize
exploit, |CB | = # candidate blocks,Mappings = # concrete regis-
ter and variablemappings, |δG | = # delta graphs created, |Hk |
= # of induced subgraphs tried.

7.1 Spawning a shell
Function ngx_execute_proc is invoked through a function pointer,
with the second argument (passed to rsi, according to x64 calling
convention), being a void pointer that is interpreted as a struct
to initialize all arguments of execve:

mov rbx, rsi
mov rdx, QWORD PTR [rsi+0x18]
mov rsi, QWORD PTR [rsi+0x10]
mov rdi, QWORD PTR [rbx]
call 0x402500 <execve@plt>

BOPC leverages this function to successfully synthesize the
execve payload (shown on the right side of Table 1) and gener-
ate a PoC exploit in less than a minute as shown in Table 7.

Assuming that rsi points to some writable address x , BOPC pro-
duces the following (address,value, size) tuples: ($y, $x , 8), ($y +
8h, 0, 8), ($x , /bin/sh, 8), ($x + 10h, $y, 8), ($x + 18h, 0, 8), were $y
is a concrete writable addresses set by BOPC.

7.2 Infinite loop
Here we present a payload that generates a trace that executes
an infinite loop. The infloop payload is a simple infinite loop that
consists of only two statements:

void payload() {
LOOP:

__r1 = 0;
goto LOOP;

}
We set the entry point at the beginning of ngx_signal_handler

function which is a signal handler that is invoked through a func-
tion pointer. Hence, this point is reachable through control-flow
hijacking. The solution synthesized by BOPC is shown in Figure 6.
The box on the top-left corner demonstrates how the memory is
initialized to satisfy the constraints.

Virtual register __r0 was mapped to hardware register r14, so
ngx_signal_handler contains three candidate blocks, marked as
octagons. Exactly one of them is selected to be the functional block
while the others are avoided by the dispatcher blocks. The dis-
patcher finds a path from the entry point to the first functional
block, and then finds a loop to return back to the same functional
block (highlighted with blue arrows). Note that the size of the dis-
patcher block exceeds 20 basic blocks while the functional block
consists of a single basic block.

The oval nodes in Figure 6 indicate basic blocks that are out-
side of the current function. At basic block 0x41C79F, function
ngx_time_sigsafe_update is invoked. Due to the shortest path
heuristic, BOPC, tries to execute as few basic blocks as possible
from this function. In order to do so BOPC sets ngx_time_lock a
non-zero value, thus causing this function to return quickly. BOPC
successfully synthesizes this payload in less than 5 minutes.

7.3 Conditional statements
This case study shows an SPL if-else condition that implements a
logical NOT. That is, if register __r0 is zero, the payload sets __r1 to
one, otherwise __r1 becomes zero. The execution trace starts at the
beginning of ngx_cache_manager_process_cycle. This function
is called through a function pointer. A part of the CFG starting from
this function is shown in Appendix D. After trying 4 mappings,
__r0 and __r1map to rsi and r15 respectively. The resulting delta
graph is the shown in Figure 7.

As we mentioned in Section 5.6, when BOPC encounters a func-
tional block for a conditional statement, it clones the current state of

