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Abstract—Modern systems assume that privileged software
always behaves as expected, however, such assumptions may
not hold given the prevalence of kernel vulnerabilities. One
idea is to employ defenses to restrict how adversaries may
exploit such vulnerabilities, such as Control-Flow Integrity
(CFI), which restricts execution to a Control-Flow Graph
(CFG). However, proposed applications of CFI enforcement to
kernel software are too coarse-grained to restrict the adversary
effectively and either fail to enforce CFI comprehensively or
are very expensive.

We present a mostly-automated approach for retrofitting
kernel software that leverages features of such software to
enable comprehensive, efficient, fine-grained CFI enforcement.
We achieve this goal by leveraging two insights. We first
leverage the conservative function pointer usage patterns found
in the kernel source code to develop a method to compute
fine-grained CFGs for kernel software. Second, we identify
two opportunities for removing CFI instrumentation relative
to prior optimization techniques: reusing existing kernel instru-
mentation and creating direct transfers, where possible. Using
these insights, we show how to choose optimized defenses for
kernels to handle system events, enabling comprehensive and
efficient CFI enforcement.

We evaluate the effectiveness of the proposed fine-grained
CFI instrumentation by applying the retrofitting approach
comprehensively to FreeBSD, the MINIX microkernel system,
and MINIX’s user-space servers, and applying this approach
partly to the BitVisor hypervisor. We show that our approach
eliminates over 70% of the indirect targets relative to the best
current, fine-grained CFI techniques, while our optimizations
reduce the instrumentation necessary to enforce coarse-grained
CFI. The performance improvement due to our optimizations
ranges from 51%/25% for MINIX to 12%/17% for FreeBSD
for the average/maximum microbenchmark overhead. The
evaluation shows that fine-grained CFI instrumentation can be
computed for kernel software in practice and can be enforced
more efficiently than coarse-grained CFI instrumentation.

1. Introduction

A fundamental trust assumption is the integrity of a
system’s trusted computing base. In modern systems, hyper-
visors, microkernels, and operating system kernels are part
of a system’s trusted computing base, but they all service

requests from untrusted parties. As a result, protecting the
integrity of such kernel software1 in the face of such threats
is fundamental to system security.

Unfortunately, kernel vulnerabilities are still a common
occurrence, and several recent vulnerabilities have enabled
adversaries to control kernel execution. As of August 2015,
1301 Linux kernel CVEs have been reported [5]. Some of
these vulnerabilities directly permit arbitrary code execution
in the Linux kernel via buffer overflows (e.g., CVE-2014-
2523), errors in packet handling (e.g., CVE-2015-1465) and
errors in privilege level transitions (e.g., BadIRET). In addi-
tion, many vulnerabilities were reported for errors in pointer
handling that could have led to arbitrary code execution. In
spite of the deployment of W⊕X protection which thwarts
direct code-injection attacks by preventing execution on
data memory (e.g., data execution prevention or DEP [8]),
such kernel vulnerabilities may allow adversaries to launch
control-flow hijacking attacks against the kernel, including
return-oriented attacks [35] to create rootkits [24], enabling
adversaries to perform arbitrary malicious computations.

To prevent adversaries from launching control-flow
hijacking attacks, researchers have proposed enforcing
control-flow integrity [6]. Control-flow integrity (CFI) aims
to restrict the execution of a program to its control-flow
graph (CFG). However, there are several challenges in en-
forcing CFI in practice. First, the prevalence of indirect
control transfers in programs, such as indirect calls (i.e.,
function pointers) and returns, makes it difficult to compute
fine-grained CFGs. In addition, the initial performance over-
heads reported for CFI implementations were significant.
As a result, researchers have explored different levels of
precision in the CFG enforced, including lightweight CFI
approaches [15, 20, 32] that only authorize operations at
critical points (e.g., system calls) and coarse-grained CFI
approaches [17, 44–46] that only enforce call and return
targets (CCFIR enforces two sets of return targets). How-
ever, several recent exploits [12, 19, 23] have shown that
current lightweight and coarse-grained CFI implementations
are insufficient to block control-flow hijacking attacks.

Researchers have also proposed stricter CFI policies,
but these methods have significant limitations when applied
to kernel software. Modular CFI [30] and forward-edge

1. We will refer to conventional kernels, hypervisors, microkernels and
their user-space servers collectively as “kernel software” in this paper.



CFI [41] both predict call targets by matching function
pointers with function signatures to reduce the size of target
sets. However, such signatures are not always available given
the presence of variable-argument functions and assembly
functions in the kernel code. In addition, signature-based
approaches may still result in both false negatives, when
a non-target function happens to have the same signature,
and false positives, when a function address is assigned to a
function pointer of a different signature. Both of these cases
are common in kernel code.

Finally, kernel software presents additional challenges in
CFI enforcement. In particular, kernel software must process
asynchronous system events, such as system calls, interrupts,
and exceptions. HyperSafe [44] was the first project to
explore CFI enforcement in kernel software, focusing on
hypervisors. However, HyperSafe did not prevent attacks
on kernel exits to user-space (i.e., ret2usr [25]) and does
not prevent the kernel from inadvertently changing its event
handling configuration. KCoFI [17] alternatively provides
a complete implementation for managing event handling
based on the Secure Virtual Architecture [18], but the resul-
tant cost of CFI enforcement is quite high (over 100%).

In this paper, we aim to show that fine-grained CFI
enforcement for kernel software is possible, can be more
efficient than coarse-grained enforcement, and can be ap-
plied comprehensively to kernel software, raising the bar
for adversaries that wish to launch control-flow hijacking
attacks. To achieve this goal, we first compute a fine-grained
CFG for kernel code. Our mechanism supports both C
and assembly regions (which are common in kernel code).
The insight for producing a fine-grained CFG for kernels
is that we find that kernel code uses function pointers in
a limited way, rarely creating data pointers to memory
locations (variables, array elements, or fields) assigned func-
tion pointers. This enables us to design a static analysis
that covers large kernel code bases with few exceptions
requiring manual intervention. To enforce the computed
CFG, we choose restricted pointer indexing, which was
originally proposed by HyperSafe, as the default enforce-
ment instrumentation, but reduce overhead by specializing
the instrumentation based on the number of legal targets,
and reuse checks that are already available in the kernel
code. Finally, we also develop a design that enables com-
prehensive and efficient CFI enforcement in kernel software
by reasoning about how system events are processed. As
a result, we have eliminated over 70% of targets on both
FreeBSD and MINIX relative to the current fine-grained
CFI, while our implementation incurs 1.82% performance
overhead on FreeBSD and 0.76% overhead on MINIX on
macrobenchmarks, and 11.91%/42.03% (average/maximum)
and 2.02%/5.64% overhead on microbenchmarks.

Contributions. In this paper, we develop a mostly-
automated approach to produce and enforce fine-grained
CFI policies comprehensively for kernel software like the
FreeBSD kernel, the MINIX microkernel and its user-space
servers for Intel x86 platforms. In particular, we make the
following contributions:

• We develop an automated method that leverages
simple kernel code patterns in their use of function
pointers (for indirect calls) and function structures
(for returns) to produce a fine-grained CFG that
includes all targets (or reports a failure to adhere
to expected patterns). We apply our method to
∼10M SLoC of kernel software, including FreeBSD,
MINIX, its user-space servers, and BitVisor, demon-
strating its applicability. The resulting CFGs are
restrictive, where over 90% of the indirect control
transfers have ten or fewer authorized targets.

