PSHAPE: Automatically Combining Gadgets
for Arbitrary Method Execution

Andreas Follner!, Alexandre Bartel!, Hui Peng?, Yu-Chen Chang?,
Kyriakos Ispoglou?, Mathias Payer?, and Eric Bodden?

! Technische Universitit Darmstadt, Darmstadt, Germany
andreas.follner@cased.de, alexandre.bartel@cased.de
2 Purdue University, West Lafayette, USA
pengl24@purdue.edu, chang397@purdue.edu, kispoglo@purdue.edu,
mathias.payer@nebelwelt.net,
3 Paderborn University & Fraunhofer IEM, Paderborn, Germany
bodden@acm.org

Abstract. Return-Oriented Programming (ROP) is the cornerstone of
today’s exploits. Yet, building ROP chains is predominantly a manual
task, enjoying limited tool support. Many of the available tools contain
bugs, are not tailored to the needs of exploit development in the real
world and do not offer practical support to analysts, which is why they
are seldom used for any tasks beyond gadget discovery.

We present PSHAPE (Practical Support for Half- Automated Program
Exploitation), a tool which assists analysts in exploit development. It
discovers gadgets, chains gadgets together, and ensures that side effects
such as register dereferences do not crash the program. Furthermore,
we introduce the notion of gadget summaries, a compact representation
of the effects a gadget or a chain of gadgets has on memory and regis-
ters. These semantic summaries enable analysts to quickly determine the
usefulness of long, complex gadgets that use a lot of aliasing or involve
memory accesses. Case studies on nine real binaries representing 147 MiB
of code show PSHAPE’s usefulness: it automatically builds usable ROP
chains for nine out of eleven scenarios.

1 Introduction

Exploiting software vulnerabilities was simple and straightforward up until the
early 2000s, when mitigation techniques were scarce and seldom applied. In con-
trast, contemporary systems deploy a multitude of defense mechanisms such as
stack canaries [5], data execution prevention (DEP) [1], and address space layout
randomization (ASLR) [18], each of which presents an obstacle to exploitation
that needs to be bypassed. This has largely restricted exploit development to
manual effort with only basic tool support.

While the circumvention of mitigations has been studied in detail, there is
no comprehensive and automatic approach to bypassing all mitigations at once.
Different mitigations must be defeated using different attacks. For example, DEP



is bypassed using ROP or other code-reuse attacks |4}/6,/17,26}32]. Although
DEP exploits may share some commonality amongst themselves, this does not
carry over to exploits targeting ASLR and stack canaries, which tend to be very
scenario-specific and often rely on another vulnerability in addition to the one
that allows a code pointer to be overwritten. In general, information leaks [2/[731]
are the preferred way of learning a program’s memory layout and contents.
However, these often require either another vulnerability like a format string
vulnerability, or a scriptable environment under the analyst’s control such as
Javascript or Actionscript. More sophisticated attacks must operate with stricter
constraints or are limited to a specific use case |3},/12,/19}/29}33].

Current exploits consist of three stages: (i) information collection to bypass
ASLR, (ii) ROP to bypass DEP, and (iii) executing the desired payload. The first
stage uses an information leak to discover all required information to get around
ASLR. The second stage uses ROP to initialize a memory area and remap it
as executable. Then, in the third stage, the exploit runs classic shellcode within
the newly mapped region. Exploits are split into three stages because (i) infor-
mation leaks are program specific and (ii) ROP programming is cumbersome,
complicated, and hard to control. Attackers prefer short ROP chains and inject
and execute binary code as soon as possible.

The plurality of mitigations complicates the automation of exploit genera-
tion, yet certain mundane tasks, particularly those in later stages of ROP chain
creation, are good targets for automation. These tasks include finding gadgets,
assessing gadgets’ usefulness, and combining gadgets to achieve useful behavior.
These tasks require the analyst to (i) decompose the code she wants to execute
into analogues of individual assembly instructions (e.g., write a certain value in
a register), then (ii) manually find individual gadgets whose semantics corre-
spond to all the individual assembly instructions, (iii) undo any unintended side
effects of executed gadgets, and (iv) ensure that preconditions, such as that a
register has to point to writeable memory, are satisfied. While many tools have
been proposed to automate these steps, every single one appears to show at least
some serious limitation when it comes to practical application scenarios.