41cb6c

41cbaa

41cae2

41cafa

41ca27

41ca2c

41cc5f

41cc79

41cb0b

41cb10

41c791

41c79f

41ca50

41cb46 41ca60

41cc48

41cc52

41c994

41c9ac

41c9ea

41c9fb

41ca18

41cbac

41cbbd

41cbe6

41c910

41c91e41c9a1

41ccc3

41cce7

41c9bd

41c9e5

41c783

41c787

41c900

41cb09 41cacd

41cced

41c7bf

41c8f2 41c96d

41ca40

41ca4b

41ca84

41ca8f

41ca97

41ccad

41ccb2

41c7cd

41cac8

41c8f7

41cc8c

41cc95

41cb50

41cb5b

41c7a4

41c7b141c7c4

41ca7c

4027d0

41c93f41cc39

41ca22

41c750

41c765

402220

41c97a

41cc7f

41ca9b

41c778

41c79a

41c77c

41cc0f

41cbed

41cab0

41cb3f

41cbfe

40e10f

41cb36

41caff

41ca77

41c793

41c956

1000038

40e223

1000308

 41C765: signals.signo == 0
 40E10F: ngx_time_lock != 0
 41C7B1: ngx_process ­ 3 > 1
 41C9AC: ngx_cycle = $alloc_1
 $alloc_1­>log = $alloc_2
 $alloc_2­>log_level <= 5
 41CA18: signo == 17
 41CA4B: waitpid() return value != {0, ­1}
 41cA50: ngx_last_process == 0
 41CB50: *($stack ­ 0x03C) & 0x7F != 0
 41CB5B: $alloc_2­>log_level <= 1
 41CBE6: *($stack ­ 0x03C + 1) != 2
 41CC48: ngx_accept_mutex_ptr == 0
 41CC5F: ngx_cycle­>shared_memory.part.elts = 0
 __r0 = r14 = 0
 41CC79: ngx_cycle­>shared_memory.part.nelts <= 0
 41CC7F: ngx_cycle­>shared_memory.part.next == 0

In function

Out of function

Functional block

Dispatcher path

Figure 6: CFG of nginx’s ngx_signal_handler and payload
for an infinite loop (blue arrow dispatcher blocks, octagons
functional blocks) with the entry point at the function start.
The top box shows the memory layout initialization for this
loop. This graph was created by BOPC.

the symbolic execution and the two clones independently continue

Statement #12

Statement #2

Statement #0

Statement #4

Statement #16

Statement #6

41eb23

403d4b

8

403d6c

10

404d5a

13

407887

36

407a1c

40

41dfe3

4

41e02a

11

403cdb

INF INF INF INF INF 1 INF

403e4e

10

403fd9

2

403e4e

10

403ebb

19

403fb4

6

403fd9

2

 -1

0 0 0 0 0 0

Figure 7: A delta graph instance for an ifelse payload for ng-
inx. The first node is the entry point. Blue nodes and edges
form theminimum induced subgraph, Hk . Statement #4 is a con-
ditional, execution branches into two statements. Note that
BOPC created this graph.

the execution. The constraints up to the conditional jump are the
following:

0x41eb23 : $rdi = ngx_cycle_t* cycle
0x40f709 : *(ngx_event_flags + 1) == 0x2
0x41dfe3 : __r0 = rsi = 0x0
0x403cdb : $r15 = 0x1

ngx_module_t ngx_core_module.index = 0
$alloca_1 = *cycle
ngx_core_conf_t* conf_ctx =

*$alloca_1 + ngx_core_module.index * 8
0x403d06 : test rsi, rsi (__r0 != 0)
0x403d09 : jne 0x403d1b <ngx_set_environment+64>

If the condition is false and the jump is not taken, the following
constraints are also added to the state.

0x403d0b : conf_ctx->environment != 0
0x403fd9 : __r1 = *($stack - 0x178) = 1;

When the condition is true, the execution trace will follow the
“taken” branch of the trace. In this case the shortest path to the next
functional block is 403d1b → 403d3d → 403d4b → 403d54 →
403d5a → 403f b4 with a total length 6. Unfortunately, this cannot
be used as a dispatcher block, due to an exception that is raised
at 403d4b. The register rsi, is 1 and therefore when we attempt
to execute the following instruction: cmp BYTE PTR [rsi], 54h,
we essentially try to dereference address 1. BOPC is aware of this
exception, so it discards the current path and tries with the second
shortest path. The second shortest path has length 7 and avoids
the problematic block: 403d1b → 403d8b → 4050ba → 40511c →
40513a → 403d9c → 403da5→ 403f b4. This results in a new set
of constraints as shown below:

0x403d1b : conf_ctx->env.elts = &elt (ngx_array_t*)
conf_ctx->env.nelts == 0

0x4050ba : conf_ctx->env.nelts != $alloca_2->env.nalloc
0x40511c : conf_ctx->env.nelts += 1
0x40513a : $ret = conf_ctx->env.elts +

conf_ctx->env.nelts*conf_ctx->env.size
0x403d9c : $ret != 0
0x403da5 : conf_ctx->env.nelts != 0
0x403fb4 : __r1 = r15 = 0

8 DISCUSSION AND FUTUREWORK
Our prototype demonstrates the feasibility and scalability of auto-
matic construction of BOP chains through a high level language.
However, we note some potential optimizations that we will con-
sider for future versions of BOPC.

