
CUP: Comprehensive User-Space Protection for C/C++
Nathan Burow

nburow@purdue.edu
Purdue University

Derrick McKee
mckee15@purdue.edu
Purdue University

Scott A. Carr
carr27@purdue.edu
Purdue University

Mathias Payer
mathias.payer@nebelwelt.net

Purdue University

ACM Reference Format:
Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. 2018.
CUP: Comprehensive User-Space Protection for C/C++. In ASIA CCS ’18:
2018 ACM Asia Conference on Computer and Communications Security, June
4–8, 2018, Incheon, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3196494.3196540

Abstract
Memory corruption vulnerabilities in C/C++ applications enable
attackers to execute code, change data, and leak information. Cur-
rent memory sanitizers do not provide comprehensive coverage
of a program’s data. In particular, existing tools focus primarily
on heap allocations with limited support for stack allocations and
globals. Orthogonally, existing tools focus on the main executable
with limited support for system libraries. Existing tools also suffer
from both false positives and false negatives.

We present Comprehensive User-Space Protection for C/C++,
CUP, an LLVM sanitizer that provides complete spatial and proba-
bilistic temporal memory safety for C/C++ programs on 64-bit ar-
chitectures (with a prototype implementation for x86_64). CUP uses
a hybrid metadata scheme that supports all program data including
globals, heap, or stack and maintains Application Binary Interface
(ABI) compatibility. Existing approaches have false positives and
8%-25% false negatives on the NIST Juliet test suite. In contrast,
CUP has no false negatives or false positives. CUP instruments all
user-space code, including libc and other system libraries, removing
these libraries from the trusted computing base. Supporting all of
user space allows CUP to treat a missed check as a failed check,
leading to no false negatives for CUP. The overhead introduced by
CUP is half that of the state-of-the-art full memory protection on
benchmarks where both mechanisms run, and imposes 1.58x over-
head when compared to baseline on all benchmarks. Consequently,
CUP is intended as a sanitizer for use by system developers, and to
protect truly critical systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196540

1 INTRODUCTION
Despite extensive research into memory safety techniques, only a
few mechanisms have been deployed, and exploits of memory cor-
ruptions remain common [22, 36, 38, 40]. These attacks rely on the
fact that C/C++ require the programmer to manually enforce spatial
safety (bounds checks) and temporal safety (lifetime checks). As the
continuing stream of memory corruption Common Vulnerabilities
and Exposures (CVEs) shows, these programmer added checks are
often inadequate. Many of these bugs are in network facing code
such as browsers, e.g., CVE-2016-5270, CVE-2016-5210, and servers,
e.g., CVE-2014-0226, CVE-2014-0133, allowing attackers to illicitly
gain arbitrary code execution on remote systems. Consequently, a
memory safety sanitizer that comprehensively protects user-space
is necessary to find and fix these bugs.

To correctly address memory safety in user-space, there are four
main requirements. Precision addresses spatial safety by requiring
that exact bounds are maintained for all allocations. Object Aware-
ness prevents temporal errors by tracking whether the pointed-to
object is currently allocated or not. These two requirements are
sufficient to enforce memory safety. Adding Comprehensive Cover-
age expands this protection to all of user space by requiring that
all data on the stack, heap and globals be protected. Comprehen-
sive Coverage implies that all code must be instrumented with the
sanitizer, including system libraries like libc. A sanitizer that meets
these three requirements is powerful enough to find all memory
corruption vulnerabilities in user-space programs. To be useful,
such a sanitizer must also be practical. Requiring Exactness — no
false positives and minimal false negatives — ensures that bugs re-
ported by a sanitizer are real, and that all spatial and most temporal
violations are found. We discuss these challenges in § 3.

The research community has come up with many approaches
that attempt to address memory safety. State of the art defenses
can be divided into two categories: probabilistic and deterministic.
Probabilistic defenses [3, 32, 35] can be bypassed by a sophisticated
attacker, but provide lower overhead. Deterministic defenses [12,
20, 28, 29] cannot be bypassed but come with significant overhead.
Modern defenses respect the Application Binary Interface (ABI),
but may alter the memory layout of the program by, e.g., injecting
“red zones” [35] or imposing additional alignment constraints [12].

Modern defenses still do not fully address the requirement we
identify for a memory safety solution. Comprehensive Coverage
is largely an open problem, with prior work mostly ignoring the
stack and neglecting support for system libraries like libc. Low-Fat
Pointers [12] is the only work to protect the stack — providing
only spatial safety. No existing work provides spatial and temporal

https://doi.org/10.1145/3196494.3196540
https://doi.org/10.1145/3196494.3196540

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

safety comprehensively for all user-space data (stack, heap, glob-
als) and code (program code, libc, libraries). Doing so requires a
large amount of additional metadata to protect the extra allocations
(§ 2.1), which existing schemes are unable to handle. Further, ex-
isting tools’ overhead per check does not allow them to scale to
handle the additional memory surface of the stack and libc. Com-
prehensive Coverage weaknesses are exacerbated by the fact that
existing works [12, 28, 35] can miss a check without consequence as
the execution continues normally. If a pointer is not instrumented,
e.g., for hand written assembly code, external uninstrumented code,
or pointers passed from the kernel to user-space, these existing
schemes continue without raising a fault. In contrast, a defense
mechanism that protects all of user space can require that all pointer
dereferences fail by default. The failure then alerts the programmer
to the issue, allowing her to annotate the inline assembly code,
kernel system call, or recompile the uninstrumented code. By fail-
ing by default, a mechanism with Comprehensive Coverage that
executes a program also guarantees that all pointer dereferences
were checked.

Libc is the most commonly used third party library, and a partic-
ularly critical part of user-space to protect. It is prone to memory
errors, notably the mem* and str* family of functions (e.g., memcpy
or strcpy). SoftBound, for example, uses intrinsics for some of
the functions to catch memory safety issues in their use. Memory
errors in libc are not limited to these functions, however as shown
by, e.g., GHOST [22], a stack overflow in getaddrinfo [36], and a
one byte corruption in glibc’s malloc which led to ASLR breaks
and arbitrary execution [15]. Consequently, the entire libc needs
to be protected, not just certain interfaces. Libc is also the primary
interface with the kernel. This is a natural boundary to unprotected
code for a user-space defense mechanism. Given its prevalence,
vulnerability, and boundary to unprotected code, supporting libc
gives strong evidence that a defense mechanism is robust enough
to protect all of user-space.

Exactness shows how well a memory safety solution protects
against vulnerabilities in practice. The U.S. National Institute of
Standards and Technology (NIST) maintains the Juliet test suite.
Juliet consists of thousands of examples of bugs, grouped by class
from the Common Weakness Enumeration (CWE). Juliet reveals
that existing, open source memory safety solutions [28, 29, 35] have
both false positives and false negatives (§ 5.2).

CUP satisfies all four requirements for a powerful, usable mem-
ory sanitizer. We introduce a new hybrid metadata scheme which is
capable of storing and using per object metadata for the stack, libc,
heap, and globals. Our metadata is precise and does not require
altering the program’s memory layout. Additionally, we introduce
a new way to check bounds that leverages hardware to increase
our check’s performance. Hybrid metadata allows us to meet the
Precision and Object Awareness requirements. CUP presents a novel
use of escape analysis to reduce the amount of instrumented stack
allocations without loss of protection. This reduction allows scal-
ing our mechanism to include all user-space data, satisfying the
Comprehensive Coverage requirement. By modifying all pointers so
that dereferences fail by default, CUP guarantees that every pointer
dereference is checked. Further, CUP successfully handles all sys-
tem libraries, including libc, the first memory sanitizer to do so.
Consequently, we guarantee that all user-space pointers are always

protected, even after passing them across the kernel boundary. Our
evaluation on Juliet (§ 5.2) shows that we have no false positives or
negatives, considerably advancing the state of the art for Exactness.
Further, this precision is achieved with half the overhead of Soft-
Bound+CETS, the state of the art for full memory safety, on SPEC
CPU2006 benchmarks where both run (CUP runs a super set of the
benchmarks that SoftBound+CETS does).

Contributions
We present the following contributions:
• A new hybrid metadata scheme capable of tracking runtime
information for all object allocations, and show how it can
be applied to memory safety.
• The first sanitizer to fully protect user-space, including libc
• By design, CUP guarantees that every pointer dereference is
proven safe statically or checked at run time. Missing checks
halt execution.
• A new static analysis for determining what stack variables re-
quire active protection, and present a local protection scheme
for non-escaping stack variables
• Evaluation of a CUP prototype that, using our hybrid meta-
data model, results in (i) no false positives and no false nega-
tives on the NIST Juliet C/C++ test suite and (ii) reasonably
low overhead (in line with other sanitizers).