• We develop an automated method that uses the
type of indirect control transfer and the target set
size of each indirect control transfer to choose the
most efficient instrumentation code. In addition, we
define a set of invariants applicable to enforcing CFI
comprehensively despite system event handling in
kernel software and describe how those invariants
may be achieved efficiently.

• We evaluate our fine-grained CFI enforcement by
applying the proposed techniques to the FreeBSD
kernel, the MINIX microkernel and its user-space
servers. We find that our instrumentation is both ef-
fective, eliminating over 99% targets that are allowed
by a typical coarse-grained CFI implementation and
over 70% of the call targets that are allowed by
signature-based methods with no false positives de-
tected, and efficient, incurring less overhead than a
comparable coarse-grained CFI implementation.

2. Background

In this section, we outline the general idea of code-reuse
attacks and how kernels pose additional risks in being at-
tacked. Next, we look at the concept of control-flow integrity
and reason about why and how current implementations
over-approximate the control-flow graph to which program
execution is restricted.

2.1. Code-Reuse Attacks

Return-oriented programming (ROP) [35] is a class of
code-reuse attacks where adversaries combine short code
sequences ending in ret instructions found within the
victims’ binary programs to perform malicious actions.
Researchers have proven that this attack vector is Turing-
complete, making it a generally applicable threat to systems
protected by code-injection defenses such as W⊕X. Similar
code-reuse attacks include jump-oriented programming [9],
which chain together code sequences that end in an indirect
branch, and call-oriented programming [12], which chain
together code sequences that end in an indirect call.

Generally, code-reuse attacks need to divert the orig-
inal control flow to instructions of the adversary’s choice,
which requires the adversary to control the targets of control
transfer instructions throughout an attack. Programs usually
contain two types of control transfers: direct and indirect.
Direct control transfers have fixed targets that are embedded



into the program’s code, which cannot be modified when
W⊕X defenses are deployed, so they cannot be controlled
to direct attacks. Instead, all these code-reuse attacks hijack
the program’s control flow by leveraging indirect control
transfers, whose targets are determined at runtime.

Kernel software is often designed purposely using indi-
rect control transfers to improve flexibility. For instance,
kernels store all the addresses of interrupt handlers in a
hardware-defined data structure. From this perspective, an
interrupt acting as an entry to the kernel is a special indirect
control transfer. Correspondingly, exits from the kernel are
also indirect control transfers, of which interrupt and system
call returns are two typical cases. In addition, kernel soft-
ware often permits different configurations to use different
code (e.g., for different architectures or feature specializa-
tion), defining function pointers that can be bound to the
specialized code. If an adversary somehow controls any of
these indirect control transfers, she can divert the kernel’s
control flow and potentially launch code-reuse attacks.

2.2. Control-Flow Integrity

Abadi et al. [6] proposed control-flow integrity (CFI),
which enforces that a program’s control transfers at run-
time must adhere to the program’s static control-flow graph
(CFG). In a CFG, every node represents a basic block
while an edge connecting two basic blocks indicates a legal
control transfer from one to the other. However, due to
the wide use of indirect control transfers, it is non-trivial
to compute fine-grained program CFGs. In practice, CFI
methods must over-approximate the number of permissible
indirect control targets because missing any valid CFG edges
may cause a legitimate control transfer to be rejected and a
program execution to be incorrectly terminated. As a result,
the proposed CFI methods often include extra CFG edges
as shown by the dotted lines in Figure 1, particularly so-
called coarse-grained CFI approaches [6, 17, 44, 46] that
often just restrict transfer to either legal call targets (for
calls) or legal return targets (for returns), which also leads to
extraneous edges for the corresponding return instructions.
The consequence of overapproximation is that this provides
adversaries with more unintended control flows that may be
utilized for attacks.

In order to compute a fine-grained CFG to reduce the
set of allowed targets, two recent proposals [30, 41] use
function signatures to identify function pointer targets. This
signature-based CFI approach is simple, easy to implement,
and can reduce the target set significantly. However, this
method is not applicable to kernel software because it
cannot match functions written in assembly, which are very
common in kernel software (e.g., for architecture-specific
code). In addition, this method can also cause false positives
by excluding target functions whose type has been cast. We
have seen instances of such behavior in kernel code.

To enforce CFI, researchers have proposed various ap-
proaches. One major concern in enforcing CFI is high per-
formance cost, resulting in lightweight CFI approaches [15,
20, 32] that only authorize operations at critical points,
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Figure 1: An over-approximated CFG

such as on system calls and/or sensitive library calls. These
methods leverage the Last Branch Record (LBR) [4] feature
available on modern Intel processors to inspect the historical
control flows, and kill the process if an active code-reuse
attack is detected.

Alternatively, researchers propose to instrument the pro-
grams before each indirect control transfer [6, 17, 30, 33,
44–46]. In the original CFI proposal, Abadi et al. proposed
to place a label before each allowed target and check if the
label matches upon control transfers. However, in practice,
researchers enforce coarse-grained CFI, where any legal
call target may be used in any indirect call and any le-
gal return target may be used for any return. In the two
approaches where CFI has been applied to kernel software,
HyperSafe and KCoFI, enforce coarse-grained CFI policies,
although HyperSafe is capable of representing fine-grained
CFI policies and even provided a solution to the destination
equivalence problem in the original proposal.

However, researchers have shown that lightweight CFI
and coarse-grained CFI approaches can be circumvented.
The lightweight approaches are proven to be vulnerable
to history flushing attacks [12]. The key idea behind this
attack is to leverage the limited capacity of branch recording
to clean up the history before the introspection routine
is invoked. In addition, researchers found that adversaries
can evade coarse-grained CFI approach by choosing al-
lowed but unintended control transfers to launch attacks
[11, 12, 19, 23]. In some cases, even fine-grained CFI can be
circumvented by bending the control-flow along valid edges
in the CFG [11]. Since signature-based CFI approaches are
not applicable to kernel software for the reasons discussed
above (and still quite coarse-grained), we need a new ap-
proach to guide the deployment of CFI enforcement for
kernel software.

Once a fine-grained CFG can be computed, it must
still be enforced comprehensively by the kernel software.
The main additional problem is that kernel software must
process various system events, system calls, interrupts, and
exceptions, creating a new set of entry and exit points that
must be protected and these events are asynchronous to the



kernel. HyperSafe [44] recognized the need to protect the
tables holding references to these event targets, but did not
describe how to protect the all kernel values that locate these
tables nor protect the exit. On the other hand, KCoFI [17]
developed a comprehensive solution, but the cost of their
solution is prohibitively high.

3. Security Model

We base our work on the following security model. We
trust that the W⊕X protection is deployed in kernels by
setting the code section as read-only and the data sections
as non-executable. We also assume the kernel is benign
but may contain vulnerabilities (e.g., memory-safety bugs)
that enable an adversary to overwrite control data. However,
we make the assumption that the kernel is free of attacks
prior to the execution of the first user-space process. That
is, we leave the detection of attacks at kernel boot, such
as corruption of kernel images or loading of malicious
code, to secure boot techniques [40] or authenticated boot
techniques [21, 39]. Finally, we assume adversaries have no
physical access to the machine, excluding hardware attacks
from this work.

Thus, we assume that all threats originate from inputs
that the kernel receives after booting, such as malicious
inputs from user-space processes and malicious network
packets. We focus on attacks that alter the control flow of
the kernel software illegally at some indirect control transfer.
Thus, data-only attacks are out of the scope of this work,
including those data-only attacks that change the values of
variables used in conditionals to redirect control flow within
a procedure [7, 11, 13].

