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ABSTRACT

Memory corruption errors in C/C++ programs remain the
most common source of security vulnerabilities in today’s
systems. Over the last 104+ years the security community
developed several defenses [4]. Data Exzecution Prevention
(DEP) protects against code injection — eradicating this at-
tack vector. Yet, control-flow hijacking and code reuse re-
main challenging despite wide deployment of Address Space
Layout Randomization (ASLR) and stack canaries. These
defenses are probabilistic and rely on information hiding.

The deployed defenses complicate attacks, yet control-flow
hijack attacks (redirecting execution to a location that would
not be reached in a benign execution) are still prevalent.
Attacks reuse existing gadgets (short sequences of code),
often leveraging information disclosures to learn the location
of the desired gadgets. Strong defense mechanisms have not
yet been widely deployed due to (i) the time it takes to roll
out a security mechanism, (ii) incompatibility with specific
features, and (iii) performance overhead. In the meantime,
only a set of low-overhead but incomplete mitigations has
been deployed in practice.

Control-Flow Integrity (CFI) [1l, [2] and Code-Pointer In-
tegrity (CPI) [3] are two promising upcoming defense mech-
anisms, protecting against control-flow hijacking. CFI guar-
antees that the runtime control flow follows the statically
determined control-flow graph. An attacker may reuse any
of the valid transitions at any control-flow transfer. We
compare a broad range of CFI mechanisms using a unified
nomenclature based on (i) a qualitative discussion of the con-
ceptual security guarantees, (ii) a quantitative security eval-
uation, and (iii) an empirical evaluation of their performance
in the same test environment. For each mechanism, we eval-
uate (i) protected types of control-flow transfers, (ii) the
precision of the protection for forward and backward edges.
For open-source compiler-based implementations, we addi-
tionally evaluate (iii) the generated equivalence classes and
target sets, and (iv) the runtime performance. CPI on the
other hand is a dynamic property that enforces selective
memory safety through bounds checks for code pointers by
separating code pointers from regular data.
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