2 CHALLENGES AND BACKGROUND
Our requirements for Precision and Object Awareness are designed
to enforce spatial and temporal memory safety, which we define
here and then use to introduce the notion of a capability ID.

Spatial Vulnerabilities, also known as bounds-safety violations
are over/under-flows of an object. Over/under-flows occur when
a pointer is incremented/decremented beyond the bounds of the
object that it is currently associated with. Even if the out-of-bounds
pointer points to another valid object, it does not have the capability
to access that object, and the operation results in a spatial memory
safety violation. However, this violation is only triggered on a
dereference of an out-of-bounds pointer. The C standard specifically
allows out-of-bounds pointers to exist.

Temporal Vulnerabilities, or lifetime-safety violations, occurwhen
the object that a pointer’s capability refers to is no longer allocated
and that pointer is dereferenced. For stack objects, this is because
the stack frame of the object is no longer valid (the function it was
created in returned); for heap objects, this happens as a result of a
free. These errors do not necessarily cause segmentation faults (ac-
cesses to unmapped memory), because the memory may have been
reallocated to a new object. Similarly, we cannot simply track what
memory is currently allocated, because the object at a particular
address can change, which still results in a temporal safety viola-
tion. Temporal bugs are at the heart of many recent exploits, e.g.,
for Google Chrome or Mozilla Firefox as shown in the pwn2own
contests [39].

Violating either type of memory safety can be formulated as
a capability violation. In our terminology, an object is a discrete
memory area, created by an allocation regardless of location (stack,
heap, data, or bss under the Linux ELF format). A capability iden-
tifies a specific object, along with information about its bounds

CUP: Comprehensive User-Space Protection for C/C++ ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

Memory Type Allocations
global 3,900 0.00%
heap 425,433 0.07%
stack 621,043,816 99.90%

Table 1: Allocation distribution in SPEC CPU2006.

and allocation status. Pointers retain a capability ID that identifies
the capability of the object that was most recently assigned — ei-
ther directly from the allocation or indirectly by aliasing another
pointer [16]. Capabilities form a contract, upon dereference: (i) the
pointer must be in bounds, and (ii) the referenced object must still
be allocated. Violating the terms of this contract leads to spatial or
temporal memory safety errors respectively.

2.1 Comprehensive Coverage Challenges
Understanding the scope of the challenge presented by Comprehen-
sive Coverage is critical to understanding CUP’s design. To illustrate
this challenge, we show how intensively programs use different
logical regions of memory. While the operating system presents
applications with a contiguous virtual memory address space, that
address space is partitioned into three logical groups for data: global,
heap, and stack spaces.

Stack allocations account for almost all (99.9%) of memory allo-
cations in SPEC CPU2006 (see Table 1), and are not fully handled by
existing work § 7. This measurement includes allocations made in
libc. While memory usage in SPEC CPU2006 may not be representa-
tive of deployed applications, it is pervasively used to compare new
defense techniques. Defenses that only handle heap objects thus
gain a significant advantage by protecting 1,000x fewer objects.

Stack allocations matter in practice as well. The latest data from
van der Veen, et. al. [40, 43] show that stack-based vulnerabilities
are responsible for an average of over 15% of memory related CVEs
annually since tracking began in November 2002. By comparison,
heap-based vulnerabilities account for an average of 25% of mem-
ory related CVEs over the same time period. Given the stack’s
exploitability and prevalence, which stresses memory safety de-
signs, protecting it is a key design challenge for memory safety
solutions.

3 DESIGN
CUP provides precise, complete spatial memory safety and sto-
chastic temporal memory safety by protecting all program data,
including libc (and any other library). Safety is enforced, for all
program data, by dynamically maintaining information about the
size and allocation status of all objects that are vulnerable to mem-
ory safety errors. This information is recorded through our novel
hybrid metadata scheme (§ 3.1). A compiler-based instrumenta-
tion pass is used to add code that records and checks metadata
at runtime (§ 3.2). We provide a detailed argument for why our
instrumentation guarantees memory safety in § 3.3.

A powerful usable memory sanitizer must comply with the fol-
lowing requirements:
I Precision. The solutionmust enforce exact object bounds, ideally
without changing the memory layout (i.e., spatial safety).

II Object Awareness. The solution must remember the allocation
state of any object accessed through pointers (i.e., temporal
safety).

III Comprehensive Coverage. The solution must fully protect a
program’s user-space memory including the stack, heap, and
globals, requiring instrumentation and analysis of all code,
including system libraries such as libc (i.e., completeness).

IV Exactness. The solution must have no false positives, and any
false negatives must be the result of implementation limitations,
not design limitations (i.e., usefulness).

These requirements drive the design of CUP. Fully complying
with the Precision and Object Awareness requirements requires cre-
ating metadata for all allocated objects. While it is possible [2, 12] to
do alignment based spatial checks without metadata, these schemes
lose precision, alter memory layout, and cannot support Object
Awareness. Object Awareness for temporal checks requires meta-
data to lookup whether the object is still valid [29] or to find all
pointers associated with an object and mark them invalid upon
deallocations [20]. Consequently, CUP is a metadata based sanitizer.

CUP provides Comprehensive Coverage, and in particular protects
globals, the heap, and stack by instrumenting all code, including
libc. Our hybrid metadata scheme scales to handle the required
number of allocations (§ 2.1), and our bounds check leverages the
x86_64 architecture (§ 4.2.2) to perform the required volume of
checks quickly enough to be usable. Additionally, our compiler pass
is robust enough to handle libc (§ 4.3), making CUP the first memory
sanitizer to do so. Protecting libc allows CUP to increase coverage
to all user space code, reducing the TCB to the kernel and the CUP
runtime library. Further, by protecting libc, CUP demonstrates that
it can correctly handle the kernel interface, and guarantee that all
user-space pointers are always protected.

Exactness is achieved, and Comprehensive Coverage verified, by
failing closed, making a missed check equivalent to a failed check.
We modify the initial pointer returned by object allocation (§ 3.2),
and our modification marks it illegal for dereference. This modifica-
tion propagates through aliasing and all other operations naturally.
Consequently, we must check all uses of the pointer for the pro-
gram to execute correctly, enabled by our comprehensive coverage
of program data, and support of libc. Such an approach results in
optimal precision, and requires novel design decisions as shown in
§ 4, but removes all false negatives. False positives are prevented
by maintaining accurate metadata, and having it propagate auto-
matically.

3.1 Hybrid Metadata Scheme
To provide Precision,Object Awareness, and Comprehensive Coverage,
we introduce a new hybrid metadata scheme that lets us embed
a capability ID in a pointer without changing its bit width. This
capability ID ties a pointer to the capability metadata for its un-
derlying object. Precision is provided by the metadata containing
exact bounds for every object, and by not rearranging the memory
layout. Object Awareness results from having a unique metadata
entry for each capability ID.

Providing Comprehensive Coverage requires assigning a capabil-
ity ID to all vulnerable objects in order to associate their pointers
with the object’s capability metadata. However, the capability ID

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

space is fundamentally limited by the width of pointers. To address
this limit, we allow capability IDs to be reused. Consequently, our
capability ID space only needs to support the maximum number
of simultaneously allocated objects. This allows CUP to comprehen-
sively cover globals, the heap, and stack for all allocations in long
running applications.

Our metadata scheme that draws inspiration from both fat-
pointers and disjoint metadata (and is thus a “hybrid” of the two)
for 64-bit architectures. We conceptually reinterpret the pointer as
a structure with two fields, as illustrated by Listing 1. The first field
contains the pointer’s capability ID. The second field stores the off-
set into the object. This does not change the size of the pointer, thus
maintaining the ABI. Further, when pointers are assigned, the ca-
pability ID automatically transfers to the assigned pointer without
further instrumentation. Enriching pointers in this manner causes
unchecked dereferences to fail by default (see § 4.1), verifying at
runtime that all necessary checks have been performed.

Hybrid metadata rewrites pointers to include the capability ID of
their underlying object and current offset, creating enriched point-
ers. The size of the offset field limits the size of supported object
allocations. The tradeoffs of the field sizes and our implementation
decisions are discussed in § 4.1. While we use it for memory safety,
this design allows access to arbitrary metadata, and could be ap-
plied for, e.g., type safety, or any property that requires runtime
information about object allocations.