We assume the MMU configurations, such as mappings
and permissions configured by system page tables, can
be protected by system defenses such as Readactor [16],
NICKLE [34] and SPROBES [22]. This is because, although
the CFI-protected kernel restricts its execution to only autho-
rized control flows even when compromised, the adversary
may alter the system page table settings through data-only
attacks. This could enable the adversary to modify existing
code after disabling W⊕X protection, and hence allow her
to perform arbitrary computation without the need to hijack
control flows or reuse existing code. Previous work has
shown that protecting MMU configurations can be done
efficiently. NICKLE, a VMM-based system, reports ∼5%
performance overheads when used to protect the kernel code
integrity. SPROBES, a TrustZone-based mechanism that is
used to protect Linux kernel code integrity on a different
ISA (i.e., ARMv6) reports similar results (∼8%). In ad-
dition, Readactor [16] repurposes the use of virtualization
hardware, i.e., extended page tables, available on modern In-
tel processors to enforce additional page permissions whilst
incurring negligible performance overheads (2.5%). Given
our system requires the kernel software to be statically
linked (Section 4) to allow that all kernel code pages are
identified offline, we believe their approach applies to our
situation as well. However, we argue that, whatever MMU

protection is used, its implementation and performance im-
pact is orthogonal to the techniques discussed in this paper.

4. Solution Overview

Our goal in this work is to retrofit kernel software to en-
force fine-grained CFI efficiently and comprehensively. We
focus on kernel software because its integrity is fundamental
to the integrity of the system at large and it is constrained
in ways that enable computation of fine-grained CFGs.

In the first phase of our proposed solution, described in
Section 5, we develop a method to produce accurate, fine-
grained CFGs for kernel software. We hypothesize that we
can collect an accurate set of indirect call targets for kernel
code because we find that kernel code handles function
pointers in restricted ways. In Section 5.1, we identify two
simple constraints on the use of function pointer variables
that we find that kernel code broadly obeys. For exam-
ple, these constraints still allow kernel developers to use
function pointers stored in arrays and structures, which is
common. With these constraints, we develop a static taint
analysis to identify the indirect call targets in kernel code.
In Section 5.2, we describe how to compute return targets
for kernel code. While computing return targets for source
code is straightforward, assembly code does present some
challenges for detecting legal return targets (e.g., due to tail-
call optimization and fall-through functions), so we design
a CFG analysis that can detect return targets accurately and
comprehensively.

We find kernel software amenable to the application of
CFI enforcement because it is often statically linked. Secure
software deployments often demand static-linking to prevent
adversaries from replacing critical software components at
runtime. For example, the Linux Security Modules were
originally loadable kernel modules, but such “modules”
must now be statically linked into the kernel. This is be-
cause, kernel modules violate the W⊕X assumption in such
a way that the kernel must first load them into writable
memory pages and then mark them as executable. By cor-
rupting the loaded modules in the vulnerable time window,
an adversary can inject her own code and hence perform
arbitrary computation without needing to reuse existing
code. As a result, the approved code must be determined
at load-time, enabling hardware-based methods [22, 34] to
protect kernel code integrity by authorizing modifications
of memory protections set by the kernel at boot time. As
described in Section 3, we assume the presence of such de-
fenses in this work, as opposed to increasing the complexity
of our own methods to additionally enforce code integrity
protection with CFI [17].

In the second phase of our proposed solution, we modify
the kernel code to enforce the computed CFG. We find that
two kinds of modifications are necessary. First, assuming
the protection of kernel code integrity as discussed above,
kernels still require further modifications to handle event
processing (e.g., system calls and interrupts) in a manner
compliant with the CFI enforcement at runtime. These issues
have been investigated in the past in the HyperSafe [44] and



KCoFI [17] projects. However, HyperSafe does not address
attacks on kernel exit nor how kernel code must be modified
to ensure comprehensive enforcement. KCoFI, on the other
hand, describes comprehensive method for controlling event
processing, but at significant expense. In Section 6, we spec-
ify invariants that must be enforced to ensure that the kernel
code is always invoked from legitimate entries and returns
safely. Our aim is for comprehensive CFI enforcement given
system event handling at low cost, which we achieve by
removing all means for the kernel to modify event handling
configurations, lightweight checking of exception handling,
and non-preemptive kernel configurations2.

In addition, given a fine-grained CFG computed ac-
cording to the methods above, we develop a method to
instrument the software to enforce the CFG at runtime as
discussed in Section 7. While we use a standard form of
instrumentation, called restricted pointer indexing [44] (see
Section 7.1), as the default, we identify two opportunities
for optimization. We find that kernel software often uses
function pointers to express flexibility, so in many cases
kernel software only uses one target for indirect control
transfers. As a result, once we know that an indirect control
transfer has only one target, we convert it to a direct control
transfer, which requires no additional instrumentation. In
addition, based on the type of addressing mode used, we find
that we can reuse code already produced by the compiler
or by manual assembly, again enabling the removal of
unnecessary instrumentation.

5. Computing Control-Flow Graphs

In the first phase, we develop methods that compute a
fine-grained CFG from kernel source code. We propose an
algorithm for computing control transfer targets for indirect
calls in Section 5.1, and discuss and solve the challenges
in mapping calls to returns to compute the return targets
in Section 5.2. We note that the use of indirect jumps in
source code is limited to switch statements, whose targets
are stored in jump tables and can be found trivially.

5.1. Computing Indirect Call Targets

We compute indirect call targets for kernel source code
under constraints on the use of function pointer variables
in the program code. Given these constraints, we design a
static taint analysis to collect the functions that can reach
each indirect call target that accounts for storing function
pointers in complex data structures, such as arrays, struc-
tures, and unions. Based on our experience examining kernel
source code, these constraints are followed broadly, enabling
automated detection of targets. We evaluate the applicability
of this method to kernel source code in Section 9.

In kernel source code, operations on function pointers
are often limited to assignment and dereference. Thus,

2. See Section 10 for discussion of the practicality of non-preemptive
kernels and some trade-offs between preemptive and non-preemptive ker-
nels.

int foo(void)
{
   ...
   return x;
}

int (*fp)()

int (*fp1)()

struct X

int field0

void *ptr

int bar(void)
{
   ...
   return y;
}

int (*fp2)()

[0]

[1]

[2]

int (*ar[])()

Figure 2: The assumption (A2) of the absence of data
pointers to function pointers in kernel software

we propose two assumptions about operations on function
pointers:

• (A1) The only allowed operation on a function
pointer is assignment3.

• (A2) There exists no data pointer to a function
pointer.

There are a few important implications resulting from
these assumptions. A1 limits the operations on function
pointers, preventing them from being modified once as-
signed. In particular, this assumption precludes pointer arith-
metic on function pointers. We believe arbitrary computa-
tions on function pointers are unlikely due to considerations
such as readability, maintainability, and portability. A2 as-
sumes the absence of data pointers to function pointers as
illustrated in Figure 2. Note that A2 does not prohibit the
presence of pointers to a structure that has function pointer
fields. In fact, this is common in practice. For an array
of function pointers, A2 only allows the array elements to
be accessed by index from the array variable. Creating a
pointer to the array or any of its elements will violate A2.
We describe how we detect violations of these assumptions
at the end of this section.

We use the following terminology to describe our algo-
rithm. We define a memory object as a contiguous range of
memory, such as a global/local variable, a function argu-
ment, or a dynamically allocated array. We refer a function
pointer as a memory object whose content is an address of a
function. We say a function f is a valid target for a function
pointer p if and only if the content of the memory object
indicated by p may be the address of f at runtime.