This work presents and evaluates PSHAPE, a novel approach to automati-
cally perform steps (i) through (iv) through a semantic gadget search and gadget
summaries. We assume that the analyst wants to execute a function to make her
payload executable, following the idea of three-stage exploit development. First,
PSHAPE discovers all gadgets in a given binary and computes their pre- and
postconditions. Afterwards, PSHAPE selects the best suited gadgets for loading
or modifying values in registers used for passing arguments to functions. Second,
PSHAPE combines these gadgets into chains to create a chain of non-interfering
gadgets. Finally, in the third step, gadgets may be added to the chain to make
sure that the analyst can initialize all registers the chain dereferences, as its
execution may otherwise lead to a crash.

This work compares PSHAPE to twelve other tools. Since no other tool
offers gadget summaries, one can only compare the number of gadgets found
and how well the gadget chaining mechanisms work. For the latter, we use four



Linux and five Windows binaries, a total of 147 MiB of executable data. Then,
we use the tools to create gadget chains that initialize between three and six
registers with analyst-controlled data, allowing the analyst to invoke functions
often used in ROP exploits, such as mprotect, mmap, or VirtualProtect. This
results in eleven scenarios, for which a gadget chain can be created.

To summarize, the work presents the following original contributions:

— gadget summaries, a compact view on a gadget’s semantics, greatly enhanc-
ing the search for useful gadgets,

— a mechanism to automatically generate a gadget chain that initializes reg-
isters used for passing parameters to execute an arbitrary method, making
sure that all preconditions are satisfied,

— PSHAPE, an open-source implementation of the approach, and an evalu-
ation of PSHAPE comparing it to other ROP tools. We show that it can
automatically produce chains for nine out of eleven scenarios (81%), passing
up to six parameters to function calls, while other tools can create a chain
only in one scenario.

2 DMotivating Example

In this section we show how PSHAPE helps building exploits for real-world
vulnerabilities. The example we use is CVE-2013-2028, a typical buffer overflow
vulnerability, which was found in the nginz web engin(—ﬂ

For our running example, the goal is to inject arbitrary shellcode, make it
executable, and then overwrite the return address with the beginning of the
shellcode. To bypass DEP, mprotect needs to be called using a ROP chain
to make the shellcode page executable. This includes performing the following
tasks: (1) information leaking, to discover the address of mprotect and the stack
frame where the vulnerable buffer is allocated, (2) building the ROP payload for
calling mprotect, and (3) constructing the shell code.

Problem Definition While all the tasks mentioned above are difficult, the second
task can become increasingly complex due to the huge number of gadgets and
constraints that need to be tracked along the gadget chain. Manually crafting
the payload is both time-consuming and tedious. To execute a system call or call
any other function, an attacker must (i) identify all the registers needed to be
initialized, e.g., setting up the syscall number in rax and preparing arguments
in other registers; (ii) for each register to be initialized, search all the relevant
gadgets in the binary using a gadget finding tool; (iii) analyze each gadget to find
out how it affects registers and memory; (iv) choose a subset of the identified
gadgets and chain them into a coherent exploit.

The task of finding appropriate gadgets for initializing a register in steps (ii)
and (iii) is complex and takes a very long time for the analyst. For example,

4 http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-
2013-2028.html
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running ROPgadget [27] on nginx with a grep filter to identify gadgets for
touching rax produces a list with thousands of candidates. Since ROP gadgets
often have unwanted side effects on other memory locations and/or registers
(e.g., writing to invalid addresses and causing a crash), only a few gadgets remain
viable. This makes the identification of usable gadgets a slow process, even for
an experienced analyst. Moreover, chaining gadgets in step (iv) is a repetitive
task whose complexity entails a lot of work. To execute a system call using
ROP, all arguments need to be passed beforehand, involving memory writes,
register initialization and typically cannot be done with only a single gadget.
Thus, finding gadgets for different operations is crucial for building the payload.
Since finding different gadgets requires iterating through the process of gathering
and filtering the viable gadgets, the more gadgets a ROP chain needs, the more
heavy manual workload is required.

Our Approach The automation provided by PSHAPE can simplify the last three
steps significantly, saving the analyst from large volumes of repetitive work. For
steps (ii) and (iii), PSHAPE can assist in two ways. First, it reduces the result
set size of a gadget search by filtering out incompatible gadgets, such as arith-
metic gadgets. Second, it produces gadget summaries that speed up the process
of gadget analysis. PSHAPE greatly reduces the amount of manual work re-
quired in step (iv) by chaining gadgets into an exploit completely automatically,
whilst also satisfying any preconditions of the constituent gadgets.