An application’s address space is not affected by our hybrid
metadata scheme. All available bytes (248 in 64-bit architectures)
remain usable. We simply reinterpret what a pointer means, but
the pointer can conceptually be stored anywhere within an appli-
cation’s address space.

Capability IDs in our hybrid-metadata scheme are indexes into
a metadata table. Each entry in this table is a tuple of the base and
end addresses for the memory object, required for spatial safety
checks. Each object that is currently allocated has an entry in the
table, leading to a memory overhead of 16 bytes per allocated object.
Note that we do not require per-pointer metadata due to our hybrid
scheme. To reduce the number of required IDs to the number of
concurrently active objects, we allow capability IDs to be reused. Al-
lowing ID reuse thus allows us to protect long running programs, as
our limit is on concurrent pointers, not total allocations supported.
The security impact of ID reuse is evaluated in § 6.

The metadata table provides strong probabilistic Object Aware-
ness. For a temporal safety violation to go undetected, two con-
ditions must hold. First, the capability ID must have been reused.
Second, the accessed memory must be within the bounds of the new
object. Current heap grooming techniques [14, 37] already require
a large number of allocations to manipulate heap state. Adding the
requirement that the same capability ID also be used makes tem-
poral violations harder. § 6 contains other suggestions to further
increase the difficulty.

We are aware of two memory safety concerns for hybrid meta-
data: (i) arithmetic overflows from the offset to the capability ID,
and (ii) protecting the metadata table. The first concern is addressed
by operating on the two fields of the pointer separately. By treating
them like separate variables — while maintaining them as one en-
tity in memory — we prevent under/over flows from the offset field
modifying the capability ID. The second concern is not relevant

1 s t r u c t p o i n t e r _ f i e l d s {
i n t 3 2 en r i ch ed : 1 ;

3 i n t 3 2 i d : 3 1 ;
i n t 3 2 o f f s e t ;

5 }

7 union en r i c h e d _p t r {
s t r u c t p o i n t e r _ f i e l d s c a p a b i l i t y ;

9 vo id ∗ p t r ;
}

Listing 1: Enriched Pointer

for CUP— if all memory accesses are checked, then the metadata
table cannot be modified through a memory violation. As CUP is
designed to protect all of user space, including libraries like libc, all
memory accesses are actually checked.

3.2 Static Analysis
Our static analysis identifies when objects are allocated or deal-
located, and when pointers are dereferenced through an intra-
procedural analysis. All pointers passed inter-procedurally are
instrumented using our metadata scheme, including all heap al-
locations (which are manually identified, see § 4.3).

Our analysis divides protected stack allocations into (i) escaping
and (ii) non-escaping allocations. An allocation does not escape
if the following holds: (i) it does not have any aliases, (ii) it is not
assigned to the location referenced by a pointer passed in as a
function argument, (iii) it is not assigned to a global variable, (iv)
it is not passed to a sub-function (our analysis is intra-procedural
excluding inlining), and (v) is not returned from the function. For
those that escape, we use our usual metadata scheme so that the
bounds information can be looked up in other functions. For those
that do not escape, we use an alternate instrumentation scheme.

The optimized instrumentation for non-escaping stack variables
creates local variables with base and bounds information. Since
these allocations are only used within the body of the function, we
use local variables for checks instead of looking up the bounds in
the metadata table. This reduces pressure on our capability IDs,
helping us to achieve Comprehensive Coverage.

All other allocation sites requiring metadata are instrumented
to assign the object the next capability ID and to create metadata
(recording its precise base and end addresses) — returning an en-
riched pointer. We create metadata at allocation because it is the
only time that we are guaranteed to know the size of the object.

Identifying deallocations for objects is straightforward. Global
objects are never deallocated over the lifetime of the program. Heap
objects are explicitly deallocated by, e.g., free() or delete. Stack
objects are implicitly deallocated when their allocating function re-
turns. Deallocations are instrumented to mark associated metadata
invalid and to reclaim the capability ID.

Pointer dereferences are found by traversing the use-def chain
of identified pointers. Dereferences are analyzed intra-procedurally,
so we include pointers from function arguments (including variadic
arguments) and pointers returned by called functions in the set of
allocations for this analysis. We instrument dereferences with a
bounds check. Note that the bounds check implicitly checks that

CUP: Comprehensive User-Space Protection for C/C++ ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

the pointer’s capability ID identifies the correct object. See § 3.3 for
a discussion of the safety guarantees.

CUP also inserts instrumentation to handle int to pointer casts.
These are commonly inserted by LLVM during optimization, and
have matching pointer to int casts in the same function. In this case,
and any others where we can identify a matching pointer to int
cast, we restore the original capability ID to the pointer. To date,
we have not found a case where an int is cast to a pointer without
a matching pointer to int cast.

3.3 Memory Safety Guarantees
We discuss how CUP guarantees spatial memory safety and prob-
abilistically provides temporal safety. We assume that all code is
instrumented and capability IDs are protected against arithmetic
overflow (as proposed).

For code that we instrument, we keep a capability ID (and thus
metadata) for every memory object that can be accessed via a
pointer. This subset is sufficient to enforce spatial memory safety.
Objects that are not accessed via pointers are guaranteed to be
safe by the compiler (if you are reading an int, it will always emit
instructions to read the correct 4 bytes from memory).

Pointers can be used to read or write arbitrary memory. Further,
the address that they reference is often determined dynamically.
Thus, pointers require dynamic checks at runtime for memory
safety guarantees. As defined in § 2, memory objects define capabil-
ities for pointers. These capabilities include the size and validity of
the object. We only create capabilities when objects are allocated
at runtime. Objects can change size due to, e.g., realloc() calls, in
which case we update our metadata appropriately by changing base
and end to the new values (§ 4.2.2). Thus, we always have correct
metadata for every object that has been created since the start of
execution. The metadata for objects that have not been created yet
is invalid by default.

Pointers can receive values in five ways. First, pointers can be
directly assigned from the memory allocation, e.g., through a call
to malloc(). We have instrumented all allocations to return in-
strumented pointers. Second, they can receive the address of an
existing object, via the & operator. We treat this as a special case of
object allocation and instrument it. Third, pointers can be assigned
to the value of another pointer. As all existing pointers have been
instrumented under the first two scenarios, this case is covered as
well. Fourth, pointers can be assigned the result of pointer arith-
metic. This is handled naturally, with our separate loads preventing
overflows into the capability ID.

The fifth scenario is a cast from an int to a pointer. This is
exceedingly rare in well written user-space code. However, the
compiler frequently inserts these operations in optimized code. As
a result, we have to allow these operations. We assume that all ints
casted to pointers were previously pointers, and thus instrumented.

Variadic arguments are also given a capability ID when passed
to variadic functions. This ensures that variadic functions can only
read the arguments explicitly given, and, since all pointers passed to
functions are individually given their own capability ID, all writes
(e.g., when %n is used in the format string given to printf) are
equally protected.

So far we have established that all pointers are enriched with ca-
pabilities that accurately reflect the state of the underlying memory
object. Memory safety violations occur when pointers are derefer-
enced [38]. We instrument every dereference to check the pointers
capability and ensure that the dereference is valid. Because each
pointer has a capability and each capability is up-to-date this en-
sures full memory safety.

A program is memory safe before any pointer dereference hap-
pens. We have shown that each type of pointer dereference is pro-
tected. Consequently, if our checks are correct, every pointer deref-
erence is valid. Thus, showing memory safety for the program
depends on showing that our checks are correct.

Spatial safety requires a simple bounds check. The correctness
of this check depends only on the validity of the bounds used. We
have shown that the capability ID associated with a pointer, and
the metadata that ID references are always correct, which in turn
implies that the spatial safety check is correct.

Temporal safety in our system requires that either: i) the capa-
bility ID has not been reused, or ii) the pointer not be in bounds
for the new capability ID. CUP allows capability ID reuse, so our
temporal guarantees depend on how difficult exploiting ID reuse
is. To successfully reuse an ID, the attacker needs to dictate the
location of the new object assigned to the ID that she wants to reuse.
Randomized memory allocators such as DieHard [3, 32] make con-
trolling the memory location of a particular allocation extremely
difficult. Randomizing ID reuse adds another independent variable
for an attacker to control. As an example, with 20 bits of entropy
from the allocator and 10 bits of entropy from randomized IDs, a
total of 230 allocations would be required to defeat our temporal
protection.