BOPC is limited by the granularity of basic blocks. That is, a
combination of basic blocks could potentially lead to the execution
of a desired SPL statement, while individual blocks might not. Take
for instance an instruction that sets a virtual register to 1. Assume
that a basic block initializes rcx to 0, while the following block
increments it by 1; a pattern commonly encountered in loops. Al-
though there is no functional block that directly sets rcx to 1, the
combination of the previous two has the desired effect. BOPC can
be expanded to address this issue if the basic blocks are coalesced
into larger blocks that result in a new CFG.

BOPC sets several upper bounds defined by user inputs. These
configurable bounds include the upper limit of (i) SPL payload per-
mutations (P), (ii) length of continuous blocks (L), (iii) of minimum
induced subgraphs extracted from the delta graph (N), and (iv) dis-
patcher paths between a pair of functional blocks (K). These upper
bounds along with the timeout for symbolic execution, reduce the
search space, but prune some potentially valid solutions. The eval-
uation of higher limits may result in alternate or more solutions
being found by BOPC.

9 CONCLUSION
Despite the deployment of strong control-flow hijack defenses such
as CFI or shadow stacks, data-only code reuse attacks remain pos-
sible. So far, configuring these attacks relies on complex manual
analysis to satisfy restrictive constraints for execution paths.

Our BOPC mechanism automates the analysis of the remain-
ing attack surface and synthesis of exploit payloads. To abstract
complexity from target programs and architectures, the payload
is expressed in a high-level language. Our novel code reuse tech-
nique, Block Oriented Programming, maps statements of the payload
to functional basic blocks. Functional blocks are stitched together
through dispatcher blocks that satisfy the program CFG and avoid
clobbering functional blocks. To find a solution for this NP-hard
problem, we develop heuristics to prune the search space and to
evaluate the most probable paths first.

The evaluation demonstrates that the majority of 13 payloads,
ranging from typical exploit payloads to loops and conditionals
are successfully mapped 81% of the time across 10 programs. Upon
acceptance, we will release the source code of our proof of concept
prototype along with all of our evaluation results. The prototype is
available at https://github.com/HexHive/BOPC.

10 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This research was supported by ONR awards N00014-17-1-2513,
N00014-17-1-2498, byNSFCNS-1408880, CNS-1513783, CNS-1801534,
CNS-1801601, and a gift from Intel corporation. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of our sponsors.

https://github.com/HexHive/BOPC

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) (2009).

[2] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74–84.

[3] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.

[4] Nathan Burow, Scott A Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per
Larsen, and Michael Franz. 2018. Control-flow integrity: Precision, security, and
performance. ACM Computing Surveys (CSUR) (2018).

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI.

[6] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity.. In USENIX Security.

[7] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses.. In USENIX Security.

[8] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on Operating
systems design and implementation.

[9] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security.

[10] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, Huijie DENG, et al. 2014.
ROPecker: A generic and practical approach for defending against ROP attack.
(2014).

[11] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2009. Introduction to Algorithms. The MIT press.

[12] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In Usenix Security.

[13] CVEApache 2006. CVE-2006-3747: Off-by-one error in Apache 1.3.34. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747.

[14] CVEnginx 2013. CVE-2013-2028: Nginx http server chunked encoding buffer over-
flow 1.4.0. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028.

[15] CVEnullhttpd 2004. CVE-2002-1496: Heap-based buffer overflow in Null HTTP
Server 0.5.0. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496.

[16] CVEopenssh 2001. CVE-2001-0144: Integer overflow in OpenSSH 1.2.27. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144.

[17] CVEorzhttpd 2009. CVE/bug in OrzHTTPd - Format String. https://www.
exploit-db.com/exploits/10282/.

[18] CVEproftpd 2006. CVE-2006-5815: Stack buffer overflow in ProFTPD 1.3.0. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815.

[19] CVEsmbclient 2009. CVE-2009-1886: Format string vulnerability in smbclient
3.2.12. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886.