3 Automating Exploit Generation

PSHAPE assists an analyst during exploit development by offering two distinct
features which set it apart from existing tools that are publicly available, namely
it (i) provides summaries based on gadget semantics, making it straightforward
for an analyst to assess and select gadgets, and (ii) chains gadgets together
so that they load registers used to pass parameters to functions with analyst-
controlled data. This allows the invocation of arbitrary functions. PSHAPE also
ensures that any preconditions of a gadget (such as that a register has to point
to readable memory) are satisfied.

We first define what gadget summaries are and how they are computed in

and then describe our approach to generate gadget chains in

3.1 Gadget Summaries

Overview ROP mitigations that (i) monitor program executions and detect short
code sequences [81[9L|14L125] or (ii) require all return operations to return to an
instruction following a call instruction [25,39] force developers into using long
gadgets or even entire functions [29]. The increasing length of gadgets makes
manual analysis and reasoning increasingly difficult. We thus propose gadget
summaries, which reflect a gadget’s semantics in a compact specification that
allows analysts to understand a gadget’s behavior at a glance. shows an



mov rax, rsp

mov [rax+20h], r9
mov [rax+18h], r8
mov [rax+10h], rdx

mov [rax+8], recx
mov rcx, r9

mov rax, [rcx]
inc rax
mov [rcx+8], rax PRE: [r9] <—> [r9 + 0xC]
mov rax, [rcx+4] PRE: [rsp] <—> [rsp + 0x20]
inc rax POST: rsp = rsp + 8
mov [rcx+0Ch], rax POST: rax = [r9 + 4] + 1
ret POST: rcx = r9
(a) A candidate gadget. (b) Corresponding gadget summary.

Fig. 1: Despite this being a relatively short gadget in mshtml.d11 which contains
only 13 instructions (a), analyzing it manually is still a cumbersome and error-
prone task. PSHAPE automates this process by creating a simple summary (b).
Note that by default PSHAPE does not display memory write postconditions
as they are seldom of interest, and make the summary harder to read.

example of a gadget summary, with the gadget on the left, and its summary on
the right. This gadget has two preconditions, because r9 and rsp are derefer-
enced. The actual effects on the program state are that rsp is increased by 8,
rax receives the value of 1 + [r9 + 4], and rcx is assigned the value of r9.

Method First, gadgets are identified by finding return opcodes and backward
disassembly. These gadgets are then converted into an intermediate representa-
tion (IR) to simplify analysis. Our current prototype uses VEX IR, see
Based on this IR, PSHAPE propagates all assignments, such as to temporary
or real registers, or memory locations forwards, resulting in a single statement
for each real register and memory location. This single statement (referred to as
postcondition) contains all operations on this register or location, i.e., an abstrac-
tion of the new value after a gadget has executed. Of course our analysis models
memory locations so it is able to correctly determine postconditions of gadgets
that use the stack to pass data. E.g., it detects that after a push rax ; pop
rbx ; ret gadget, rbx contains the value of rax. This analysis also allows us to
readily extract preconditions, such as register or memory dereferences. Post- and
preconditions combined result in a gadget summary, a compact representation
of the state of memory and registers after a gadget has executed along with a
list of dereferenced registers and offsets. Our syntax for pre- and postconditions
is similar to assembly syntax, and should be intuitive for binary analysts. The
current prototype excludes instructions such as jumps, loops, or bit manipula-
tion in the summaries to reduce the explosion in state and complexity, see
We leave more involved search strategies for future work.

As memory is often accessed sequentially using offsets from a register, one can
compress summaries by merging such accesses into a range. For example, precon-
ditions [rax], [rax + 8], [rax + 0x10] and [rax + 0x20] can be compressed



to: [rax] <-> [rax + 0x20]. This denotes that all memory between [rax] and
[rax + 0x20] has to be read/writeable. This heuristic sacrifices precision, as not
every single byte must be accessed, but makes summaries concise.

Gadget summaries aid the analyst in the process of understanding how a
gadget affects the state of registers and memory and are increasingly helpful,
the more instructions and aliasing a gadget contains. They also allow for a more
efficient gadget search, as expressing postconditions when searching for a gadget
is much more intuitive and flexible than specifying a certain instruction. Lastly,
gadget summaries are useful for selecting gadgets for automated gadget chain
generation, which we describe in the next section.