4 IMPLEMENTATION
We implemented CUP on top of LLVM version 4.0.0-rc1. Our com-
piler pass is ≈2,500 LoC (lines of code), the runtime is another ≈300
LoC for ≈2,800 LoC total. The line count excludes modifications
to our libc, which required only light annotations (§ 4.3). Our pass
runs after all optimizations, so that our instrumentation does not
prevent compiler optimizations. This also reduces the total amount
of memory locations that must be protected, reducing capability
ID pressure.

Here we discuss the technical details of how we implemented
CUP in accordance with our design (§ 3). We first discuss how our
hybrid metadata scheme is implemented. Next we present how
we find the sets of allocations and dereferences required by our
design. With the metadata implementation in mind, we then show
how we instrument allocations and dereferences. With these details
established, we discuss the modifications required to libc for it to
work with CUP.

4.1 Metadata Implementation
Our metadata scheme consists of four elements: (i) a table of infor-
mation, (ii) a bookkeeping entry for the next entry to use in that
table, (iii) a free list (encoded in the table) that enables us to reuse
entries in the table, and (iv) how to divide the 64 bits in a pointer
between the capability ID and offset in our enriched pointers (§ 3.1).
Our metadata table is maintained as a global pointer to a mmap’d

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

u in t _ 3 2 nex t _ en t r y = 1 ;
2

/ / Th i s i s done i n l i n e , f u n c t i o n s a r e i l l u s t r a t i v e
4 vo id ∗ o n _ a l l o c a t i o n (s i z e _ t base , s i z e _ t end) {

s i z e _ t o f f s e t = t a b l e [n ex t _ en t r y] . base ;
6 t a b l e [n ex t _ en t r y] . base = base ;

t a b l e [n ex t _ en t r y] . end = end ;
8 u in t _ 3 2 r e t = 0 x80000000 & nex t _ en t r y ;

n ex t _ en t r y = nex t _ en t r y + o f f s e t + 1 ;
10 r e t u r n (vo id ∗) (r e t << 3 2) ;

}
12 vo id o n _ d e a l l o c a t i o n (i n t i d) {

t a b l e [i d] . base = nex t _ en t r y − i d − 1 ;
14 t a b l e [i d] . end = 0 ;

n ex t _ en t r y = i d ;
16 }

Listing 2: Free List

region of memory. Similarly, the next entry in that table is a global
variable known as next_entry.

By mmap’ing our metadata table, we allow the kernel to lazily
allocate pages, limiting our effective memory overhead. Further,
our ID reuse scheme reduces fragmentation of our metadata since it
will always reuse a capability ID before allocating a new one. This
also helps improve the locality of our metadata lookups, reducing
cache pressure. Alternative reuse schemes with better temporal
security are discussed in § 6.

To implement our capability ID reuse scheme, we update next_entry
using our free list. The first entry in our metadata table is reserved
(§ 4.2.2), so next_entry is initially one. The free list is encoded in the
base fields of each free entry in the table. These are all initialized
to zero. When an entry is free’d, the base field is set to the offset
to the next available table entry. When we add a metadata entry,
next_entry is incremented, and the offset is added. When an object
is deallocated, we have to update the base field for its corresponding
capability ID (ID) to maintain the free list correctly. This requires
calculating the offset to the next free entry. C code illustrating these
operations is in Listing 2.

The final implementation decision for our metadata scheme is
how to divide the 64 bits of the pointer between the capability
ID and offset. We use the high order 32 bits to store our enriched
flag and capability ID (Listing 1). This leaves the low order 32 bits
for the offset. Limiting the offset to 32 bits does limit individual
object size to 4GB under our current design (with up to 231 such
allocations). However, hardware naturally supports 32-bit manipu-
lations, improving the performance of our implementation. Further,
having a 31-bit capability ID space is crucial for protecting the
entire application (§ 2.1). The enriched bit plays two roles. First, it
causes all dereferences of enriched pointers to fail. Consequently,
the fact that a program runs guarantees that all pointer dereferences
were correctly checked. Second, it enables us to support compati-
bility with unprotected code, by allowing the correct dereference
of unenriched pointers by means of a mask that voids our pointer
reconstruction. Unprotected code is not supported by default, how-
ever the mechanics are described here, and the implications of
enabling unprotected code are discussed in § 6.

Note that no matter how a 64-bit pointer is divided, no limits are
placed on the application address space. The entire base pointer
is stored in the metadata, and so the offset can reach any part

s t r u c t Metadata {
2 s i z e _ t base ;

s i z e _ t end ;
4 }

6 s t r u c t Metadata ∗ t a b l e ;

8 / / Th i s i s done i n l i n e , f u n c t i o n s a r e i l l u s t r a t i v e
s t a t i c i n l i n e s i z e _ t check_bounds (s i z e _ t base , s i z e _ t end

, s i z e _ t check) {
10 / / High o rde r b i t i s 0 i f check pas se s , 1 o th e rw i s e

s i z e _ t v a l i d = (check − base) | (end − (check + s i z e)
) ;

12 v a l i d = v a l i d & 0 x8000000000000000 ;
r e t u r n v a l i d ;

14 }
s t a t i c i n l i n e vo id ∗ check (vo id ∗ p t r , u i n t _ 3 2 s i z e) {

16 s i z e _ t tmp = (s i z e _ t) p t r ;
/ / Mask Suppor t s c omp a t i b i l i t y mode , o t h e rw i s e omi t t ed

18 s i z e _ t mask = p t r >> 6 3 ;
u i n t _ 3 2 i d = (tmp >> 32) & 0 x 7 f f f f f f f ;

20 i d = i d & mask ;
s i z e _ t base = t a b l e [i d] . base ;

22 s i z e _ t end = t a b l e [i d] . end ;
s i z e _ t check = base + (u i n t _ 3 2) p t r ;

24 r e t u r n (vo id ∗) (check_bounds (base , end , check) &
check) ;

}
26 vo id s e t (i n t ∗ x , i n t v a l) {

/ / S i z e o f 4 i n f e r r e d by comp i l e r f o r i n t type
28 ∗ (check (x , 4)) = v a l ;

}
30 / / example o f d e r e f e r e n c i n g an e s c ap i ng and a l o c a l s t a c k

a r r ay
i n t main (vo id) {

32 i n t e s c ap e s [5] ;
e s c ap e s = o n _ a l l o c a t i o n (e s capes , e s c ap e s +5 ∗ 4) ;

34 s e t (e s c ap e s [2] , 1 0) ;

36 i n t l o c a l [5] ;
s i z e _ t l o c a l _ b a s e = l o c a l ;

38 s i z e _ t l o c a l _ e n d = l o c a l +5 ∗ 4 ;
∗ (l o c a l & check_bounds (l o c a l _ b a s e , l o c a l _ end , l o c a l +2
∗ 4)) = 1 0 ;

40
o n _ d e a l l o c a t i o n (e s c ap e s) ;

42 }

Listing 3: Instrumentation Example

of the address space. The only limit is the size of an individual
object, which is restricted by the space available for the offset in
the enriched pointer.

With a minimal allocation size of 8 bytes, a 31-bit ID allows for
at least 16 GB of allocated memory. In practice, much more memory
can be allocated as objects are usually larger than 8 bytes. When
fully allocated, our metadata table uses 2GB * sizeof(struct
Metadata), see Listing 3. Note that CUP only allocates pages for
ID’s that are actually used.

4.2 Compiler Pass
Our LLVM compiler pass operates in two phases: (i) analysis, and
(ii) instrumentation. As per our design, the analysis phase first
determines a set of code points that require us to add code to
perform our runtime checks, and the instrumentation phases adds
these checks. These checks have been optimized to let the hardware
detect bounds violations rather than doing comparisons in software.
Listing 3 has a running example for stack objects.

CUP: Comprehensive User-Space Protection for C/C++ ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

4.2.1 Analysis Implementation. The first task of our pass is to
find the set of object allocations that we must protect to guarantee
spatial safety § 3. Heap-based allocations via malloc are found
by our instrumented musl libc (see § 4.3). Stack-based allocations
are found by examining alloca instructions in the LLVM Inter-
mediate Representation (IR). These are used to allocate all stack
local variables. We only target allocations which can be indirectly
accessed via, e.g., pointers. In practice, this means that we need
to protect arrays and address-taken variables on the stack, all oth-
ers are accessed via fixed offsets from the frame pointer. Arrays
are trivially found by checking the type of alloca instruction as
LLVM’s type system for their IR includes arrays. LLVM’s IR has no
notion of the & operator. However, clang (the C/C++ front end) in-
serts markers — llvm.lifetime.start—which we use to identify
stack allocations that have their address taken.