[20] CVEsudo 2012. CVE-2012-0809: Format string vulnerability in SUDO 1.8.3. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809.

[21] CVEWireshark 2014. CVE-2014-2299: Buffer overflow in Wireshark 1.8.0. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299.

[22] CVEwuftpd 2001. CVE-2000-0573: Format string vulnerability in wu-ftpd 2.6.0.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573.

[23] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The performance
cost of shadow stacks and stack canaries. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security. ACM, 555–566.

[24] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection.. In USENIX Security.

[25] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: A
detection tool to defend against return-oriented programming attacks. In Proceed-
ings of the 6th ACM Symposium on Information, Computer and Communications
Security.

[26] Solar Designer. 1997. return-to-libc attack. Bugtraq, Aug (1997).
[27] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke

Lee. 2017. Efficient Protection of Path-Sensitive Control Security. (2017).
[28] Tyler Durden. 2002. Bypassing PaX ASLR protection. Phrack magazine #59

(2002).
[29] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security.

[30] Andreas Follner, Alexandre Bartel, Hui Peng, Yu-Chen Chang, Kyriakos Ispoglou,
Mathias Payer, and Eric Bodden. 2016. PSHAPE: Automatically Combining
Gadgets for Arbitrary Method Execution. In International Workshop on Security
and Trust Management.

[31] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of control: Overcoming control-flow integrity. In Security and Privacy (SP),
2014 IEEE Symposium on.

[32] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2012. Microgadgets: size does matter in turing-complete return-oriented
programming. In Proceedings of the 6th USENIX conference on Offensive Technolo-
gies. USENIX Association, 7–7.

[33] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits.. In USENIX Secu-
rity.

[34] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In Security and Privacy (SP), 2016 IEEE Symposium on.

[35] Emily R Jacobson, Andrew R Bernat, William R Williams, and Barton P Miller.
2014. Detecting code reuse attackswith amodel of conformant program execution.
In International Symposium on Engineering Secure Software and Systems.

[36] Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM
(1962).

[37] V Katoch. [n. d.]. Whitepaper on bypassing aslr/dep. Technical Report. Secfence,
Tech. Rep., September 2011.[Online]. Available: http://www.exploit-db.com/
wp-content/themes/exploit/docs/17914.pdf.

[38] Kil3r and Bulba. 2000. Bypassing StackGuard and StackShield. Phrack magazine
#53 (2000).

[39] James C King. 1976. Symbolic execution and program testing. Commun. ACM
(1976).

[40] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. 2014. Code-Pointer Integrity.. In OSDI, Vol. 14. 00000.

[41] Microsoft. 2015. Visual Studio 2015 — Compiler Options — Enable Control Flow
Guard. https://msdn.microsoft.com/en-us/library/dn919635.aspx.

[42] Tilo Müller. 2008. ASLR smack & laugh reference. Seminar on Advanced Exploita-
tion Techniques (2008).

[43] Urban Müller. 1993. Brainfuck–an eight-instruction turing-complete program-
ming language. Available at the Internet address http://en. wikipedia. org/wik-
i/Brainfuck (1993).

[44] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. ACM SIGPLAN
Notices 49 (2014).

[45] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.

[46] Pakt. 2013. ropc: A turing complete ROP compiler. https://github.com/pakt/ropc.
[47] Vasilis Pappas. 2012. kBouncer: Efficient and transparent ROP mitigation. tech.

rep. Citeseer (2012).
[48] PAX-TEAM. 2003. PaX ASLR (Address Space Layout Randomization). http:

//pax.grsecurity.net/docs/aslr.txt.
[49] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-grained control-

flow integrity through binary hardening. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment.

[50] Michalis Polychronakis and Angelos D Keromytis. 2011. ROP payload detection
using speculative code execution. In Malicious and Unwanted Software (MAL-
WARE), 2011 6th International Conference on.

[51] Gerardo Richarte et al. 2002. Four different tricks to bypass stackshield and
stackguard protection. World Wide Web (2002).

[52] Jonathan Salwan and Allan Wirth. 2012. ROPGadget. https://github.com/
JonathanSalwan/ROPgadget.