3.2 Gadget Chaining

Our approach aims at finding a valid and short gadget chain which loads analyst-
controlled data, i.e., relative to rsp, into registers. This allows invoking an ar-
bitrary function with analyst-specified parameters. It consists of three steps, as
shown in In the first step, the gadgets are extracted from the target bi-
nary and summaries are computed. Then, based on the summaries, the list of
gadgets are filtered to keep only the ones related to initializing registers that are
used for passing function parameters. The second step combines these gadgets
into chains. For a chain, pre- and postconditions are computed, and if the chain
has the desired postconditions, the third step analyzes the validity of each chain
and adds gadgets to satisfy any preconditions.

Step 1: Gadget Extraction and Summary Computation. First, gadgets are ex-
tracted from a given binary, delivering a list of gadgets for which we then com-
pute gadget summaries. The results are stored, making them available for the
analyst. Next, the gadgets are filtered to keep only the ones related to initializ-
ing registers used for passing parameters to functions. On 64-bit Windows those
are rcx, rdx, r8, and r9, in that order. On 64-bit Linux the registers used for
parameter passing to functions are rdi, rsi, rdx, rcx, r8, and r9, in that order.
Additional parameters are passed on the stack in both cases. Our summaries
simplify filtering because gadgets that do not set the registers stated above to a
value that can be controlled by the analyst, are discarded automatically.

We divide these gadgets into two categories, load and mod. Gadgets in the
load category overwrite a given register, e.g., a pop instruction, while gadgets
in the mod category modify it, e.g., an add instruction. Gadgets in the load
category are favored, and within this category, gadgets that use rsp-relative
memory dereferences are preferred, as rsp needs to be under the control of the
analyst anyway when using ROP. For example, a pop rcx gadget is preferred
over a mov rcx, [rax] gadget. If no suitable load gadgets exist, mod gadgets
such as add rcx, rax are used. Based on this ranking and the number and
severity of pre-, and postconditions, the n most suitable gadgets for loading
each parameter register with arbitrary data are selected and passed to Step 2.
The step of assessing the severity of pre- and postconditions reuses some ideas
presented in GaLity [13].
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Fig.2: Overview of our approach to generate gadget chains. In Step 1, we extract
gadgets up to a certain size and create summaries. In Step 2 we select a set of
n gadgets for the individual parameters to constrain the search space and then
create gadget chains. In Step 3 we analyze the chains and prepend gadgets to
make any dereferences analyst-controlled.

Step 2: Combining Gadgets into Chains. In the second step, the gadgets from
Step 1 are combined and all possible permutations of a chain are computed.
Remember that in Step 1, the n most suitable gadgets are selected for every
parameter register. E.g., invoking a function with four parameters results in n* x
4! possible chains. For each permutation of a chain, pre- and postconditions of the
whole chain are computed. If a chain’s postconditions are not the expected result,
i.e., the registers used to pass parameters do not contain analyst-controlled data,
it is discarded. Instead of exhausting the search space, we stop the exploration
after the first viable combination is found.

Step 3: Solving Pre-Conditions. It may happen that a chain generated in Step 2
contains preconditions such as register dereferences. The analyst needs to have
the possibility to initialize the dereferenced registers, so they contain the address
of a valid memory area. In Step 3, PSHAPE attempts to build a gadget chain
that allows loading analyst-controlled data into an arbitrary register. Once such
a gadget is found it is prepended to the incoming chain, forming a new chain. The
new chain is then checked for pre- and postconditions again to make sure it does
indeed initialize dereferenced registers and does not interfere with the original
chain. Note that the number of iterations is limited (four in our prototype), so
the chain does not grow forever.

Our gadget chaining fully automates the process of stitching gadgets to-
gether to initialize registers used for passing parameters to functions with data
the analyst controls. It also adds gadgets to the chain to ensure any dereferenced
registers are also initialized with data the analyst controls. This approach sim-
plifies exploit development, especially if functions taking many parameters are
called or if the available gadgets consist of many instructions.

3.3 Implementation

PSHAPE uses a standard technique to discover gadgets: first, using pyelftoolsﬂ
and peﬁleﬂ it finds executable sections in an input binary. Afterwards it scans
these sections forwards bytewise until a return opcode is found, storing these

® https://github.com/eliben/pyelftools
S https://github.com/erocarrera/pefile
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offsets in a list. Then, using several threads, it disassembles backwards from these
offsets using the Capstone framework [22]. To limit the number and complexity of
gadgets and speed up the discovery process, the analyst can specify the minimum
and maximum size, i.e., number of instructions, of a gadget.

