Control-Flow Hijacking: Are We Making Progress?

Mathias Payer
Purdue University
mathias.payer@nebelwelt.net

ABSTRACT

Memory corruption errors in C/C++ programs remain the
most common source of security vulnerabilities in today’s
systems. Over the last 104+ years the security community
developed several defenses [4]. Data Exzecution Prevention
(DEP) protects against code injection — eradicating this at-
tack vector. Yet, control-flow hijacking and code reuse re-
main challenging despite wide deployment of Address Space
Layout Randomization (ASLR) and stack canaries. These
defenses are probabilistic and rely on information hiding.

The deployed defenses complicate attacks, yet control-flow
hijack attacks (redirecting execution to a location that would
not be reached in a benign execution) are still prevalent.
Attacks reuse existing gadgets (short sequences of code),
often leveraging information disclosures to learn the location
of the desired gadgets. Strong defense mechanisms have not
yet been widely deployed due to (i) the time it takes to roll
out a security mechanism, (ii) incompatibility with specific
features, and (iii) performance overhead. In the meantime,
only a set of low-overhead but incomplete mitigations has
been deployed in practice.

Control-Flow Integrity (CFI) [1l, [2] and Code-Pointer In-
tegrity (CPI) [3] are two promising upcoming defense mech-
anisms, protecting against control-flow hijacking. CFI guar-
antees that the runtime control flow follows the statically
determined control-flow graph. An attacker may reuse any
of the valid transitions at any control-flow transfer. We
compare a broad range of CFI mechanisms using a unified
nomenclature based on (i) a qualitative discussion of the con-
ceptual security guarantees, (ii) a quantitative security eval-
uation, and (iii) an empirical evaluation of their performance
in the same test environment. For each mechanism, we eval-
uate (i) protected types of control-flow transfers, (ii) the
precision of the protection for forward and backward edges.
For open-source compiler-based implementations, we addi-
tionally evaluate (iii) the generated equivalence classes and
target sets, and (iv) the runtime performance. CPI on the
other hand is a dynamic property that enforces selective
memory safety through bounds checks for code pointers by
separating code pointers from regular data.

KEYWORDS

Memory Safety; Control-Flow Hijacking; Control-Flow In-
tegrity; Return-Oriented Programming

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS ’17 April 02-06, 2017, Abu Dhabi, United Arab Emirates
(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4944-4/17/04.

DOL: http://dx.doi.org/10.1145/3052973.3056127

BIOGRAPHY

Mathias Payer is a security researcher and an assistant pro-
fessor in computer science at Purdue university, leading the
HexHive group. His research focuses on protecting applica-
tions in the presence of vulnerabilities, with a focus on mem-
ory corruption. He is interested in system security, binary
exploitation, software-based fault isolation, binary transla-
tion/recompilation, and (application) virtualization.

Before joining Purdue in 2014 he spent two years as Post-
Doc in Dawn Song’s BitBlaze group at UC Berkeley. He
graduated from ETH Zurich with a Dr. sc. ETH in 2012,
focusing on low-level binary translation and security. He an-
alyzed different exploit techniques and wondered how we can
enforce integrity for a subset of data (e.g., code pointers).
All prototype implementations are open-source. In 2014, he
founded the bOllers Purdue CTF team.

This material is based upon work supported, in part, by
the National Science Foundation under Grant No. CNS-
1513783, CNS-1464155, and CNS-1657711.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity. In Proceedings of the 12th ACM
Conference on Computer and Communications Security,
CCS 05, 2005.

[2] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer. Control-Flow Integrity:
Precision, Security, and Performance. ACM Computing
Surveys, 50(1), 2018, preprint: |https://arxiv.org/abs/
1602.04056.

[3] V. Kuzentsov, M. Payer, L. Szekeres, G. Candea,
D. Song, and R. Sekar. Code Pointer Integrity. In OSDI:
Symp. on Operating Systems Design and Implementa-
tion, 2014.

[4] L. Szekeres, M. Payer, L. Wei, D. Song, and R. Sekar.
Eternal war in memory. IEEFE Security and Privacy Mag-
azine, 2014.


http://dx.doi.org/10.1145/3052973.3056127
https://arxiv.org/abs/1602.04056
https://arxiv.org/abs/1602.04056