CUP also protects global variables.We only need to protect global
arrays (non-pointer globals are inherently memory safe). Global
arrays present a challenge for our instrumentation scheme. CUP
relies on changing pointer values. Unfortunately in C/C++ it is
illegal to assign to a global array once it has been allocated. This
means that we cannot change the pointer’s value. To address this
challenge, we create a new global pointer to the first element in
the array, and instrument that pointer. We then replace all uses of
the global array with our new pointer that can be manipulated as
described above. The new pointer must be initialized at runtime,
once the address of the global array it replaces has been determined.
To do this, we add a new global constructor that initializes our
globals. The constructor is given priority such that it runs before
any code that relies on our globals.

4.2.2 Instrumentation. Our compiler is required to add two
types of instrumentation to the code: (i) allocation, and (ii) deref-
erence. Allocation instrumentation is responsible for assigning a
capability ID to the resulting pointer, creating metadata for it, and
returning the enriched pointer. A subcategory of allocation instru-
mentation is handling deallocations — where metadata must be
invalidated and the free list updated. Dereference instrumentation
is responsible for performing our bounds check, and returning a
pointer that can be dereferenced. While our runtime library pro-
vides functions for the functionality described in this section (for
use in manual annotations), all of our compiler added checks are
done inline. Listing 2 and Listing 3 contain examples for these
operations for stack based allocations.

Allocation Instrumentation. CUP requires us to rewrite the pointer
for every allocation that we identify as potentially unsafe. Our
rewritten or “enriched” pointer contains the assigned capability ID,
has the enriched bit set, and the lower 32 bits (which encode the
distance from the base pointer) are set to 0. All uses of the original
pointer are then replaced with the new, instrumented pointer. At
allocation time, we use the next_entry global variable as the capa-
bility ID, and then update next_entry as described in § 4.1. See the
escapes variable in main() in Listing 3.

Note that this creates a pointer which cannot be dereferenced on
x86_64, which requires that the high order 16 bits all be 1 (kernel-
space) or 0 (user-space). As a result, any dereference without a
check will cause a hardware fault. Consequently, for any program
that runs correctly we can guarantee that all pointers to protected

allocations are checked on dereference. This is in contrast to other
schemes [28] that fail open, i.e., silently continue, when a check
is missed, sacrificing precision. In LLVM-IR allocations that need
protection are relatively easy to identify. However, only a subset of
load and store instructions actually correspond to dereferences
that need to be checked. By failing closed, we can aggressively limit
the loads and stores that are checked, while still knowing that
all dereferences are being checked at runtime.

When an object is deallocated, we insert code to update the free
list in our metadata table as per § 4.1 and Listing 2. Further, we
mark the end address 0 to invalidate the entry.

Dereference Instrumentation. To dereference a pointer, two things
need to be done. First, we need to recreate the unenriched pointer.
Then, using the metadata from the enriched pointer’s capability ID,
we need to make sure that the unenriched pointer is in bounds.

To create the unenriched pointer, we first retrieve the high order
bit (which indicates whether the pointer is enriched or not). When
supporting unprotected code, we create a 64-bit mask with the
value of this bit. We then extract the capability ID, and AND it with
this mask. If the pointer was not enriched, this yields an ID of 0
and otherwise preserves the capability ID. This step is skipped by
default, as we assume all code is protected. We then lookup the
base pointer for the capability ID, and add the offset to it. See check
in Listing 3.

In the case where the pointer was not enriched, we lookup the
reserved entry 0 in our metadata table. This entry has base and end
values that reflect all of user-space (0 to 0x7fffffffffff). Thus,
performing our unenrichment on an unenriched pointer has no
effect, and our spatial check below simply sandboxes it in user-
space.

Our spatial check performs the requisite lower and upper bounds
check. Note, however, that on the upper bound we have to adjust
for the number of bytes being read or written. This adjustment adds
significantly to our improved precision against other mechanisms
(§ 5.2). To illustrate its importance consider the following. An int
pointer is being dereferenced, meaning the last byte used is the
pointer base + 4 bytes - 1, while for a char pointer, the last byte used
is the pointer base + 1 byte - 1. Equation 1 shows our bounds check
formula, the size of the pointer dereferenced is element_size.

base ≤ ptr + element_size − 1 < base + lenдth (1)

Hardware Enforcement. The check in Equation 1 could naively be
implemented with comparison instructions and a jump — resulting
in additional overhead. We propose a novel way to leverage hard-
ware to perform the check for us. We observe that the difference
between the adjusted pointer and the base address should always
be greater than or equal to 0. Similarly, the end address minus the
adjusted pointer should always be greater than or equal to 0. Con-
sequently, the high order bit in the differences should always be
0 (x86_64 with two’s complement arithmetic). We OR these two
differences together, mask off the low order 63 bits, and then OR
the result into the unenriched pointer. If it passed the check, this
changes nothing. If it failed the check, it results in a invalid pointer,
causing a segmentation fault when dereferenced. Listing 3 shows
this optimized check in check_bounds().

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

4.3 LIBC
Libc is the foundation of nearly every C program and therefore
linked with nearly every executable. Unfortunately, many of its
most popular functions such as the str* and mem* functions are
highly prone to memory safety errors. They make assumptions
about program state (e.g., null terminated strings, buffer sizes) and
rely on themwithout checking that they hold. Prior work [12, 28, 35]
assumes that libc is part of the trusted code base (TCB).

In contrast, CUP removes libc, including kernel invoking func-
tions like malloc and free, from the TCB by instrumenting libc
with our compiler. The majority of the instrumentation is automatic,
with few exceptions such as the memory allocator, system calls, and
functions implemented in assembly code. Dealing correctly with
all of these cases demonstrates the CUP is robust enough to protect
all of user space for real world code, and does not contain hidden
design flaws that would prevent its adoption as a development tool.
The most mature libc implementation that we are aware of that
compiles with Clang-4.0.0-rc1 is musl [24]. Our instrumented musl
libc is part of CUP.

4.3.1 Dynamic Memory Allocator. The dynamic memory allo-
cator is responsible for requesting memory for the process from
the kernel, and returning it. To do so efficiently, most allocators —
including musl — modify user requests. In particular, musl rounds
up the number of bytes requested. Further, musl maintains meta-
data inline on the heap in the form of headers before each allocated
segment. Consequently, the allocator’s view of memory is different
than that of the program.

To compensate for this difference, we manually instrumented
musl’s allocator. We ensure that pointers returned to the application
are instrumented with the programmer specified length, not the
rounded length. Doing so requires two annotations in malloc and
free to adjust the pointer’s capability to allow for the headers and
rounded length when the pointer is used by the allocator. Doing so
allows us to prevent vulnerabilities that rely on corrupting heap
metadata [15], while still removing the allocator from the trusted
computing base by instrumenting its internals.

An interesting corner case is realloc(). By design it changes
the end address. Additionally, it can change the base address if
it was forced to move the allocation to find sufficient room. We
manually intervene in both cases (one annotation per) to keep our
metadata table up-to-date.

4.3.2 Kernel Boundary. User-space code interacts with the ker-
nel through the system call API. For CUP to correctly protect all
user-space code, this boundary must be handled so that pointers
passed to the kernel are unenriched, and pointers returned from
the kernel are enriched. Almost all system calls are made through
libc. Consequently, to show that CUP correctly handles system
calls, we instrument them in musl. System calls are made through
a dedicated API containing inline assembly in musl. We initially in-
strumented this API to ensure that no enriched pointers are passed
to the kernel. Unfortunately, this is insufficient as structs containing
pointers are passed to the kernel. Consequently, we required more
context than the narrow system call API provided. This forced us to
find the actual system call sites and add one annotation per pointer
contained in the struct to unenrich these pointers. When pointers

are returned from the kernel through, e.g., mmap or brk, they are
annotated to instrument them with their known size. To avoid this
(limited) manual annotation effort, future work could define the
system call boundary in, e.g., a list that specifies function names,
and the instrumentation to be added.

The same level of effort would be required for any boundary to
uninstrumented code. As library boundaries are well defined, we
consider this level of effort reasonable, particularly for developers,
who have intimate knowledge of their code bases.

4.3.3 Assembly Functions. musl implements many of the mem*,
str* functions in assembly for x86. As a result, clang is unaware
of these functions as they are directly assembled and linked in.
We therefore manually instrumented these functions. Our manual
effort was approximately ten assembly instructions per function.
These instructions call our runtime support library, while preserv-
ing register state after our intervention. Setting up these calls would
be trivial for any developer writing inline assembly. Supporting
them automatically would require a binary only tool, with a corre-
sponding overall loss of precision. Consequently, CUP accepts this
level of manual effort.