If the disassembly yields only legal instructions, we convert this gadget to
Valgrind’s VEX IR [21] using PyVEX [34]. Lifting the original assembly code
to VEX has the advantage that it is much simpler to analyze because there are
fewer instructions and side effects are made explicit. After this conversion, VEX
assignments are propagated forward, resulting in a single statement for each real
register and memory location, which contains all operations on this register or
location, i.e., an abstraction of the new value after a gadget has executed.

4 Evaluation

We first compare PSHAPE with existing tools regarding their ability to extract
gadgets from binaries as well as their ability to construct gadget chains to ini-
tialize registers for function calls in Section Then, in Section we
qualitatively evaluate gadget chains that PSHAPE creates for various binaries,
and discuss optimizations.

4.1 Comparison with Existing Tools

In we have listed the tools designed to help an analyst to create ROP
exploits. Generally, we have found that there is a big gap between the theoretical
state of the art and what actually exists and works well in practice. Many of
the tools we evaluate contain bugs and other quirks that limit their usefulness
in real scenarios, the main focus of PSHAPE.

OptiROP and Q are not publicly available and also were not made available
to us upon request. We also excluded nrop due to its scope (see. We managed
to compile ROPC although it has been unmaintained for years, and GitHub issue
reports are not answered. Unfortunately, it could not extract gadgets from any
of the binaries we use in the evaluation, which is why we exclude it.

For the evaluation we use five Windows binaries: firefox.exe, iexplore.exe,
chrome.exe, mshtml.dll, and jfxwebkit.dll, and four Linux binaries: chromium,
apache2, openssl, and nginx, representing a total of 147 MiB of executable data.
Detailed information about the binaries and PSHAPE are available on the com-
panion website: https://sites.google.com/site/exploitdevpshape/.

Gadget Discovery In this section, we compare the different gadget discovery
routines. For a tool to be considered in these experiments, we require that it
can read ELF or PE binaries and find gadgets in 64-bit binaries. DEPIlib, Agafi,
mona.py, Ropeme, and MSFrop do not fulfill these requirements and were there-
fore discarded, leaving us with the following tools to compare to: ROPgadget,
rp++ and ropper. We configured them to look for gadgets up to a maximum
length of 35 instructions. summarizes the results.
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Syntac- Seman- Gadget Turing Open- Binary 64
Tool tic tic Chain- Com- Source avail.- PE ELF bit

Search search ing plete able
PSHAPE v v v X v v v v v
OptiROP |23] v v v X X X v v v
nrop [38] v v X X X X v v v
Q [30] v v v X X X v v v
ROPC |[24] v v v v v v v v v
DEPLIb |35 v v v X v v v X X
Agafi 1.1 [16] v X v X v v v X X
mona.py 20 VvV X v X v v v X X
(rev566) |11]
ROPgadget 5.4 |27 v X v X v v v v v
rp++ 0.4 [36] v X X X v v v v v
Ropeme [10] v X X X v v X v X
ropper 1.8.7 28] v X v X v v v v v
MSFrop [20] v X X X v v v v X

Table 1: Summary of ROP tools. Note that many tools have limitations, bugs,
or do not work as expected, which we discuss in and

ROPgadget lists duplicates, i.e., the same gadget at the same address is listed
more than once. We informed the developer about this bug. ROPgadget does not
have an option to define the maximum number of instructions in a gadget. Only
the maximum number of byte per gadget can be set. We ran our experiments
using 110 bytes for the maximum length, leading to an average opcode size of
about 3 bytes per instruction. Originally, we planned to use a much larger number
to make sure we do not miss any gadgets. However, even with a depth of 110
bytes the evaluation of ROPgadget on Chromium took over 6 hours, consuming
160 GB of RAM. Afterwards, we used a script to go through the results and
remove any gadgets that contained more than 35 instructions. Therefore, we
miss gadgets that contain 35 or fewer instructions but are longer than 110 byte.
rp—++ originally comes with a fixed maximum gadget length of 20 instructions.
We modified the source code, changing this upper limit to 35 and recompiled it,
so it correctly discovers longer gadgets, too.
ropper ropper does not find some simple and short gadgets and keeps gadgets
that contain conditional jumps. Such gadgets are difficult to use, especially since
no information is given about which paths are taken under which circumstances.
Since all four tools use slightly different filters or sometimes contain bugs, it
is difficult to compare their results. For example, ROPgadget and rp++ keep
gadgets that contain privileged instructions (e.g., in, out, or h1lt), which termi-
nate the process. ROPgadget’s output contains duplicate gadgets, and ropper
keeps gadgets that contain conditional jumps, which the other tools do not. We
filter and clean the output of all tools, removing any duplicates and privileged
instructions as well as jumps. As[Table 2|shows, eventually all tools find a similar
number of gadgets.



