
1

Control-Flow Hijacking:
Are We Making Progress?

Mathias Payer, Purdue University
http://hexhive.github.io

2
https://en.wikipedia.org/wiki/Pwn2Own

Bugs are everywhere?

https://en.wikipedia.org/wiki/Pwn2Own

3

Trends in Memory Errors*

* Victor van der Veen, https://www.vvdveen.com/memory-errors/, updated Feb. 2017

https://www.vvdveen.com/memory-errors/

4

Software is unsafe and insecure*

● Low-level languages (C/C++) trade type safety
and memory safety for performance
– Our systems are implemented in C/C++
– Too many bugs to find and fix manually

* SoK: Eternal War in Memory. Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
In IEEE S&P'13

Google Chrome: 76 MLoC
glibc: 2 MLoC
Linux kernel: 14 MLoC

5

6

Control-Flow
Hijack Attack

7

1

32

4 4'

● Attacker modifies code pointer
– Information leak: target address
– Memory safety violation: write

● Control-flow leaves valid graph
– Inject/modify code
– Reuse existing code

Control-flow hijack attack

8

Attack scenario: code injection

● Force memory corruption to set up attack
● Redirect control-flow to injected code

Code Heap Stack

9

Attack scenario: code injection

● Force memory corruption to set up attack
● Redirect control-flow to injected code

Code Heap Stack

10

Attack scenario: code reuse

● Find addresses of gadgets
● Force memory corruption to set up attack
● Redirect control-flow to gadget chain

Code Heap Stack

11

Control-Flow
Integrity

12

Control-Flow Integrity (CFI)*

● Restrict a program’s dynamic control-flow to
the static control-flow graph
– Requires static analysis
– Dynamic enforcement mechanism

● Forward edge: virtual calls, function pointers
● Backward edge: function returns

* Control-Flow Integrity. Martin Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti. CCS ‘05
Control-Flow Integrity: Protection, Security, and Performance. Nathan Burow, Scott A.
Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, Mathias Payer. ACM
CSUR ‘18, preprint: https://nebelwelt.net/publications/files/18CSUR.pdf

https://nebelwelt.net/publications/files/18CSUR.pdf

13

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7

14

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7Attacker may corrupt memory,

code ptrs. verified when used

15

CFI: Limitations

● CFI provides incremental security

● Strength of CFI mechanism depends on the
power of the analysis
– Coarse-grained: all functions are allowed
– Fine-grained: better than coarse-grained

16

Qualitative Analysis

● Classes of analysis precision for forward edges

1) Ad hoc algorithms, labeling

2) Class-hierarchy analysis

3) Flow- or context-sensitive analysis

4) Devirtualize through dynamic analysis

17

CFI: Strength of Analysis

A *obj = new A();
obj->foo(int b, int c);

0xf000b400

int bar1(int b, int c, int d);

void bar2(int b, int c);

int bar3(int b, int c);

int B::foo(int b, int c);

class A :: B {... };
int B::bar5(int b, int c);

int A::foo(int b, int c);

18

Qualitative Analysis

● Backward edge best protected orthogonally
– Shadow stacks
– Safe stacks

● In practice:
– Backward edge excluded (“assume shadow stack”)
– Reuse forward-edge analysis

19

Existing Quantitative Metrics

● Average Indirect-target Reduction (AIR)
– AIR is defined as:

● Allowing any libc function has 99.9% AIR
– 2,102 exported functions
– 1,864,888 bytes of text

● All mechanisms have AIR of 99.9+%

1
n
∑
j=1

n

(1−
|T j|

S
)

20

Qualitative Analysis

Control-flows (CF), quantitative security (Q), reported performance (RP),
static analysis precision: forward (SAP.F) and backward (SAP.B)

21

Quantitative Security Analysis

● Compare 5 open-source mechanisms
– on the same machine
– with the same benchmarks

● Define quantitative metrics
– Number of equivalence classes
– Size of largest class

● Dynamic profiling bounds required targets

22

Size of Equivalence Classes

23

Number of Equivalence Classes

24

Necessity of shadow stack*

● Defenses without stack integrity are broken
– Loop through two calls to the same function
– Choose any caller as return location

* Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. Nicholas Carlini,
Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. In Usenix SEC'15

void func() {
…
bar();
… void bar() { … }
bar();
…

}

25

Necessity of shadow stack*

● Defenses without stack integrity are broken
– Loop through two calls to the same function
– Choose any caller as return location

● Shadow stack enforces stack integrity
– Attacker restricted to arbitrary targets on the stack
– Each target can only be called once, in sequence

* Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. Nicholas Carlini,
Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. In Usenix SEC'15

26

Code-Pointer Integrity, SafeStack*

● Memory safety stops control-flow hijack attacks
– … but memory safety has high overhead (250%)

● Enforce memory safety for code pointers only
– Partition code pointers, check all loads and stores

● Efficient prototype: 5.82% for C/C++ on SPEC
– (Partially) upstreamed to LLVM
– HardenedBSD relies on SafeStack (11/28/16)

* Code-Pointer Integrity. Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea, Dawn Song, R. Sekar. In Usenix OSDI'14

27

● CFI is available and makes attacks harder
– Microsoft Visual Studio, GCC, LLVM
– Deployed in Microsoft Edge, Google Chrome

● Potential limitations
– Large equivalence classes are attack targets
– Backward edge protection is crucial

● Ongoing work: precision and metrics
– CFI should use context and flow sensitivity

CFI Summary

28

Type Safety

29

Type Confusion

● Type confusion arises through illegal downcasts
– Converting a base class pointer to a derived class

● This problem is common in large software
– Adobe Flash (CVE-2015-3077)
– Microsoft Internet Explorer (CVE-2015-6184)
– PHP (CVE-2016-3185)
– Google Chrome (CVE-2013-0912)

* TypeSanitizer: Practical Type Confusion Detection. Istvan Haller, Yuseok Jeon, Hui
Peng, Mathias Payer, Herbert Bos, Cristiano Giuffrida, Erik van der Kouwe. In CCS'16

30

Type Confusion

class B {
int b;

};
class D: B {

int c;
virtual void d() {}

};
…
B *Bptr = new B;
D *Dptr = static_cast<D*>B;
Dptr->c = 0x43; // Type confusion!
Dptr->d(); // Type confusion!

b

vtable*

c

B D

bBptr

Dptrvtable*?

c?

31

Type Confusion Detection

● static_cast<type> uses compile-time check
– Fast but no runtime guarantees

● dynamic_cast<type> uses runtime check
– High overhead
– Only possible for polymorphic classes

● TypeSan approach:
– Make type verification explicit, check all cast
– Challenge: low overhead

32

Conclusion

33

Are we making progress?

2007

2017

34

● We are making progress!
– Attacks are much harder
– Require teams, not just single players

● CFI makes attacks harder
– Some attack surface remains
– Stack integrity, X⊕W, ASLR complementary

● Ongoing work:
– Precision, type safety, memory safety

Conclusion

35

Thank you!

Questions?

Mathias Payer, Purdue University
http://hexhive.github.io

36

Qualitative Analysis

● Classes of analysis precision for forward edges

1) Ad hoc algorithms, labeling

2) Class-hierarchy analysis

3) Rapid-type analysis

4) Flow or context sensitive analysis

5) Context and flow sensitive analysis

6) Devirtualize through dynamic analysis

37

Flow and Context Sensitivity

Flow insensitive: Flow sensitive:
Object *o;
o = new A(); o A→
…
o = new B(); o { A, B }→ o B→

38

Flow and Context Sensitivity

Object *id(Object *o) { return o; }
Object *x, *y, *a, *b;

Context insensitive: Context sensitive:
x = new A(); x A→ x A→
y = new B(); y B→ y B→
a = id(x); a id, id A→ → a A, id1 A→ →
b = id(y); b id, id { A, B }→ → b B, id2 B→ →

39

Trends in Memory Errors*

* Victor van der Veen, https://www.vvdveen.com/memory-errors/, updated Feb. 2017

https://www.vvdveen.com/memory-errors/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