Our approach takes a function f as input and returns a set
of function pointers for which f is a valid target as the output.
To begin with, the approach taints all function pointers that
are initialized with f. Note that a function pointer can be
initialized either dynamically (e.g., assignment) or statically
(e.g., global variables). Then we keep tainting function
pointers to which a tainted function pointer is assigned.
Because of assumption A1, we will not miss any function

3. Other than dereferencing for calls, of course.



pointers tainted by function f by only tracking propagation
via assignments.

Function pointers may either be referenced as a variable,
an array element, or a structure field, and how we propagate
taint differs in these three cases to ensure overapproxima-
tion4. If a function is assigned to a function pointer variable,
we simply add the variable into the tainted list for that func-
tion. Note that any type cast on function pointer variables
is not a problem because our taint tracking approach simply
propagates taint across assignments regardless of the data
types of the variables.

Alternatively, if a function is assigned to any element in
an array of function pointers, we taint the entire array. This
is because programs normally access arrays using runtime
indices. To be conservative, our approach assumes f could
be retrieved from any index of the array.

Otherwise, if a function is assigned to a field in a
structured type, we taint the field for all memory objects
of that structure’s type. That is, our field-sensitive over-
approximation infers that if a function can be assigned to a
field of one instance of a structure type, it can be accessed
at any indirect call site that references any instance of that
structure type. However, in theory, a program can access
the function pointer field through a different structure type
(e.g., unions). To recognize this case, we actively check for
any alternative definition for a structured type, and taint the
aliased function pointer field as well.

We detect violations of both assumptions while per-
forming the taint tracking. Instead of resorting to an over-
approximation, we report detected violations to the user and
stop the analysis. To detect violations of A1, we actively
check if any of the tainted memory objects are processed
using an arithmetic operation. To detect violations of A2,
upon every function pointer assignment, we check whether
the function pointer, either on LHS or RHS, is accessed
by directly dereferencing a data pointer. Note that this
approach alone could miss the case where a function pointer
is type cast to a different type such as int, int*, or even
void*. We handle type casting in two ways. If a tainted
memory object of a non-function-pointer type is accessed
through pointer dereference, then it is a clear violation of
A2. Otherwise, the tainted memory object must either be
a local variable or a global variable, and the only way to
create a pointer to a local or global variable is by explicitly
using the & operator, which we detect as well.

5.2. Computing Return Targets

Return instructions are used in conjunction with call
instructions. Thus, the key task in computing return targets
are to map the call sites to their corresponding return
instructions statically. This solution is straightforward for
source code once the targets of all indirect call sites have
been resolved. This is because source code has well-defined
boundaries between functions, and we can easily identify

4. Static taint tracking for assembly code must reason about registers
and memory locations, which are represented as variables.

the functions’ return instructions. However, problems occur
in assembly functions. First, programmers may apply cer-
tain compiler optimizations manually to assembly functions,
which may hide the true return targets. Second, assembly
functions may not adhere to the restrictions of functions in
kernel source code, such as lacking well-defined boundaries,
lacking return instructions altogether, and nesting functions
inside of functions.

Tail-call optimization. Generally, a tail call is a function
call that is performed as the final action of a procedure. One
common optimization on tail calls is to reuse the current
stack frame by deallocating local variables and jump to,
as opposed to call, the target function, pretending it is
being called by the caller of the current function. We show
an example below. In this case, cstart is invoked by
main and further calls arch_init. However, due to the
optimization applied, arch_init will directly return to
main.

main: cstart: arch_init:
... ... ...
call cstart jmp arch_init ret

Fall-through functions. Assembly programmers may
nest one function definition inside another, which enables
the execution in one function fall through to the other. In
the following example, memset_fault_in_kernel and
memset_fault share the same function body except the
former has additional handling. Therefore, the return instruc-
tion in the example may return to call sites that either invoke
memset_fault_in_kernel or memset_fault.

memset_fault_in_kernel:
...

memset_fault:
...
ret

In general, mapping returns to call sites is equivalent to
finding the return instructions that are immediately domi-
nated by the targets of every given call site. This problem
can be solved using an intra-procedural control-flow analy-
sis. Given a call site and its call targets, we analyze the CFG
of the target to identify the immediately dominated return
instructions, adding the instruction following the call site to
the set of return targets for each return instruction.

Intuitively, given a call site, our approach emulates the
execution of each target function and records the encoun-
tered return instructions. Starting from the target function,
we sequentially “execute” the instructions one by one just
as a processor does until reaching a control transfer instruc-
tion. If it is an unconditional jump, we follow its control
flow, e.g., the tail call optimization case; otherwise (i.e., a
conditional jump), we follow both edges. The search along
any path stops “executing” under three conditions. First,
the current instruction has been “executed”. This is because
any return instruction encountered later should have already
been discovered. Second, the current instruction is a stop
instruction such as IRET, HLT or a call instruction to a
non-return function. This indicates the current function may
not have a return. Third, the current instruction is a return



instruction. If this is the case, the call site is one of its
targets. We summarize all the cases in Table 1.

Instruction Action
iret

stophlt
sysexit
...
jmp follow
jcc continue and follow
call continue or stop
ret stop
other continue

TABLE 1: Cases in the emulated “execution”

The key challenge here is to identify non-return func-
tions, which determines whether the “execution” should
continue or stop on a call instruction. We solve this problem
in a recursive way, that is, if the execution meets a call
instruction, we look for its corresponding return instructions
using the same procedure. As long as one return instruction
is found, we continue the “execution”; otherwise, we stop.
Note that recursive calls in programs can make this approach
run into an infinite loop. Though we have not seen such case
in assembly code, we propose to conservatively assume any
recursive call will return eventually and let the “execution”
continue. We run this approach on each call site to assembly
functions, and combine the results from source code to
produce a complete set of targets of function returns.

6. CFI Enforcement

In the second phase, we describe our approach to
retrofitting the kernel software to enforce the CFG com-
puted from the first phase comprehensively. We break this
retrofitting effort into two tasks presented in this section
and the next. In this section, we first outline in Section 6.1
an overview of the proposed approach for CFI enforcement
over kernel software. Next, in Section 6.2 we detail the
specific problems and solutions necessary to develop the
proposed approach.

6.1. Approach Overview

Comprehensive CFI enforcement for kernel software is
challenging because kernels must be capable of processing
system events and have the power to configure how they ex-
ecute such events and code in general. First, kernel software
not only may perform indirect control transfers during their
execution, but also may be entered by system events out of
the kernels’ control and exit either to run kernel or user-
space code. Kernel entry can occur due to three types of
events, system calls, interrupts, and exceptions, which may
be triggered by user-space code or asynchronously via hard-
ware. Second, unlike user-space programs, kernel software
has much more control over how code is executed, including
defining how memory segmentation is configured, which

system call
interrupts1

4 kernel
exception

kernel exit3user space kernel space

5 exception
return2 normal

execution

Figure 3: Execution model for non-preemptive kernels

determines the effective address used for each instruction
fetch, and configuring the code used for its event handling.