Binary PSHAPE rp++ ropper ROPgadget

firefox 6,709 6,182 5,445 6,259
iexplorew 928 888 836 888
chromeyw, 64,372 58,890 52,991 59,969
mshtmly, 1,329,705 1,239,403 1,099,466 1,242,616
jfxwebkity, 1,172,718 1,076,350 960,091 1,086,061
chromiumy, 5,358,283 5,159,712 4,579,388 5,130,856
apache2y, 24,164 22,722 18,061 22,875
openssly, 6,978 6,829 5,377 6,845
nginxp, 26,314 25,700 21,081 25,245

(a) Number of extracted gadgets

Function PSHAPE ropper ROPgadget
Wvirtual Protect 2/4 - .

Liprotect 4/4 1/4 1/4

Lmmap 3/3 - _

(b) Number of gadget chains

Table 2: (a) Number of gadgets found by each tool on the given binaries, as
determined by our evaluation. (b) It is possible to build chains to mprotect for
all four Linux binaries, line mprotect shows how many of those chains each tool
creates. For mmap, only three of the Linux binaries have the necessary gadgets to
build a chain and this line shows how many of those each tool can create. Chains
to VirtualProtect exist in four out of the five Windows binaries, this line shows
how many of them each tool creates. A dash indicates that the tool does not
support calling a function that requires the tool to initialize the required number
of arguments. In (a) and (b), L denotes Linux and W, Windows.

Gadget Chaining Here, we evaluate the tools in regards to their ability to
create gadget chains. The minimal requirement for a tool to be considered in the
experiments is that it can build ROP chains for 64-bit Windows or 64-bit Linux,
correctly initializing the registers used for passing parameters to functions. Since
most 32-bit calling conventions pass parameters on the stack, ROP chains have
to be constructed differently, making a comparison difficult. We use functions
that are regularly used in ROP exploits. For Linux, the goal is to create two
chains, one that loads registers with analyst-controlled data for invoking a func-
tion that takes three arguments (e.g., mprotect or execve) and one chain that
loads registers with analyst-controlled data for invoking a function that takes
six arguments (e.g., mmap). For Windows, the goal is to create a chain that loads
registers with user-controlled data for invoking a function that takes four argu-
ments (e.g., VirtualProtect or VirtualAlloc). From this point on, we refer to
these goals by the function’s names but keep in mind that any function using
the same number of parameters or fewer can be invoked, too.

From the list of available tools, only ROPgadget and ropper satisfy our re-
quirements. The results of the experiments have been summarized in
ROPgadget cannot create chains for Windows, does not offer any targets for
a ROP chain and instead always tries to build a chain to create a shell using
execve. However, this function requires initializing three arguments, allowing us



to evaluate at least one goal for Linux. ROPgadget successfully created a chain
for chromium, but it did not succeed on any of the remaining binaries.
ropper cannot create chains for 64-bit Windows, but offers two targets for
ROP chain creation on 64-bit Linux, mprotect and execve, which both take
three arguments. Again, this allowed us to evaluate at least one of the goals we
specified previously. However, for openssl and nginx, ropper was able to initialize
only rdi, despite discovering several useful and simple gadgets that load the
other registers. For apache2, ropper successfully initialized rdi and rdx. Ropper
successfully created a ROP chain for chromium, initializing all three registers
used for passing parameters to mprotect or execve. All gadgets used in the
chains are without side-effects and without preconditions. Thus, no additional
work to satisfy preconditions is necessary.
PSHAPE successfully created fully functional chains for both mprotect and
mmap for the following Linux binaries: chromium, apache2, and nginx. We present
and discuss the chains for apache2 and nginx in For openssl it was only
possible to create a chain to mprotect. This was due to the fact that no gadget
was found to initialize r9, which we confirmed manually using both PSHAPE
and ROPgadget. On Windows binaries, PSHAPE failed to build chains for
firefox.exe and iexplore.exe, and we confirmed, again using both PSHAPE and
ROPgadget, that, in fact, the necessary gadgets are not present in the respective
binaries. For mshtml.dll and jfxwebkit.dll, PSHAPE successfully built a chain.
It also created a chain for chrome.exe, however, it required another gadget to
be prepended manually. Hence, we did not count it towards successful chain
creations in We discuss this chain and its shortcomings in