[53] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming: On
the difficulty of preventing code reuse attacks in C++ applications. In Security
and Privacy (SP), 2015 IEEE Symposium on.

[54] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit
Hardening Made Easy.. In USENIX Security Symposium.

[55] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. InACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 263–272.

[56] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of CCS 2007, Sabrina
De Capitani di Vimercati and Paul Syverson (Eds.). ACM Press, 552–61.

[57] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and communications security.

[58] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. SOK:(State of) The Art of War: Offensive Techniques in Binary
Analysis. In Security and Privacy (SP), 2016 IEEE Symposium on.

[59] Jack Tang and Trend Micro Threat Solution Team. 2015. Exploring con-
trol flow guard in windows 10. Available at "http://blog.trendmicro.com/
trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
https://www.exploit-db.com/exploits/10282/
https://www.exploit-db.com/exploits/10282/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://github.com/pakt/ropc
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10

(2015).
[60] The Chromium Projects. [n. d.]. Control Flow Integrity The Chromium Projects.

"https://www.chromium.org/developers/testing/control-flow-integrity".
[61] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM.. In USENIX Security.

[62] Takeaki Uno. 1997. Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. Algorithms and Computation (1997).

[63] Arjan van de Ven and Ingo Molnar. 2004. Exec shield. https://www.redhat.com/
f/pdf/rhel/WHP0006US_Execshield.pdf.

[64] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In Proceedings of the 22nd Conference on Computer and Communi-
cations Security (CCS’15).

[65] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrida. 2017. The Dynamics of Innocent Flesh on
the Bone: Code Reuse Ten Years Later. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. 1675–1689. https://doi.org/10.1145/3133956.
3134026

[66] RN Wojtczuk. 2001. The advanced return-into-lib (c) exploits: PaX case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[67] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712–716.

A EXTENDED BACKUS-NAUR FORM OF SPL

⟨SPL⟩ ::= void payload() { ⟨stmts⟩ }
⟨stmts⟩ ::= (⟨stmt⟩ | ⟨label⟩)* ⟨return⟩?
⟨stmt⟩ ::= ⟨varset⟩ | ⟨regset⟩ | ⟨regmod⟩ | ⟨call⟩

| ⟨memwr⟩ | ⟨memrd⟩ | ⟨cond⟩ | ⟨jump⟩

⟨varset⟩ ::= int64 ⟨var⟩ = ⟨rvalue⟩;
| int64* ⟨var⟩ = {⟨rvalue⟩ (, ⟨rvalue⟩)*};
| string ⟨var⟩ = ⟨str⟩;

⟨regset⟩ ::= ⟨reg⟩ = ⟨rvalue⟩;
⟨regmod⟩ ::= ⟨reg⟩ ⟨op⟩= ⟨number⟩;
⟨memwr⟩ ::= *⟨reg⟩ = ⟨reg⟩;
⟨memrd⟩ ::= ⟨reg⟩ = *⟨reg⟩;
⟨call⟩ ::= ⟨var⟩ ((ϵ | ⟨reg⟩ (, ⟨reg⟩)*);
⟨label⟩ ::= ⟨var⟩:
⟨cond⟩ ::= if (⟨reg⟩ ⟨cmpop⟩ ⟨number⟩) goto ⟨var⟩;
⟨jump⟩ ::= goto ⟨var⟩;
⟨return⟩ ::= returnto ⟨number⟩;

⟨reg⟩ := ‘__r’⟨regid⟩
⟨regid⟩ := [0-7]
⟨var⟩ := [a-zA-Z_][a-zA-Z_0-9]*
⟨number⟩ := (‘+’ | ‘-’) [0-9]+ | ‘0x’[0-9a-fA-F]+
⟨rvalue⟩ := ⟨number⟩ | ‘&’ ⟨var⟩
⟨str⟩ := [.]*
⟨op⟩ := ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘~’ | ‘<<’ | ‘<<’
⟨cmpop⟩ := ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

B STITCHING BOP GADGETS IS NP-HARD
We present the NP-hardness proof for the BOP Gadget stitching
problem. This problem reduces to the problem of finding the mini-
mum induced subgraph Hk in a delta graph. Furthermore, we show
that this problem cannot even be approximated.