An overview of an approach for comprehensive CFI
enforcement in kernel software is shown in Figure 3. In
step one, transitions from user-space to the kernel must only
select known, approved entry points, such as event handlers
for the three types of system events. To prevent an adversary
from controlling kernel entry, we protect the integrity of
various hardware-defined data structures that define those
entry points. In step two, the kernel executes within the
fine-grained CFG computed in the previous section. Then,
two possible scenarios can occur. In one case shown in step
three, the kernel completes an event handler and exits back
to user space. Here, we must restrict the exit to run only at
user-space privilege and restrict the target instruction run at
the exit. These steps cover the execution of all system call
events. Alternatively, in step four, a system event may occur
during kernel execution. In this case, we must ensure that
the event can be taken without disrupting CFI enforcement
and that the exit from these events pick up where the
kernel execution was. Unfortunately, we cannot guarantee
such properties for interrupts that preempt kernel execution
since they may occur at any time, so we instead integrate
CFI enforcement into kernels built to run non-preemptively.
We discuss the implications of this choice in Section 10.
Kernel exceptions, on the other hand, either cause a kernel
panic or occur at discrete times. The only type of exception
we have found that needs special support are page fault
exceptions. These only occur for specific kernel code (e.g.,
copy_from_user) and continue executing either from
the instruction that caused the page fault or from a prede-
fined location that handles invalid user pointers. Thus, step
four only includes page fault exceptions, and in step five
the exception’s exit returns deterministically from the page
fault handling. See Section 10 for further discussion of CFI
enforcement over kernel exception handling.

Compared with existing CFI approaches for system soft-
ware (i.e., HyperSafe and KCoFI), we restrict all the system
events found in commodity operating system kernel while
making enforcement more lightweight and efficient. For ex-
ample, to ensure comprehensive control, we not only prevent
memory writes to critical tables as HyperSafe does, but also
remove instructions that would change the register value for
these tables. As an example of improving performance, we
relax the constraints on context switching: rather than ensure



the kernel returns to the exact same user-space instruction,
we only guarantee the privilege is lowered.

6.2. Enforcing CFI in Kernel Software

Specifically, to enforce the approach described above,
we propose four system invariants.

• (S1) Segmentation configurations must be protected
from adversaries.

• (S2) Execution must always start from a legitimate
entry point.

• (S3) Throughout the execution, all indirect control
transfers must adhere to the computed CFG.

• (S4) Exits must be mediated and authorized.

Enforcing S1. Kernel software poses additional risks
to control-flow hijacking attacks when compared to user-
space applications because of the use of architecture-defined
control data for various system configurations. Among these,
memory segmentation (i.e., the Global Descriptor Table, or
GDT) is fundamental in the sense that the code segment
determines the base address used by both direct and indirect
control transfers. We protect the GDT based on the obser-
vation that most operating system kernels never modify it
once set. Therefore, we (1) zero out the LGDT instruction to
prevent the adversary from setting up her own GDT via code
reuse, and (2) write-protect the GDT throughout the system
lifetime to prevent any in-place modification. To eliminate
the side effects of the changed memory permissions, we
separate the GDT from other kernel data by moving it into
a distinct page.

Enforcing S2. Kernels are triggered by system events
such as interrupts, exceptions and system calls. Depend-
ing on the specific event, the kernel will invoke different
routines to handle the event. Upon interrupts, the control
will be transferred to the routine specified in the Interrupt
Descriptor Table (IDT) defined by the kernel. Alternatively,
a system call will switch the current execution to the kernel
at the address defined by two Model Specific Registers
(MSRs) IA32_SYSENTER_CS:IA32_SYSENTER_EIP5.
To satisfy S2, we must guarantee all these system events
will trigger the kernel execution from legitimate entry points
defined by the kernel. We achieve this goal in two steps.
First, similar to GDT protection, we require both removal of
LIDT instruction and write-protection for the IDT through-
out the system lifetime. This prevents the adversary from
manipulating the entries to interrupt handling. Second, we
require that MSRs related to system calls are never modified
once set. We achieve the latter by zeroing out all WRMSR
instructions in the kernel after the system is booted. Note
that this may not apply to arbitrary kernels because some
do need to modify MSRs after boot. For these cases, we
propose to duplicate the WRMSR instructions and hardcode

5. Traditionally, system calls are implemented using software interrupts
(i.e., INT). Later, in order to enable faster transition, Intel introduced a
pair of dedicated instructions SYSENTER and SYSEXIT for this purpose.
MINIX supports this mechanism while FreeBSD still uses software inter-
rupts for 32-bit kernels.

the register identifier for them to guarantee that it can only
write to MSRs other than the two related to the system
call entry. The protection of both interrupt and system call
entries satisfies S2.

Enforcing S3. To hijack the control flow during kernel
execution, the adversary has to either control the return of a
kernel exception or an instrumented indirect control transfer.
To protect the return of page fault handling from adversaries,
we only allow the kernel to return either to the predefined
location that handles invalid user pointers or to the exact
instruction that took the page fault. To achieve the latter,
we store the return address to an unused debug register (or
anywhere that is free of memory corruption) at the very
beginning of exception handling, and check the subsequent
exception return against the address we saved before. To pre-
vent the adversary from controlling an instrumented indirect
control transfer, we write-protect the target tables used by
restricted pointer indexing. To eliminate the time-of-check to
time-of-use (TOCTTOU) attacks on the index, in addition to
disabling interrupts, we load the index into registers before
executing the check. This approach not only guarantees no
exception could ever happen in between, but is also safe
from inter-processor races. Thus, S3 is satisfied.

Enforcing S4. The kernel will return the control to the
user space eventually. Conceptually, the kernel returns the
control back to the user space upon the completion of an
interrupt (e.g., context switch) or a system call. In both
cases, since the target instructions are outside of the kernel’s
CFG on purpose, we do not apply the same CFI enforcement
to them. Instead, in general, we ensure that these indirect
control transfers would switch the subsequent execution to
the user privilege (i.e., ring 3 on x86), preventing the adver-
sary from launching control-flow hijacking attacks back to
the kernel space. However, for system call return, we apply
a stricter enforcement based on the fact that, for portability
reasons, most kernels map the routine for invoking system
calls to the user-space address space so that programs do not
have to concern themselves with whether a system call is im-
plemented using the software interrupt, SYSENTER or even
its equivalent instruction SYSCALL on AMD processors.
This implies that programs that are linked with standard
library should all obey this convention and make system
calls through the kernel-mapped routine. Therefore, we add
checks on the return address of SYSEXIT (stored in EDX)
against the address of the SYSCALL-preceded instruction
before returning to the user space, and panic the system
if they do not match. Note that this will potentially break
the programs that make system calls through hand-written
software interrupts. However, we did not encounter any such
case in practice.

7. CFI Instrumentation

In this section, we describe our proposed approach for
instrumenting kernel software to enforce the fine-grained
CFG computed in Section 5. The idea is that we start with
an effective, general instrumentation approach and when we
detect a possible optimization opportunity we replace the



default instrumentation with optimized instrumentation. We
first in Section 7.1 briefly introduce the concept of restricted
pointer indexing. Second, in Section 7.2 we describe two op-
portunities for optimizing CFI instrumentation. Specifically,
we leverage the fine-grained CFG to replace instrumentation
with direct control transfers when there is only one legal
target, and we also make use of checks already in the kernel
code to further optimize the instrumentation.

7.1. Restricted Pointer Indexing

Restricted pointer indexing is a CFI enforcement tech-
nique proposed by Wang et al. [44]. We choose this tech-
nique as our default for CFI instrumentation because it
avoids the destination equivalence issue, which limits the
granularity a CFI defense could achieve, by explicitly sepa-
rating target sets for each indirect control transfer. Its main
idea is to organize all the control data, e.g., return addresses
and function addresses, into target tables and replace all the
addresses used in indirect control transfers, either statically
initialized (e.g., function pointers) or dynamically generated
(e.g., return addresses), with corresponding indices.