In cases where PSHAPE failed to build a chain, we evaluated whether a
human analyst could succeed. In other words, we assessed if it was in fact not
possible to build a chain, due to a lack of useful gadgets, or if our tool’s limitations
(see [§ 6) were to blame. In the case of openssl and iexplore.exe, the former is
the case. While there are gadgets that initialize the registers, they are often
initialized to a constant value. Other times we found a gadget that does initialize
a register to an analyst-controlled value, however, unless that value is a specific
constant, a jump is taken in the same gadget, effectively forcing the analyst
to initialize the register with that specific value. For firefox.exe, an analyst can
create a ROP chain. The gadgets that have to be used are complex, requiring
initialization of several gadgets and memory locations to ensure that jumps are
not taken. Since PSHAPE is unable to utilize such gadgets, it was unable to
automatically generate a chain in this case.

4.2 PSHAPE in Practice

Next we qualitatively evaluate three automatically created chains. Note that any
padding required between gadgets is added automatically but omitted here to
increase readability and due to size constraints.

Chain for apache2. The chain is presented in Gadgets 2 to 7 are used
to initialize the registers used for passing parameters. PSHAPE detects that
rax is dereferenced by gadget 6 and before that, aliased with ebp (gadget 4).



Therefore, another gadget is added that initializes rbp. An even shorter chain
could have been created by arranging the gadgets in such a way, that gadgets
7 and 4 execute before gadget 6. In this case, gadget 7 initializes rbp, gadget 4
copies it to rax, which is then dereferenced by gadget 6. This would make the
first gadget unnecessary. However, PSHAPE does not detect that, as it uses the
first permutation whose postconditions are correct (see .

Chain for nginz. The chain is presented in In the first iteration, the
chain consists of gadgets 3 to 8, which are used to initialize the registers used for
passing parameters. Gadget 6 dereferences rax and rbx, which is why PSHAPE
initializes these two registers by adding gadgets 1 and 2 to the chain. Gadget 8
dereferences rbx, which is initialized by gadget 6.

Chain for chrome.eze. The chain is presented in Gadgets 2 to 5 are
used to initialize the registers used for passing parameters. PSHAPE correctly
detected that there are no better-suited gadgets for initializing r9 and resorts to
using gadget 2, prepended by gadget 1 to make r15 analyst-controlled. Unfortu-
nately, PSHAPE cannot automatically satisfy the precondition of the cmovns
instruction, because this conditional mov instruction checks the sign flag, and
currently, PSHAPE ignores flags (see [§ 6)). Therefore, to make sure the chain
executes correctly, the analyst has to prepend, e.g., a simple xor rax, rax in-
struction to the chain.

5 Related Work

Here we discuss related work that was not yet covered in

Q [30] takes an existing exploit which does not bypass DEP or ASLR, and
attempts to harden it, i.e., rewrite it so it bypasses these mitigation techniques.
To bypass ASLR it relies on unrandomized code sections and then uses gadgets
from those sections to construct a ROP payload to bypass DEP. The payload
is written by the attacker using QooL, Q’s own exploit language. In their eval-
uation, the authors show how Q hardens nine simple stack buffer overflow ex-
ploits for Windows and Linux, with a payload that invokes a linked function
or system/WinExec. Q cannot handle gadgets containing pointer dereferences,
which our approach not only handles, but also ensures they are safe to use.

ROPC [24] is based on Q, but publicly available. Its main feature is a gad-
get compiler which takes an input binary and a program written in their own
language called ROPL. Then, ROPC creates this program using only gadgets
from the input binary. While it looks favourable to our tool on paper, because it
is Turing-complete, only a proof of concept prototype, dating back to June 2013,
is available. This prototype only works on one included, synthetic example, but
did not succeed on the real binaries we use in the evaluation.