4.3.4 Other Libc Concerns. printf() can be used to modify
memory via the %n format. Similarly, attackers commonly pass
format strings that cause memory beyond the supplied arguments
to be read, resulting in memory leaks that are used to bypass, e.g.,
ASLR. Both of these attacks rely on using pointer’s outside of their
assigned capability, and so are prevented by CUP.

Libc, and for C++ libc++, support non standard control flow
via setjmp, longjmp, and exceptions. setjmp and longjmp are im-
plemented in assembly, and rely on pointers. Consequently, we
manually added instructions to call our runtime library to unenrich
the pointers. This required the same level of effort as the other
assembly function in libc. Exception handling relies on libc++, and
in particular libunwind for stack unwinding. Recompiling these
with CUP causes exceptions to be handled correctly.

4.3.5 Manual Annotation Effort. Any pointer passed to unin-
strumented code must be unenriched, and similarly, any pointer
returned from uninstrumented code should be enriched. The pro-
gramming effort needed to perform these actions is one line of code
for enrichment (on_allocation) and one to two lines of code for
unenrichment (check) for every pointer going to and returning
from the uninstrumented code. Two lines of code are needed for
unenrichment when the unprotected code can access more than one
byte, e.g., read. In this case, the programmer must check that both
the start of the buffer and the end of the buffer (as determined by
the number of bytes the caller intends to access) are in bounds. As
an example of the cumulative level of effort required, we manually
modified 37 lines of code in musl, including the assembly functions
discussed above. The annotations we added to libc places malloc
and free in the TCB.

5 EVALUATION
We evaluate CUP along two axes. First, we show that its perfor-
mance is competitive with existing sanitizers - and slightly better
on benchmarks where both CUP and the existing tools run. Further,
our performance is markedly better than other tools that provide

CUP: Comprehensive User-Space Protection for C/C++ ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450
4

0
1

.b
zi

p
2

4
2

9
.m

cf

4
3

5
.g

o
b

m
k

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
5

0
.s

o
p

le
x

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

g
e

o
m

e
a

n

N
o

rm
a

liz
e

d
 P

e
rc

e
n

ta
g
e

 O
ve

rh
e
a

d ASan
SoftBound+CETS

CUP

Figure 1: Performance overhead as percentage normalized
to baseline usingmusl. Benchmarksmissing entries indicate
the mechanism failed to run. Geometric means are calcu-
lated over benchmarks where the mechanism ran, and are
not directly comparable.

both Precision and Object Awareness, given that CUP provides Com-
prehensive Coverage (we do more checks in the same amount of
time). Second, we demonstrate our Exactness, showing that we have
no false positives or false negatives on the NIST Juliet test suite.
The robustness of CUP and its ability to cope with the full spectrum
of corner cases found in real code is demonstrated by supporting
libc, making CUP the first sanitizer to do so.

All experiments were run on Ubuntu 14.04 with a 3.40GHz Intel
Core i7-6700 CPU and 16GB of memory. For SoftBound+CETS we
used the latest version 1. For AddressSanitizer [35], we used the
version based on LLVM-4.0.0-rc1.

5.1 Performance
Performance is an important requirement for any usable sanitizer.
We evaluate the performance of CUPwith musl. For comparison, we
also measure the performance overhead of similar sanitizers, using
glibc as the baseline. Musl has effectively the same performance
as glibc on SPEC CPU2006, with minor variations on different
test cases. ASan is the closest open source related work that is
compatible with LLVM-4.0.0-rc1. SoftBound+CETS is open source,
but relies on LLVM-3.4 and can only run a small subset of the
SPEC CPU2006 benchmarks. Its performance results are reported
here, but are not directly comparable. Low-Fat Pointers (developed
concurrently with this work) was open sourced after the submission
of this work.

Figure 1 summarizes the performance results for CUP. We have
158% overhead vs baseline, compared to 38% for ASan. Note that
ASan only provides probabilistic safety, i.e., if a pointer is incre-
mented past guard zones then violations are not detected compared
to CUP which catches all spatial memory safety violations by track-
ing the validity and bounds of pointers. The geometric means in
the figure are not directly comparable, as they are calculated over
different sets of benchmarks (those where the mechanism actually
ran). On benchmarks where both run, CUP has half the overhead

1 https://github.com/santoshn/softboundcets-34/9a9c09f04e16f2d1ef3a906fd138a7b89df44996

False Neg. False Pos.
CUP 0 (0%) 0 (0%)

SoftBound+CETS 1032 (25%) 12 (0.3%)
AddressSanitizer 315 (8%) 0 (0%)

Total Tests 4038
Table 2: Juliet Suite Results.

of SoftBound+CETS’s (126% vs. 245%). Further, compared to these
existing tools, we offer stronger, more precise coverage, while being
able to run more SPEC CPU2006 benchmarks. Note that both ASan
and SoftBound+CETS do not instrument the libc standard library.
As we show in § 5.2, CUP has 10x the coverage of SoftBound+CETS,
for less overhead. Low-Fat Pointers [12] reports 16% to 62% over-
head depending on their optimization level. They achieve this by
using clever alignment tricks to avoid metadata look ups. While
resulting in low performance overhead, this approach has two limi-
tations: (i) they round allocations up to the nearest power of two,
losing precision for bounds checks, and (ii) their design cannot
support temporal checks which require metadata.

5.2 Juliet Suite
NIST maintains the Juliet test suite, a large collection of C source
code that demonstrates common programming practices that lead
to memory vulnerabilities, organized by Common Weakness Enu-
meration (CWE) numbers [19]. Every example comes with two
versions: one that exhibits the bug and one that is patched. We ex-
tracted the subset of tests for heap and stack buffers2. We compiled
all sources with our pass, as well as with SoftBound+CETS and with
ASan. Every patched test should execute normally. If a memory
protection mechanism prematurely kills a patched test, we call it
a false positive. Conversely, every buggy test should be stopped
by the memory safety mechanism. All three memory protection
mechanisms kill the process in case of a memory violation. If the
process is not killed, we count it as false negative.

We found four architecture dependent bugs in the Juliet test suite.
These tests attempt to allocate memory for a structure containing
exactly two ints. However, erroneously, the examples use the size
of a pointer to the two int structure when allocating memory.
(e.g., malloc(sizeof(TwoIntStruct*))). On architectures which
do not define pointers as twice the size of ints (including 32-bit
x86), such amistakewould lead to amemory violationwhen reading
or writing the second int. On the x86_64 architecture, though, the
size of a pointer and the size of the two int structure are the same.
These test cases show a type violation and not a memory safety
violation for x86_64. Thus, while semantically incorrect, no true
memory violation occurs.

Table 2 summarizes the results. Out of 4,038 tests that should not
fail, we incur no false positives. ASan and SoftBound+CETS show
a 0% and 0.3% respectively. We produce no false negatives, while
ASan produces an 8% false negative rate, and SoftBound+CETS has
a 25% false negative rate.

2The tests that match the following regular expression:
CWE(121 |122)+((?!socket).)*(\.c)$

https://github.com/santoshn/softboundcets-34/9a9c09f04e16f2d1ef3a906fd138a7b89df44996

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

i n t main () {
2 i n t pos = 0 ;

char da t a = 0 ;
4 s c an f ("%d " , &pos) ;

char b u f f 2 [1 0] = " abc " ;
6 char b u f f [1 0] ;

wh i l e (pos < 10 && da t a != ' \ n ') {
8 s c an f ("%c " , &da t a) ;

b u f f [pos] = da t a ;
10 p r i n t f ("%d \ n " , pos) ;

pos ++ ;
12 }

}

Listing 4: Example of code ASan fails to protect

Most of the false positives that SoftBound+CETS registers comes
from variations in how the alloca() function call is handled.
alloca() is compiler dependent [21]. The failing examples use
allocawhich is wrapped around a static function. SoftBound+CETS
uses clang 3.4 as the underlying compiler, and CUP uses clang 4.0.
Consequently, SoftBound+CETS handles the examples differently,
and sees the memory from alloca as invalid, while CUP does
not. However, there were four false positives that involve memcpy,
which SoftBound+CETS claims to handle. An implementation bug
is likely the cause of these failing tests, as the Juliet tests cover a
wide spectrum of corner cases. While SoftBound+CETS theoreti-
cally has no false positives, this issue highlights the importance of
implementation.