To use restricted pointer indexing, one must transform
all the indirect control transfers in such a way that they all
use indices for transferring control by fetching the target
address from the target tables. Note that for control transfer
targets that may appear in multiple tables, its index has to
be unique among all target tables. This is because when
an index is introduced, e.g., by a call instruction, it can
be used at multiple destinations, e.g., return instructions.
Hence, if an index is mapped to different targets when used
by different indirect control transfers, it would make the
transformed program behave inconsistently. To ensure the
same target must have the same index in all tables, we use
padding entries when necessary. The padding entries point to
the panic function in case they are misused by adversaries.

7.2. Optimizing CFI Enforcement

One key obstacle that prevents CFI from receiving wide
adoption is the performance cost. We identify two opportu-
nities to reduce the amount of instrumentation required for
CFI enforcement.

Our first observation is that compilers may already insert
code to restrict the targets of indirect control transfers
to safe values, so we can simply leverage this available
instrumentation. For instance, all indirect jumps produced
when compiling switch statements use a read-only jump
table and an index value for choosing the case statement
to be executed. The compiler adds code to check that the
index value is within jump table, so this code satisfies CFI
by default. Similarly, in kernel software, programmers store
references to all the system call service routines in a table
and invoke the requested routine based on the system call
number (i.e., index). The system call number (index) is
restricted to be within the table. Given the high frequency
of system call requests from user space, adding code to

enforce this table index redundantly would lead to an un-
necessary performance impact. If this code complies with
instrumentation of base plus index cases shown in Table 2,
then we do not need to add bounds checks6. Finally, kernel
programmers may leverage absolute addressing for making
direct control transfers in assembly code. In this case, they
hardcode a jump target into a register, and then immediately
make a control transfer. We claim that no enforcement is
required for these indirect control transfers because they
have a deterministic target at runtime.

Our second observation is that many kernel indirect
control transfers have fixed targets that can be identified
at link time. To enable flexible kernel configurations, kernel
programmers often use function pointers that can be bound
to the particular modules’ functions specified in the kernel
configuration. In many cases, the configuration specifies
only one target for these function pointers. For example,
in the MINIX microkernel, the kernel uses the ELF library
to load server binaries. The library is designed to be generic
so it allows callers to specify different functions to perform
core tasks, e.g., memory allocation. However, the microker-
nel is assigned a fixed set of these functions at link time, so
those function pointers have fixed values. Surprisingly, we
found that the percentage of indirect calls which have fixed
targets ranges from 31% to 66% across the FreeBSD kernel,
MINIX microkernel and its user-space servers (see Section
9 for details). Therefore, we simply rewrite these indirect
control transfers to semantically-equivalent direct control
transfers to minimize both memory and runtime overheads.

8. Implementation

We implement our techniques on both FreeBSD 10.0
and MINIX 3.2.1 for Intel x86 platforms in four parts. The
first part is to change the build process of kernel software
so that kernel object files are linked against recompiled li-
braries rather than the system libraries because our technique
requires whole-program analysis and instrumentation. We
achieve this part by instrumenting the static linker to identify
all relocatable object files that make up the final executable.

The second part is to compute a fine-grained CFG using
the techniques presented in Section 5. We implemented this
part as an LLVM pass. It contains 1,391 lines of C++
source code and runs on LLVM 3.5 [28]. The pass takes
LLVM bitcode as input and returns the target functions of
each indirect call site. Throughout its analysis, the pass will
actively evaluate if any assumption made in Section 5.1 has
been violated and raise an exception upon detection. For
indirect calls and jumps written in assembly code, we detect
them, but have to analyze them manually. However, we find
that most indirect calls and jumps in the assembly code
comply with the code pattern described in Section 7.2 thus
are free of control-flow hijacking attacks.

The third part is to modify the kernel to enforce system
invariants presented in Section 6.2. We set up the protection,

6. However, we add code to store the index for call instructions that use
base plus index addressing to identify the return target (caller).



including removing various instructions and write-protecting
configuration data structures at the end of system booting
but before the kernel initiates the first user-space process.
This allows the booting procedure to freely configure them
without causing false positives. To eliminate the side effects
of the changed page permission, we also relocate both GDT
and IDT so that they are page-aligned and not co-located
with other kernel data. To protect the kernel exiting to user
space, we check the code segment selector that is about to be
restored, and ensure that it points to the user code segment
defined in the GDT.

The last part is CFI instrumentation. This part has two
steps. The first step is to instrument each relocatable ob-
ject file individually, including replacing control data with
indices, rewriting indirect calls and returns to equivalent
index-aware instructions as designed by restricted pointer
indexing. We summarize our instrumentations7 in Table 2.
It is worth mentioning that, for function calls, in addition to
specifying the return address for the callee, our instrumen-
tation pushes the return index before checking the target
to inform the panic function where things went wrong. At
this step, indices, base addresses of target tables, and their
contents are not determined yet because actual addresses of
targets are only known after linking. To help the next step
recognize the original indirect control transfers (e.g., indirect
call sites and return instructions) we use a magic number
0xdeadbeef for these unknown values. The second step is
to fill each target table and update indices that are left blank
in the first step. This step identifies the original call sites
and return instructions via the magic number and updates
them to the correct value. We implement both steps of
instrumentation in a Python script containing 526 lines of
source code.

There are a few cases we experienced where automati-
cally applying the CFI instrumentations can break a system.
For instance, in the context switch routine, the FreeBSD
kernel uses a return instruction to resume the execution
of the scheduled thread. However, newly created threads
do not have a valid index for the instrumented return to
function properly. Therefore, we manually handle the return
by adding the corresponding index into its target table.
Also, the FreeBSD boot process reloads the code segment
register after paging is enabled via intersegmental return8.
Since the return address is substituted with an index, it
generates a fault. To make this instrumentation work, we
manually rewrite the routine so that it uses LJMP to reload
the code segment register, and uses a normal RET to return
to the caller. Similarly, when retrofitting MINIX servers,
we found an assembly library function getcontext()
that attempts to directly read the return address pushed by
a call site, which crashes the servers. We handled this issue
by manually rewriting the procedure to be index-aware.

7. We use ECX to hold the index of return address and EAX to hold the
call target if the original call site references memory because both EAX
and ECX are caller-saved registers in most calling conventions.

8. In addition to changing the instruction pointer like a normal return,
LRET instruction also updates the code segment register with a 16-bit
segment selector from the stack.

In addition, in the MINIX microkernel, the system call
invocation routine that is mapped to user space must not be
instrumented because (CFI-unaware) user-space programs
expect an address rather than an index. Since this routine
is only executed by user-space programs, we can leave it
as is but mark it as non-executable from the kernel space
via Intel’s Supervisor Mode Execution Prevention (SMEP)
feature [3] to prevent attacks.

9. Evaluation

In this section, we evaluate our techniques from three
perspectives: technique utility, security improvement, and
performance overhead. We first show the results of our
analysis proposed in Section 5.1 on a variety of kernel
software, including the FreeBSD kernel, the entire MINIX
microkernel system and the BitVisor hypervisor. Next, we
quantitatively evaluate the improvement on CFI protection
achieved by this work. Finally, we evaluate the performance
cost of our fully-implemented, fine-grained CFI enforcement
on FreeBSD 10.0 and the MINIX 3.2.1 systems.