BARFgadgets [37] is based on Q and its main focus is classifying and
verifying gadgets into various types such as load register or store memory. It
provides very basic summaries that only contain what the first instruction of a
gadget does, and which other registers are clobbered.
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nrop |38 finds semantically equivalent gadgets to a given instruction. Our
tool could be used for a similar purpose, as semantically equivalent gadgets have
the same summary. Until early 2016, nrop’s website was online and stated that
automatic gadget chaining would be coming soon, however, the tool has not

pop rbp ; ret ;

pop rdi ; ret ;

pop rsi ; ret ;

pop rcx ; mov eax, ebp ; add rsp, 8 ; pop rbx ; pop rbp ; ret ;
pop rdx ; pop rbx ; ret ;

pop 18 ; mov rax, qword ptr [rax] ; ret ;

pop r9 ; mov eax, ebp ; add rsp, 8 ; pop rbx ; pop rbp ; ret ;

(a) Gadget Chain for apache2

pop rax ; add rsp, 8 ; ret ;

pop rbx ; ret ;

pop rdi ; ret ;

pop rsi ; ret ;

pop rcx ; ret ;

pop 18 ; mov qword ptr [rax], rbx ; mov rax, qword ptr [rsp + 8] ; mov
qword ptr [rbx + 0x28], rax ; mov rax, gqword ptr [rsp + 0x18] ; mov
gword ptr [rbx + 0x18], rax ; mov edx, 0 ; mov rax, rdx ; add rsp, 0x58 ;
pop rbx ; pop rbp ; pop rl2 ; pop rl3 ; pop rl4 ; pop rl5 ; ret ;

pop rdx ; ret ;

mov 19, gword ptr [rsp + 0x28] ; mov qword ptr [rbx + 0x48], r9 ; mov

r10, gword ptr [rsp + 0x30] ; mov gword ptr [rbx + 0x50], r10 ; mov rll,
gword ptr [rsp + 0x38] ; mov qword ptr [rbx + 0x58], r11 ; add rsp, 0x48 ;
pop rbx ; pop rbp ; pop rl2 ; pop rl3 ; pop rl4 ; pop rl5 ; ret ;

(b) Gadget Chain for nginx

pop rl5 ; ret ;

cmovns r9d, dword ptr [r15] ; ret 0x2b48 ;
pop 18 ; ret ;

pop rdx ; ret ;

pop rcx ; ret 0x6e9 ;

(c) Gadget Chain for chrome.exe

Fig. 3: Three chains created by PSHAPE

received any updates since then.

ROPER |[15] is currently in the early stages of development and will use
a genetic component: after gadgets have been found, they will be put together
randomly. From this pool, four chains will be selected, executed, their fitness
assessed, the two least fit chains killed, the other two chains mated and their
children will be added back to the pool. This process will be repeated until it

converges on a set of viable chains.



6 Limitations and Future Work

Our prototype implementation currently cannot summarize gadgets that include
instructions that check CPU flags (e.g., cmov) and filters out gadgets that contain
instructions changing the program flow (e.g., jne). We plan do address this in
future work, as it will enable PSHAPE to successfully build chains for more
binaries. In our evaluation it was in all but one cases possible to build a ROP
chain without having to incorporate gadgets that contain jumps, however, with
mitigation techniques that drastically reduce the number of available gadgets
(e.g., Control-Flow Integrity), it will be important to utilize all available gadgets.

Further optimizations are possible, e.g., when combining gadgets we can con-
tinue to check for a permutation that has fewer preconditions instead of taking
the first permutation that has the correct postconditions.

We plan to add features which help the analyst to find gadgets that are useful
for bypassing certain mitigation techniques. E.g., we consider adding a filter to
use only call-preceded gadgets, which helps bypass some CFI solutions [25,39].

7 Conclusion

ROP is the cornerstone of today’s low-level exploits, yet tool-support is lacking.
Current ROP chain creation requires significant manual work. Here we present
PSHAPE, a tool that supports analysts during exploit development. It offers
gadget summaries, a compact representation of the effects a gadget has on regis-
ters and memory. Furthermore, it automates gadget chaining, loading registers
used for passing parameters with analyst-controlled data, and making sure that
any preconditions are satisfied.

We compare PSHAPE to twelve other tools in terms of their gadget finding
and autochaining abilities. Most of those tools, however, do not work properly in
realistic scenarios, contain bugs, or are not available. This left us with three tools
to compare to empirically. We applied these tools and PSHAPE to nine widely
used binaries, a total of 147 MiB of code, and eleven realistic exploit scenarios.
Our tool is the only one that successfully creates ROP chains fully-automated
and succeeds in nine out of eleven scenarios. Other tools only create a chain
for a single scenario, showing that there is a big gap between the theoretical
capabilities of current state of the art tools and their usefulness in practice.
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