A1 A2 A3

B1 B2

C1

D2D1 D3

8 12 42

11 13

7 17

11 1050

17

∞ ∞

∞

∞ ∞

∞

∞

Figure 8: An delta graph instance. The nodes along the black
edges form a flat delta graph. In this case, the minimum in-
duced subgraph, Hk is A3,B1,C1,D1, with a total weight of 20,
which is also the shortest path from A3 to D1. When delta
graph is not flat (assume that we add the blue edges), the
shortest path nodes constitute an induced subgraph with a
total weight of 70. However Hk has total weight 34 and con-
tains A3,B2,C1,D2. Finally, the problem of finding the mini-
mum induced subgraph becomes equivalent to finding a k-
clique if we add the red edges with∞ cost between all nodes
in the same set.

Let δG be a multipartite directed weighted delta graph with k
sets. Our goal is to select exactly one node (i.e., functional block)
from each set and form the induced subgraph Hk , such that the total
weight of all of edges is minimized:

min
Hk ⊂δG

∑
e ∈Hk

distance(e) (1)

A δG is flat, when all edges from ith set are towards (i + 1)th set.
The nodes and the black edges in Figure 8 are such an example. In
this case, the minimum induced subgraph, is the minimum among
all shortest paths that start from some node in the first set and end
in any node in the last set. However, if the δG is not flat (i.e., the
SPL payload contains jump statements, so edges from ith set can
go anywhere), the shortest path approach does not work any more.
Going back in Figure 8, if we make some loops (add the blue edges),
the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the δG is not flat . To
prove this, we will use a reduction from K-Clique: First we apply
some equivalent transformations to the problem. Instead of having
K independent sets, we add an edge with∞ weight between every
pair on the same set, as shown in Figure 8 (red edges). Then, the
minimum weight K-induced subgraph Hk , cannot have two nodes
from the same set, as this would imply that Hk contains an edge
with∞ weight.

Let R be an undirected un-weighted graph that we want to
check whether it has a k-clique. That is, we want to check whether
clique(R,k) is True or not. Thus, we create a new directed graph
R′ as follows:
• R′ contains all the nodes from R
• ∀ edge (u,v) ∈ R, we add the edges (u,v) and (v,u) in R′

withweiдht = 0

https://www.chromium.org/developers/testing/control-flow-integrity
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://doi.org/10.1145/3133956.3134026
https://doi.org/10.1145/3133956.3134026

• ∀ edge (u,v) < R, we add the edges (u,v) and (v,u) in R′

withweiдht = ∞
Then we try to find the minimum weight k-induced subgraph Hk

in R′. It is true that:∑
e ∈Hk

weiдht(e) < ∞⇔ clique(R,k) = True

:⇒ If the total edge weight of Hk is not∞, this implies that for
every pair of nodes in Hk , there is an edge with weight 1 in R′ and
thus an edge in R. This by definition means that the nodes of Hk
form a k-clique in R. Otherwise (the total edge weight of Hk is∞)
it means that it does not exist a set of k nodes in R′ that has all edge
weights < ∞.

:⇐ If R has a k-clique, then there will be a set of k nodes that are
fully connected. This set of nodes will have no edge with∞ weight
in R′. Thus, these nodes will form an induced subgraph of R′ and
the total weight will be smaller than∞.

This completes the proof that finding the minimum induced
subgraph in δG is NP-hard. However, no (multiplicative) approxi-
mation algorithm does exists, as it would also solve the K-Clique
problem (it must return 0 if there is a K-Clique).

C SPL IS TURING-COMPLETE
We present a constructive proof of Turing-completeness through
building an interpreter for Brainfuck [43], a Turing-complete lan-
guage in the following listing. This interpreter is written using SPL
with a Brainfuck program provided as input in the SPL payload.

