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https://en.wikipedia.org/wiki/Pwn2Own 

Bugs are everywhere?

https://en.wikipedia.org/wiki/Pwn2Own
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Trends in Memory Errors*

* Victor van der Veen, https://www.vvdveen.com/memory-errors/, updated Feb. 2017

https://www.vvdveen.com/memory-errors/
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Software is unsafe and insecure*

● Low-level languages (C/C++) trade type safety 
and memory safety for performance
– Our systems are implemented in C/C++
– Too many bugs to find and fix manually

* SoK: Eternal War in Memory. Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 
In IEEE S&P'13

Google Chrome: 76 MLoC
glibc:   2 MLoC
Linux kernel: 14 MLoC
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Control-Flow
Hijack Attack



7

1

32

4 4'

● Attacker modifies code pointer
– Information leak: target address
– Memory safety violation: write

● Control-flow leaves valid graph
– Inject/modify code
– Reuse existing code

Control-flow hijack attack
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Attack scenario: code injection

● Force memory corruption to set up attack
● Redirect control-flow to injected code

Code Heap Stack
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Attack scenario: code injection

● Force memory corruption to set up attack
● Redirect control-flow to injected code

Code Heap Stack
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Attack scenario: code reuse

● Find addresses of gadgets
● Force memory corruption to set up attack
● Redirect control-flow to gadget chain

Code Heap Stack
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Control-Flow 
Integrity
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Control-Flow Integrity (CFI)*

● Restrict a program’s dynamic control-flow to 
the static control-flow graph
– Requires static analysis
– Dynamic enforcement mechanism

● Forward edge: virtual calls, function pointers
● Backward edge: function returns

* Control-Flow Integrity. Martin Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti. CCS ‘05
Control-Flow Integrity: Protection, Security, and Performance. Nathan Burow, Scott A. 
Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, Mathias Payer. ACM 
CSUR ‘18, preprint: https://nebelwelt.net/publications/files/18CSUR.pdf

https://nebelwelt.net/publications/files/18CSUR.pdf


13

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7
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Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7Attacker may corrupt memory,

code ptrs. verified when used
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CFI: Limitations

● CFI provides incremental security

● Strength of CFI mechanism depends on the 
power of the analysis
– Coarse-grained: all functions are allowed
– Fine-grained: better than coarse-grained
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Qualitative Analysis

● Classes of analysis precision for forward edges

1) Ad hoc algorithms, labeling

2) Class-hierarchy analysis

3) Flow- or context-sensitive analysis

4) Devirtualize through dynamic analysis
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CFI: Strength of Analysis

A *obj = new A();
obj->foo(int b, int c);

0xf000b400

int bar1(int b, int c, int d);

void bar2(int b, int c);

int bar3(int b, int c);

int B::foo(int b, int c);

class A :: B {... };
int B::bar5(int b, int c);

int A::foo(int b, int c);
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Qualitative Analysis

● Backward edge best protected orthogonally
– Shadow stacks
– Safe stacks

● In practice:
– Backward edge excluded (“assume shadow stack”)
– Reuse forward-edge analysis
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Existing Quantitative Metrics

● Average Indirect-target Reduction (AIR)
– AIR is defined as:

● Allowing any libc function has 99.9% AIR
– 2,102 exported functions
– 1,864,888 bytes of text

● All mechanisms have AIR of 99.9+%

1
n
∑
j=1

n

(1−
|T j|

S
)



20

Qualitative Analysis

Control-flows (CF), quantitative security (Q), reported performance (RP), 
static analysis precision: forward (SAP.F) and backward (SAP.B)
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Quantitative Security Analysis

● Compare 5 open-source mechanisms
– on the same machine
– with the same benchmarks

● Define quantitative metrics
– Number of equivalence classes
– Size of largest class

● Dynamic profiling bounds required targets
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Size of Equivalence Classes
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Number of Equivalence Classes
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Necessity of shadow stack*

● Defenses without stack integrity are broken
– Loop through two calls to the same function
– Choose any caller as return location

* Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. Nicholas Carlini, 
Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. In Usenix SEC'15

void func() {
…
bar();
… void bar() { … }
bar();
…

}
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Necessity of shadow stack*

● Defenses without stack integrity are broken
– Loop through two calls to the same function
– Choose any caller as return location

● Shadow stack enforces stack integrity
– Attacker restricted to arbitrary targets on the stack
– Each target can only be called once, in sequence

* Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. Nicholas Carlini, 
Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. In Usenix SEC'15
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Code-Pointer Integrity, SafeStack*

● Memory safety stops control-flow hijack attacks
– … but memory safety has high overhead (250%)

● Enforce memory safety for code pointers only
– Partition code pointers, check all loads and stores

● Efficient prototype: 5.82% for C/C++ on SPEC
– (Partially) upstreamed to LLVM
– HardenedBSD relies on SafeStack (11/28/16)

* Code-Pointer Integrity. Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, 
George Candea, Dawn Song, R. Sekar. In Usenix OSDI'14
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● CFI is available and makes attacks harder
– Microsoft Visual Studio, GCC, LLVM
– Deployed in Microsoft Edge, Google Chrome

● Potential limitations
– Large equivalence classes are attack targets
– Backward edge protection is crucial

● Ongoing work: precision and metrics
– CFI should use context and flow sensitivity

CFI Summary



28

Type Safety
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Type Confusion

● Type confusion arises through illegal downcasts
– Converting a base class pointer to a derived class

● This problem is common in large software
– Adobe Flash (CVE-2015-3077)
– Microsoft Internet Explorer (CVE-2015-6184)
– PHP (CVE-2016-3185)
– Google Chrome (CVE-2013-0912)

* TypeSanitizer: Practical Type Confusion Detection. Istvan Haller, Yuseok Jeon, Hui 
Peng, Mathias Payer, Herbert Bos, Cristiano Giuffrida, Erik van der Kouwe. In CCS'16
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Type Confusion

class B {
int b;

};
class D: B {

int c;
virtual void d() {}

};
…
B *Bptr = new B;
D *Dptr = static_cast<D*>B;
Dptr->c = 0x43; // Type confusion!
Dptr->d();      // Type confusion!

b

vtable*

c

B D

bBptr

Dptrvtable*?

c?
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Type Confusion Detection

● static_cast<type> uses compile-time check
– Fast but no runtime guarantees

● dynamic_cast<type> uses runtime check
– High overhead
– Only possible for polymorphic classes

● TypeSan approach: 
– Make type verification explicit, check all cast
– Challenge: low overhead
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Conclusion
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Are we making progress?

2007

2017
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● We are making progress!
– Attacks are much harder
– Require teams, not just single players

● CFI makes attacks harder
– Some attack surface remains
– Stack integrity, X⊕W, ASLR complementary

● Ongoing work:
– Precision, type safety, memory safety

Conclusion
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Thank you!  

Questions?

Mathias Payer, Purdue University
http://hexhive.github.io
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Qualitative Analysis

● Classes of analysis precision for forward edges

1) Ad hoc algorithms, labeling

2) Class-hierarchy analysis

3) Rapid-type analysis

4) Flow or context sensitive analysis

5) Context and flow sensitive analysis

6) Devirtualize through dynamic analysis
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Flow and Context Sensitivity

Flow insensitive: Flow sensitive:
Object *o;
o = new A(); o  A→
…
o = new B(); o  { A, B }→ o  B→
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Flow and Context Sensitivity

Object *id(Object *o) { return o; }
Object *x, *y, *a, *b;

Context insensitive: Context sensitive:
x = new A(); x  A→ x  A→
y = new B(); y  B→ y  B→
a = id(x); a  id, id  A→ → a  A, id1  A→ →
b = id(y); b  id, id  { A, B }→ → b  B, id2  B→ →
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Trends in Memory Errors*

* Victor van der Veen, https://www.vvdveen.com/memory-errors/, updated Feb. 2017

https://www.vvdveen.com/memory-errors/
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