ASan and SoftBound+CETS higher false negative rate results
from their incomplete coverage. In particular, many of the Juliet
examples involve calling libc functions to copy strings and buffers
(e.g., strcpy and memcpy). Neither ASan nor SoftBound+CETS are
able to protect against unsafe libc calls. Our instrumentation of libc
(§ 4.3) allows us to properly detect memory violations in these calls.
Further, our adjustment for read / write size (§ 4.2.2) allows us to
catch additional memory safety violations.

Given its support for separate compilation, and its theoretical
soundness, SoftBound+CETS should be able to properly protect libc.
However, as shown in § 2.1, supporting all data across the entirety
of user space significantly stresses the design of memory safety
mechanisms. Our annotations in libc § 4.3 allow us to protect all of
user space. SoftBound+CETS has yet to prove that it can do so.

Listing 4 provides a representative Juliet test that CUP properly
handles, and which ASan handles incorrectly3. The code allocates
two 10 byte buffers on the stack, reads input from the user, and
starts writing user input to one of the buffers. ASan protects the
stack by surrounding stack objects with poison zones. However,
depending on the value of of pos, an integer overflow bug allows
an attacker to skip over the poison zone, and to write to an address
higher in the stack. CUP enforces strict boundaries on a per-object
basis, so the write at line 9 would be blocked.

6 DISCUSSION
We discuss several design aspects of CUP, how we handle specific
corner cases, potential for optimization, and further extensions.

3Adapted from https://github.com/ewimberley/
AdvancedMemoryChallenges/blob/master/4.cpp

Reducing instrumentation. Prior work on reducing the amount of
required runtime checks has focused on type systems. CCured [30]
infers three types of pointers: safe, sequential, and wild. Safe point-
ers are statically proven to stay in bounds. Sequential pointers are
only incremented (or decremented) — e.g., iterating over an array
in a loop. All remaining pointers are classified as wild. Leverag-
ing CCured-style type systems to further optimize memory safety
solutions is left as an open problem.

Optimization through LTO. CUP does not depend on Link Time
Optimization (LTO). However, LTO makes it possible to inline func-
tions across source files, and generally flattens code. Inlining would
increase the effectiveness of our stack optimization and further
reduce the amount of instrumented stack variables, reducing the
number of IDs that a program consumes. Reducing the IDs a pro-
gram uses reduces the overhead for ID management and resources
used by CUP.

Arithmetic overflow. Our hybrid metadata scheme stores the ca-
pability ID as part of the pointer. Pointer arithmetic can potentially
modify the ID, allowing an adversary to chose the metadata the
pointer is checked against. To prevent this attack vector, the upper
and lower 32 bits of the pointer are loaded separately. The com-
piler enforces that any arithmetic operations only happen on the
lower 32 bits, which contain the pointer’s offset. This protects our
capability ID from manipulation by an adversary.

Stronger temporal protection. As discussed in § 3.1, it is possi-
ble (albeit difficult) for an attacker to perform a temporal attack
on software instrumented with CUP. If CUP were deployed as
an active defense, the difficulty of a successful temporal attack
could be increased by utilizing a randomized memory allocator like
DieHard [3] or DieHarder [32]. Such allocators randomize heap
allocations, making heap grooming [14, 37] much more difficult.
Beyond getting the addresses to line up, the increased number
of required allocations makes matching the capability IDs even
harder. This renders a successful use-after-free attack highly un-
likely, with minimal additional overhead. Additionally, a “lock and
key” scheme [29] can be added to our metadata. Alternatively, our
metadata can be extended to include a DangNull [20]-style ap-
proach that records how many references are still pointing to an
object and either explicitly invalidating those references or waiting
until the last reference has been overwritten before reusing IDs.

Third-Party Code. CUP supports linking with uninstrumented
libraries. Enriched pointers are the same size as regular pointers,
maintaining the ABI. Dereferencing enriched pointers in uninstru-
mented code results, by design, in a segmentation fault. A segmenta-
tion fault handler can, on demand, dereference individual pointers.
As the memory allocator is instrumented, memory allocations in
uninstrumented code will return enriched pointers. Stack alloca-
tions on the other hand will not be protected in uninstrumented
code. While this option allows compatibility, it clearly results in
high performance overhead. An alternate solution is to manually
annotate pointers passed to uninstrumented code (one annotation
per pointer) and sacrifice protection, while gaining performance.
This solution, however, exposes our metadata table to corruption
from uninstrumented code. All memory safety solutions share this

CUP: Comprehensive User-Space Protection for C/C++ ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

vulnerability to unprotected code. CUP alleviates this situation by
recompiling all user-space code, including the libc.

Memory errors in unprotected code. While it is possible to use
CUP with unprotected code, we cannot guarantee the safety of
applications that use unprotected code. Any memory violation in
unprotected code can lead to unsafe modifications to user-space
applications. Since CUP has no knowledge of the behavior of unpro-
tected code, it is up to the programmer to ensure that all relevant
buffers are properly checked before they are used. In our instru-
mentation of musl, we have already done this (see § 4.3) for kernel
system calls.

Assembly code. CUP automatically instruments all code written
in high level languages; our analysis pass runs on LLVM IR. Our
analysis does not (and cannot) instrument inline assembly and
assembly files due to missing type information. We rely on the
programmer to either instrument the assembly code accordingly
or to fall back on supporting uninstrumented code as mentioned
above.

Multithreading. CUP does not protect against inter-thread races
of updates to metadata (e.g., one thread frees an object while the
other thread is dereferencing a pointer). We leave the design of a
low-overhead metadata locking scheme as future work. Note that
this limitation is shared with other sanitizers.

Code Pointers. A substantial research effort has gone into protect-
ing code pointers [1]. CUP does not need to directly protect code
pointers, including function pointers, C++ virtual table pointers,
and C++ virtual tables. Function pointers cannot be used to read
or write memory themselves. Further, by enforcing memory safety,
CUP guarantees that they point to the correct targets.

7 RELATEDWORK
Precision is required to enforce spatial memory safety (bounds
checks). There is a class of memory safety solutions that only ap-
proximately enforce this property [2, 12, 35]. These solutions make
use of techniques such as poisoned zones — detecting spatial vio-
lations within limits, or rounding allocation size — which causes
the executed program to differ from the programmers intent, and
results in challenges when trying to handle intra-array and intra-
struct checks. By changing the memory layout and not enforcing
exact bounds, these solutions are not faithful to the programmer’s
intent. SoftBound [28] is the existing solution which best satis-
fies this requirement, while lacking comprehensive coverage (see
below).

Object-based memory checking [8, 10, 13] keeps track of meta-
data on a per-object basis. Since the meta-data is associated on a per
object level, every pointer to the object shares the same metadata.
If a pointer is incremented, it may suddenly point to another valid
object and therefore be (illegally) assigned to that object. Object
layout in memory is generally left unchanged, which increases
ABI compatibility. However, pointer casts and pointers to subfield
struct members are unhandled [27]. SAFECode [11] is an example
for efficient object-based memory checking.

Recently, Intel has started to add memory safety extensions,
called Intel MPX, to their processors, starting with the Skylake

architecture [17]. These extensions add additional registers to store
bounds information at runtime. While effective at detecting spatial
memory violations, MPX is incapable of detecting temporal viola-
tions [33], and typecasts to integers are not protected. In addition,
current implementations of MPX incur a large memory penalty
of up to 4 times normal usage [23]. Other ISA extensions include
Watchdog [26], WatchdogLite [25], HardBound [9], and Chuang
et al. [7]. As a software only solution, CUP does not require extra
hardware or ISA extensions.

Object Awareness is required to prevent temporal memory safety
violations (lifetime errors). This property requires remembering
for every pointer whether the object to which it is assigned is still
allocated. AddressSanitizer [35] and Low-Fat Pointers [12] make no
attempt to do this (and their metadata does not support this prop-
erty), while SoftBound+CETS [29] enforces this property. Address-
Sanitizer and Low-Fat Pointers do not maintain metadata either per
object or per pointer. Object Awareness requires either per object
or per pointer metadata. Consequently, they fundamentally cannot
enforce temporal safety because their (current) metadata cannot be
object aware. CUP’s contributions on top of SoftBound+CETS lie
primarily in Comprehensive Coverage.

Temporal only detectors include DangNull [20] and Undangle [6]
from Microsoft. DangNull automatically nullifies all pointers to an
object when it is freed. Undangle uses an early detection technique
to identify unsafe pointers when they are created, instead of being
used. CUP only provides a probabilistic temporal defense, however,
DangNull and Undangle lack any spatial protection. Other proba-
bilistic approaches [3, 32] change the memory allocator to reduce
the frequency with which memory is reallocated.