1 int64 *tape = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2 string input = ".+[.+]";
3 __r0 = &tape; // Data pointer
4 __r2 = &input; // Instruction pointer
5 __r6 = 0; // STDIN
6 __r7 = 1; // STDOUT
7 __r8 = 1; // Count arg for write/read
8 NEXT: __r1 = *__r2;
9 if (__r1 != 0x3e) goto LESS; // '>'
10 __r0 += 1;
11 LESS: if (__r1 != 0x3c) goto PLUS; // '<'
12 __r0 -= 1;
13 PLUS: if (__r1 != 0x2b) goto MINUS; // '+'
14 *__r0 += 1;
15 MINUS: if (__r1 != 0x2d) goto DOT; // '-'
16 *__r0 -= 1;
17 DOT: if (__r1 != 0x2e) goto COMMA; // '.'
18 write(__r7, __r0, __r8);
19 COMMA: if (__r1 != 0x2c) goto OPEN; // ','
20 read(__r6, *__r0, __r8);
21 OPEN: if (__r1 != 0x5b) goto CLOSE; // '['
22 if (__r0 != 0) goto CLOSE;
23 __r3 = 1; // Loop depth counter
24 FIND_C: if (__r3 <= 0) goto CLOSE;
25 __r2 += 1;
26 __r1 = *__r2;
27 if (__r1 != 0x5b) goto CHECK_C; // '['
28 __r3 += 1;
29 CHECK_C: if (__r1 != 0x5d) goto FIND_C; // ']'
30 __r3 -= 1;
31 goto FIND_C;
32 CLOSE: if (__r1 != 0x5d) goto END; // ']'
33 if (__r0 != 0) goto END;
34 __r3 = 1; // Loop depth counter
35 FIND_O: if (__r3 <= 0) goto END;
36 __r2 -= 1;
37 __r1 = *__r2;
38 if (__r1 != 0x5b) goto CHECK_O; // '['
39 __r3 -= 1;

40 CHECK_O: if (__r1 != 0x5d) goto FIND_O; // ']'
41 __r3 += 1;
42 goto FIND_O;
43 END: __r2 += 1;
44 goto NEXT;

D CFG OF NGINX AFTER PRUNING
The following graph, is a portion of nginx’s CFG that includes
function calls starting from the function ngx_cache_manager_-
process_cycle. The graph only displays functions which are up
to 3 function calls deep to simplify visualization. Note the reduction
in search space–which is a result of BOPC’s pruning–as this portion
of the CFG reduces to the small delta graph in Figure 7.