9.1. Technique Utility

We evaluate the utility of the proposed analysis on
three different kernel systems (e.g., FreeBSD, MINIX, and
BitVisor) by counting the source lines of code (SLoC) using
the open-source tool SLOCCount [2] against the number of
constraint violations encountered. Note that when counting
the SLoC of MINIX, we do not include library code that is
linked to the final executable, but list them separately.

We show our results in Table 3. We have seen only
one violation in BitVisor, where some code uses a constant
pointer to a global function pointer for saving a replaced
handler. We manually rewrite the code so that it directly
references the global function pointer. In FreeBSD, six of
the seven violations are in device drivers. Surprisingly, we
found that one violation is because of a driver purposely
overflowing structure fields in assignment operations. For
the ease of analysis, we opt to exclude these drivers from
the kernel image, as they are not required by our computer’s
configuration, rather than to manually fix them. However,
the other violation is in the core part of the FreeBSD kernel,
which manages a special group of function pointers on
the heap. Fortunately, the used data pointers neither point
to a structure field nor to any function pointer variables,
therefore, we manually identify those targets and add them
to the computed CFG.

9.2. Security Evaluation

In the security evaluation, we answer: (1) how much
stricter our enforcement of CFI is relative to existing CFI
implementations and (2) how many gadgets remain. To
quantitatively measure the improvement, we proposed a new

9. BitVisor is a Type-1 hypervisor and we only test our techniques on
its core part.



Addressing mode Original code Basic instrumentation Fixed-target instrumentation
Register Indirect call eax push index

cmp eax,bound
ja panic
jmp [table+eax*4]

push index
jmp foo

Memory Indirect call [ebp+offset] push index
mov eax,[ebp+offset]
cmp eax,bound
ja panic
jmp [table+eax*4]

push index
jmp foo

Memory Indirect ret pop ecx
cmp ecx,bound
ja panic
jmp [table+ecx*4]

pop ecx
jmp target

Base plus Index cmp eax,bound
ja some_label
call [table+eax*4]

push index
cmp eax,bound
ja some_label
jmp [table+eax*4]

N/A

Base plus Index cmp eax,bound
ja some_label
jmp [table+eax*4]

N/A N/A

TABLE 2: CFI Instrumentation based on Original Code and Addressing Mode

SLoC A1 A2
FreeBSD 9,280,785 0 7
MINIX 16,276 0 0
vfs 9,783 0 0
vm 6,633 0 0
pm 2,856 0 0
rs 3,221 0 0
ds 587 0 0
pfs 2,625 0 0
sched 393 0 0
libc 153,264 0 0
libsys 4,336 0 0
libmthread 1,532 0 0
BitVisor9 34,987 0 1
total 9,517,278 0 8

TABLE 3: The amount of code (in SLoC) being analyzed
vs. the number of violations detected

metric, called Average Indirect targets Allowed (AIA). In
addition, we also show the distribution of number of allowed
targets per indirect control transfer (calls and returns) in
the FreeBSD kernel, MINIX microkernel, and two of its
crucial user-space servers. To answer the second question,
we analyze the ROP gadgets remaining in the fine-grained
CFI-enforced FreeBSD and MINIX using the open-source
tool ROPgadget [36].

Researchers previously proposed a metric to evaluate the
effectiveness of CFI enforcement, called Average Indirect
target Reduction (AIR), proposed by Zhang et al. [46]. The
problem with AIR is that it does not provide an intuition
about how much a CFI implementation over-approximates
the CFG, especially when the code base of the protected
program is large. Imagine an x86 program with 1MB code.

Given that every byte could potentially lead an instruction,
a CFI implementation achieving AIR of 99% still allows
10K targets for each indirect control transfer on average.
However, in practice, an indirect control transfer often has
many fewer targets (e.g., <10). Moreover, recent attacks [12,
19, 23] on coarse-grained CFI implementations show that
an adversary often needs only a small subset of unintended
control flows to realize her purpose. Fine-grained CFI can
also be attacked if the target sets allow an attacker to fulfill
her needs [11].

In order to better illustrate the protection quality, we
propose the Average Indirect targets Allowed (AIA) metric,
as defined in Definition 1. It is worth noting that this
metric can only be used to compare CFI techniques on
the same program as different programs can be constructed
differently, yielding vastly different results.

Definition 1 (Average Indirect targets Allowed (AIA)).
Let I1, I2, ..., In be indirect control transfer instructions in
the program, and T1, T2, ..., Tn be the set of allowed targets
for them respectively. We define

AIA =
1

n

n∑
i=1

|Ti|.

To evaluate, we assume a coarse-grained CFI policy that
uses two target sets as adopted by some recent work [17, 46]
and a signature-based CFI policy as used elsewhere [30, 41].
We show the results in Table 4. From this comparison,
our techniques enforce a much tighter policy than a tradi-
tional CFI implementation as it further reduces over 99.6%
return targets and over 99.1% call/jump targets that are
otherwise allowed. Our approach also has higher precision
than signature-based CFI as it reduces between 71.80%
and 94.03% of call/jmp targets across the three different
kernels. Signature-based approach performs slightly better
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Figure 4: Distribution of the number of indirect control
transfer targets in the computed CFG from Section 5

on MINIX servers because they have fewer address-taken
functions and less assembly code, but still is between 37.6%
and 49.8% worse than our proposed approach. In addi-
tion, we also find signature-based CFI will break both the
FreeBSD and MINIX system due to missed targets, such as
the one caused by signature cast, e.g., int (*)(void)
to int (*)(struct irq_hook *).

Next, we show the distribution of the number of allowed
targets per indirect control transfer for FreeBSD, MINIX
microkernel and its two biggest user-space servers in Fig-
ure 4. In summary, over 30% of indirect control transfers
have fixed targets and over 90% have fewer than ten targets.
However, in both FreeBSD and MINIX, there are a few
indirect control transfers that have a large number of allowed
targets, e.g., the return of printf function in FreeBSD
has over 5K allowed targets. Note that, although every
allowed target corresponds to a valid edge in the CFG,
such flexibility could make the indirect control transfer an
attractive target to adversaries and enable adversaries to find
potentially useful code for exploitation. Though the original
CFI proposal [6] has suggested the use of a shadow stack for
more restrictive protection, how to efficiently implement a
shadow stack in system software remains an open problem.
Safe stack [1, 27] has better performance than shadow stack,
but it changes the stack layout and hence has compatibility
issues when applied to kernel software. We will explore
optimizations to these approaches as future work.

Finally, to measure the impact on code-reuse attacks
from the perspective of reusable code, we analyze the ROP
gadgets remaining in the instrumented systems using the
open-source tool ROPgadget version 5.2. ROPgadget finds
61565 gadgets in the original FreeBSD kernel and 2164 gad-
gets in the original MINIX. The numbers reduced to 388/30
after our instrumentation. We verified all control transfers
(both direct and indirect) allowed by the CFG and confirmed
that none of these gadgets could be reached through a

control flow we authorize. However, recent work [12, 19, 23]
has shown that the adversary can use more complexed
code sequences than traditional gadgets for attacks, thus we
provide this analysis as a lower bound of reusable code.

9.3. Performance Evaluation

In this section, we evaluate the performance overhead of
our fine-grained CFI implementation on FreeBSD 10.0 and
MINIX 3.2.1 including all of its user-space servers. Our
test machine consists of a dual-core processor running at
2.8GHz with 1GB memory. We use the unmodified systems
as the baseline and evaluate the modified versions that are
protected by both the traditional coarse-grained CFI and our
fine-grained CFI techniques.