Comprehensive Coverage is required to fully protect the program.
As shown in § 2.1 stack objects are the overwhelming majority of
allocations, and to this day a significant portion of memory safety
Common Vulnerabilities and Exposures (CVE) are stack related.
Our evaluation of SoftBound+CETS (§ 5.2) shows that it has poor
coverage — missing many stack vulnerabilities. AddressSanitizer
and Low-Fat Pointers do better. AddressSanitizer protects the stack
through the use of poisoned zones, and, as illustrated in § 5.2 cannot
handle all invalid stack memory accesses. Additionally, neither of
them supports compiling libc — leaving thewindow open for vulner-
abilities such as GHOST [22]. Tripwires [31, 34, 41, 44] are a way to
detect some spatial and temporal memory errors [35, 42]. Tripwires
place a region of invalid memory around objects to avoid small
stride overflows and underflows. Temporal violations are caught
by registering memory freed as invalid, until reclaimed. Tripwires,
however, miss long stride memory errors, and thus cannot be said
to be completely secure.

The state-of-the-art C/C++ pointer-based memory safety scheme
is SoftBound+CETS [27]. Other pointer-based schemes include
CCured [30] and Cyclone [18]. CCured uses a fat pointer to store
metadata, as well as programmer annotations for indicating safe
casts. Unfortunately, fat pointers break the ABI, and programmer
annotations can significantly increase developer time. Even with
annotations, CCured fails to handle structure changes. Cyclone
also uses a fat pointer scheme, but does not guarantee full memory
safety.

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer

Control-Flow Hijacking Defenses. Mechanisms like control-flow
integrity (CFI) [1, 4] or Object Type Integrity [5] check if a code
pointer has been modified to point to an illegal address before it
is used, e.g., for an indirect function call. CFI mechanisms assume
that memory safety violations can happen and only checks the
integrity of code pointers. CFI is a low-overhead approach to pro-
tect programs against illicit uses of a corrupted pointer (without
protecting the integrity of the code pointer itself) while memory
safety protects against the pointer corruption in the first place.

8 CONCLUSION
We present CUP, a C/C++ memory safety mechanism that provides
full user-space protection, including libc, and strong probabilistic
temporal protection. It is the first such mechanism that satisfies all
requirements for a complete memory safety solution, while incur-
ring onlymodest performance overhead compared with the state-of-
the-art. CUP is exact, object aware, comprehensive in its coverage,
and precise. We fully protect all user-space memory, including the
stack, which, despite being the largest source of pointers, remained
largely unprotected. Finally, we produce zero false negatives and
zero false positives in the NIST Juliet Vulnerability example suite,
which represents a significant advancement over existing memory
safety mechanisms.

Our prototype is available at https://github.com/HexHive/CUP.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their insightful feedback
that greatly improved the final paper. This material is based, in
part, upon work supported by the National Science Foundation
under awards CNS-1513783 and CNS-1657711 and the Intel corpo-
ration. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

Integrity. In CCS ’05.
[2] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

Bounds Checking: An Efficient and Backwards-compatible Defense Against Out-
of-bounds Errors. In SEC’09.

[3] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. SIGPLAN Not. (2006).

[4] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. CSUR’17 (2017).

[5] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2018. CFIXX:
Object Type Integrity for C++. In NDSS’18.

[6] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In ISSTA’12.

[7] Weihaw Chuang, Satish Narayanasamy, and Brad Calder. 2007. Accelerating meta
data checks for software correctness and security. Journal of Instruction-Level
Parallelism (2007).

[8] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007. Se-
cure virtual architecture: A safe execution environment for commodity operating
systems. In OSR’07.

[9] Joe Devietti, Colin Blundell, Milo MK Martin, and Steve Zdancewic. 2008. Hard-
bound: architectural support for spatial safety of the C programming language.
In ACM SIGARCH Computer Architecture News.

[10] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-compatible Array Bounds
Checking for C with Very Low Overhead. In ICSE ’06.

[11] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-compatible array bounds
checking for C with very low overhead. In ICSE’06.

[12] Duck, Yap, and Cavallaro. 2017. Stack Bounds Protection with Low Fat Pointers.
In NDSS’17.

[13] Frank Ch Eigler. 2003. Mudflap: Pointer Use Checking for C/C+. InGCCDevelopers
Summit.

[14] Chris Evans. Feb 2017. https://googleprojectzero.blogspot.com/2015/06/
what-is-good-memory-corruption.html. (Feb 2017).

[15] Chris Evans. May 2017. https://scarybeastsecurity.blogspot.com/2017/05/
further-hardening-glibc-malloc-against.html?m=1. (May 2017).

[16] Michael Hicks. 2014. What is memory safety? (2014). http://www.pl-enthusiast.
net/2014/07/21/memory-safety/

[17] Intel 2015. IntelÂő Software Development Emulator. https://software.intel.com/
en-us/articles/intel-software-development-emulator. (2015).

[18] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In ATC’02.

[19] juliet 2013. National Institute of Standards and Technology Juliet C/C++ Test
Suite. https://samate.nist.gov/SARD/testsuite.php. (2013).

[20] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification.. In NDSS’15.

[21] man7.org. Feb 2017. http://man7.org/linux/man-pages/man3/alloca.3.html. (Feb
2017).

[22] Mitre. Feb 2017. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235.
(Feb 2017).

[23] mpx 2016. AddressSanitizerIntelMemoryProtectionEx-
tensions. https://github.com/google/sanitizers/wiki/
AddressSanitizerIntelMemoryProtectionExtensions. (2016).

[24] musl 2016. musl libc. http://www.musl-libc.org/. (2016).
[25] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2014. Watchdoglite:

Hardware-accelerated compiler-based pointer checking. In CGO’14.
[26] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:

Hardware for Safe and Secure Manual Memory Management and Full Memory
Safety. In ISCA ’12.

[27] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015. Everything
You Want to Know About Pointer-Based Checking. In SNAPL’15).

[28] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
In PLDI ’09.

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In ISMM ’10.

[30] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. TOPLAS’05
(2005).

[31] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices.

[32] Gene Novark and Emery D. Berger. 2011. DieHarder: Securing the Heap. In
WOOT’11.

[33] Christian W Otterstad. 2015. A brief evaluation of Intel® MPX. In SysCon’15.
[34] Feng Qin, S. Lu, and Yuanyuan Zhou. 2005. SafeMem: exploiting ECC-memory

for detecting memory leaks and memory corruption during production runs. In
HPCA’05.

[35] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In ATC’12.

[36] Fermin J. Serna and Kevin Stadmeyer. Feb 2017. https://security.googleblog.com/
2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html. (Feb 2017).

[37] Alexander Sotirov. 2007. Heap feng shui in javascript. Black Hat Europe (2007).
[38] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In SP’13.
[39] TrendMicro. Feb 2017. http://blog.trendmicro.com/pwn2own-day-1-recap/. (Feb

2017).
[40] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.

2012. Memory Errors: The Past, the Present, and the Future. In RAID’12.
[41] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. 2007. MemTracker:

Efficient and Programmable Support for Memory Access Monitoring and Debug-
ging. In HPCA’07.

[42] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. 2007.
MemTracker: Efficient and Programmable Support for Memory Access Monitor-
ing and Debugging. In HPCA ’07.

[43] vvdveen. Feb 2017. https://github.com/vvdveen/memory-errors/. (Feb 2017).
[44] Suan Hsi Yong and Susan Horwitz. 2003. Protecting C Programs from Attacks

via Invalid Pointer Dereferences. In ESEC/FSE-11.

https://github.com/HexHive/CUP
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://scarybeastsecurity.blogspot.com/2017/05/further-hardening-glibc-malloc-against.html?m=1
https://scarybeastsecurity.blogspot.com/2017/05/further-hardening-glibc-malloc-against.html?m=1
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://samate.nist.gov/SARD/testsuite.php
http://man7.org/linux/man-pages/man3/alloca.3.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions
http://www.musl-libc.org/
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
http://blog.trendmicro.com/pwn2own-day-1-recap/
https://github.com/vvdveen/memory-errors/

	1 Introduction
	2 Challenges and Background
	2.1 Comprehensive Coverage Challenges

	3 Design
	3.1 Hybrid Metadata Scheme
	3.2 Static Analysis
	3.3 Memory Safety Guarantees

	4 Implementation
	4.1 Metadata Implementation
	4.2 Compiler Pass
	4.3 LIBC

	5 Evaluation
	5.1 Performance
	5.2 Juliet Suite

	6 Discussion
	7 Related Work
	8 Conclusion
	References