40c6a3

40c6ac 40c6b1

40c8f8

40c8fc40c5e6

40c5f0

41e0c9

41e0df

4117af

4117f5

4117be

4043b3

4043b6

418a7b

418a99

418a8c

41153c

40429e

41155b

404422

4044c8

40442c

40f791

40f7a1

41e06c

41e0bf

41e076

40c4f4

40c50e

40c588

40c593

41ec8b

41ec93

4189db

404407

40440f

418acb

418ad3

411617

411636

40c574

40c57e40c584

41e1ad

402880

40c5c4

40c5c8

4115d2

4115f6

41ec81

411441

41ebfc

41ec1e

41ec05

418ac1

418ad5

41e3e8

41e3ed

41e417

40c9cf

40c9d9

4116f3

411726

411702

41e25e

41e282

41e1c8

41e1fa

41e1d4

40c94d

40c95740c95d

40c6fb

40c6ff

41e2fe

41e308

411760

4117a6

40c81a

40c83b40c824

41e172

41e17a

41e31c

418a4f

418a5e

418a55

40c4a2

40c4a6

41e3c3

41e3cd

40f78a

40f7b3

418aad

418aa3

41169f

4116d7

4116a4

40f82c

40f836

40f857

41146c

411473

41148a

40c89d

40c846

40c912

40c937

40c93b

40c51b

40c542 40c521

41e488

41e49841e48e

41e23f

41e244

41e190

40c7a0

40c7b140c90c

40f83b

40f7de

40f7fa

41e1d9

41e112

41e2b8

41e2c1

41e02a

41e039

40c9c0

411603

411612

40c4fa

40c50440c50a

4114de

4114e3

41e207

41e235

41e213

41e0a2

40f770

40f78c 40f77c

41ec13

41177e

411783

40c49c

41e385

41e38a

41e165

41e16a

41eca0

41d8d1

41d8e6

40c419

40c41f

41e293

41e298

4115fe

41e005

41e321

41e32c

41e34a

41eb5c

41eb69

40f889

41eb42

40ca62

41ebde

41173e

411743

40c7bb

40c7e0

40c7e4

40447f

404485

4044ef

40c492

418a49

418a65

4115be

4115cd

40c691

40c6ba

40f7ca

40f7cf

4116b8

40c8e8

40c8f2

40430c

4042cc

40c863

40c867

41164c

4044c6

41e17f 41e1b7

41e2d7

41e2f4

418ab2

418ab7

41e11c

41e132

411678

411697

41e357

41e35c

40c460

40c469

40c4b1

40c5f8

41e218

404399

41eb6c

41e3d2

41e3db

40f804

40f80e

40f817

40c47e

40c47a

40c80a

41e251

40c4e2

40c4e6

41e0e4

41e0f0

40ca58

40c772

40c776

41e428

41e442

40c87940c874

418a3f

40f756

40f766

40f7c2

4116ee

40c435

40c43f

404448

40444b

40c601

40c60f40c424

4117dc

40c806

40c3fc

40c613

40c48c 40c88940c883

41eb23

40f709

40f716

40f74c

40f873

404475

41ec15

41ec4b

41d902

41eba7

41e18b

40c800

411762

41e2c6

41e2d2

40431c

404337

40c6bf

411664

411673

411528

411537

411563

41e3e3

41e137

41e143

41ec28

41ec41

40ca2f

40ca48

41e3fe

41172e

411733

411481

40c765

40c769

41e447

41e470

41e452

40c8d6

40c8e3

41e023

40c9d5

41dfe3

40c992

40c9b3

40c9af

41e0f5

40c54b

40c55c

40c560

40c948

41e03e

41e04a

41e148

40c8d2

41e393

41e3a8

41e331

4117c8

4117cd 4114a6

4114af

4114c7

4115054114cf

41e202

41e379

40438d

41e287

41e2b1

40436c

40c82e

40ca53

411568

41159b

411577

418ae2

40448e

4044b3

40c6e6

41e398

41ebf7

41e000

41e00f

40c79e

40c971

4115b9

40441f

40c70e

40c704

40ca3e

41e3b9

41e04f

41e3f9

40c961

41d8a7

40c74340c748

404435

40c7f1

411707

40ca44

40c88d

41d8f2

40f7bb

4115a9

40c56e

411510

403cdb

40c5ec

418a14

418a20

418a2d

41ebe3

41ebbc

40c6b7

41157c

40c9c5

40c3e6

40c97b

40c985

41e457

4117d7

40f827

40ca34

40c75c

41e08c

41e091

41ec68

41e1c3

4116b3

41165f

4117a2

411500

40f7a3

41e39e

41e24c

40c758

41e09d

41176a

41ec54

41ebcf

40c684

40c69a

4189ff

418a0a

40c9e9

40f7d9

418a04

40ca1e

40ca22

411523

41176f

40c5dc

40c7f6

40c5d6

41149d

418a35

40c752

40c6f5

403d9c

403da5403fa6

403fb4

40513a

403d1b

403d0b 403d8b

4050ba

40511c

403fd9

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Control Flow Integrity
	2.2 Shadow Stacks
	2.3 Data-only Attacks

	3 Assumptions and Threat Model
	4 Design
	4.1 Expressing Payloads
	4.2 Selecting functional blocks
	4.3 Finding BOP gadgets
	4.4 Searching for dispatcher blocks
	4.5 Stitching BOP gadgets

	5 Implementation
	5.1 Binary Frontend
	5.2 SPL Frontend
	5.3 Locating candidate block sets
	5.4 Identifying functional block sets
	5.5 Selecting functional blocks
	5.6 Discovering dispatcher blocks
	5.7 Synthesizing exploits

	6 Evaluation
	7 Case Study: nginx
	7.1 Spawning a shell
	7.2 Infinite loop
	7.3 Conditional statements

	8 Discussion and Future Work
	9 Conclusion
	10 Acknowledgments
	References
	A Extended Backus-Naur Form of SPL
	B Stitching BOP Gadgets is NP-Hard
	C SPL is Turing-complete
	D CFG of nginx after pruning