Before presenting the actual results on performance
overhead, we first show the distribution of different instru-
mentations in Table 5. These statistics indicate that each
of the three types of indirect control transfers are well
represented in real world programs, so we need to apply
specialized instrumentation to them to save both runtime
and memory overheads. For example, indexing the system
call table is an example of a base-plus-index indirect control
transfer that requires no additional enforcement. Adding ex-
tra instrumentation to unify the implementation of restricted
pointer indexing or even inserting a label at system call
handlers as proposed by original proposal is unnecessary,
given the frequency that this instruction is executed.

To evaluate the performance, we run the UnixBench
5.1.2 as the microbenchmark and build the kernel as the
macrobenchmark. We chose UnixBench because it runs both
on FreeBSD and MINIX. We show the runtime perfor-
mance overhead in Figure 5. In MINIX, the fine-grained
CFI instrumentation incurs only 2.02%/5.64% (average/-
maximum) overhead while the coarse-grained CFI instru-
mentation incurs 4.14%/7.55% overhead. In FreeBSD, the
overhead is higher but the fine-grained CFI still performs
better than the coarse-grained CFI (i.e., 11.91%/42.03% vs.
13.60%/50.69%). We attribute much of the performance dif-
ference between FreeBSD and MINIX to the cache perfor-
mance: a monolithic kernel like FreeBSD has one large set
of target tables while in a microkernel, each component has
its own set of target tables, leading to better locality. We will
explore how to colocate these tables in FreeBSD to improve
the cache performance as a future optimization. For the
macrobenchmark, the fine-grained CFI uses 1.82%/0.76%
more time while coarse-grained CFI uses 2.01%/2.29%
more time to build the FreeBSD/MINIX system. We believe
that enforcing fine-grained CFI can be as efficient as existing
coarse-grained CFI implementations.

Enforcing CFI uses more memory. On one hand, the
instrumentation will require more instructions for the au-
thorization of indirect control transfers. On the other hand,
restricted pointer indexing requires saving all control data
into target tables, which are absent from the original system.
On average, the typical coarse-grained CFI uses 25.3% more
code memory. However, the fine-grained CFI uses 13.48%
less static data memory and 9.01% less code memory than



Fine-grained CFI Signature-based CFI Coarse-grained CFI
call/jmp ret call/jmp ret call/jmp ret

FreeBSD 6.64 10.41 35.61 11.38 40,166 175,400
MINIX 4.67 5.14 16.56 9.29 688 2,008
vfs 2.89 5.11 4.63 5.38 578 2,289
vm 2.14 4.01 3.43 4.39 402 1,149
pm 2.55 2.93 4.88 5.38 281 608
rs 1.68 4.61 3.13 4.94 354 1,100
ds 1.67 3.85 2.89 4.13 201 561
pfs 2.54 4.95 4.42 5.43 912 2,785
sched 1.23 2.62 2.45 2.91 197 333
BitVisor 3.84 1.89 64.27 6.55 911 3,864

TABLE 4: AIA of indirect control transfers in kernel softwares

Basic Fixed-target Unchanged
FreeBSD 13,143 6,019 1,207
MINIX 138 199 11
vfs 269 184 22
vm 168 154 3
pm 89 165 5
rs 128 161 2
ds 75 101 3
pfs 360 307 20
sched 53 104 1

TABLE 5: Distribution of different instrumentations applied
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Figure 5: Overheads of running UnixBench 5.1.2 on
both coarse-grained CFI-instrumented and fine-grained CFI-
instrumented FreeBSD and MINIX

the coarse-grained CFI. There are two reasons. First, the
fixed-target instrumentation saves both code memory, i.e.,
it has fewer instructions, and data memory, i.e., it does
not need a target table. Second, unlike coarse-grained CFI,
not all call sites necessarily have an entry in the target
table because some call sites are not mapped to any return

instruction. For instance, the function to restore user context
has an IRET instruction instead. Therefore, even though
fine-grained CFI may have redundant targets in the tables,
it has better memory use than the coarse-grained version in
our experiment.

10. Discussion

Kernel preemption is a technique to increase the re-
sponsiveness of the overall system. Basically, it allows
interrupting kernel execution (e.g., system call handling)
to schedule a higher-priority task onto the processor. This
affects the kernel control flow in an unpredictable way,
as the kernel execution can be interrupted and returned to
any instruction boundary. In this work, we build FreeBSD
as non-preemptive10 to avoid this issue. Although a pre-
emptive kernel may increase the system responsiveness, it
could degrade the system performance because of increased
context switching. However, a kernel exception could only
happen at certain places, and its handling and return are
deterministic. FreeBSD uses kernel exceptions to emulate
the virtual 8086 execution, which purposely modifies the
exception return address. To avoid increasing the complexity
of our implementation, we simply disable this feature as it
is not required in our kernel.

Although CFI provides the first line of defense to pre-
vent the adversary from subverting the MMU configuration,
memory protection is required in order to protect our CFI
enforcement from data attacks. While earlier work on CFI
enforcement in kernel software included memory protection
mechanisms, they either left a window for attack (turn on
and off memory protect in HyperSafe [44]) or were expen-
sive (virtual machine support for KCoFI [17]). However,
recent research has shown that that protecting MMU can be
done efficiently (2.5% reported by Readactor [16]) and com-
prehensively. Unfortunately, these solutions either cannot be
directly applied to FreeBSD/MINIX kernels [22, 34] as used
in this work, or not publicly available yet [16], so we assume
the presence of such protection rather than implementing

10. MINIX cannot be built as preemptive by design. In fact, many
operating systems do not enable kernel preemption by default (e.g., Linux).



our own. However, these techniques used are orthogonal to
the CFI techniques discussed in this paper, so we envision
adding such memory protection as future work.

Control-Flow Bending [11] combines data attacks with
control-flow hijacking attacks to enable malicious compu-
tation and showed the requirement of a stack integrity to
protect user-space applications. As mentioned in Section 3,
we do not protect the kernel from data attacks. However,
our fine-grained CFI policy makes the control-flow bending
attacks less likely to succeed because of the smaller size
of targets allowed at runtime. Unfortunately, we found that
kernel software includes some cases with large target sets,
i.e., the return of functions that are commonly called, so
these may also be prone to control-flow bending attacks.
The authors of that work recommend applying the shadow
stack (or safe stack) approaches to prevent such attacks,
but no kernel implementation of that technique is available
yet. Kernel implementations of stack integrity is challenging
as exception handling and other instructions (e.g., iret)
assumes a specific rigid stack layout that cannot easily be
changed. We will explore implementing such mechanisms
in kernel software as future work.

11. Related Work

In 2007, Shacham et al. introduced an advanced code-
reuse attack vector called return-oriented programming [38].
Later researchers extended ROP attacks to more platforms
such as ARM [26] and other RISC architectures [10]. They
found the attack is Turing-complete, making it a generally
applicable threat to systems protected by DEP. Based on
that, Hund et al. created a return-oriented rookit [24] to
bypass IDS monitors [34, 37]. Similarly, Vogl et al. lever-
aged ROP to implement dynamic hooks [42] and persistent
data-only malware [43] to avoid using explicit hooks or
introducing new code, making its detections harder.

There were some initial attempts to defend against ROP
attacks. Li et al. built a kernel without return instructions to
defeat the attack [29]. However, both [14] and [9] demon-
strate that code-reuse attacks can be launched without using
return instructions. These works demonstrate that all types of
indirect control transfers are potential targets for adversaries.

Abadi et al. first introduced the concept of control-flow
integrity [6]. Researchers propose to use CFI to mitigate
code-reuse attacks because they often need to divert the orig-
inal program’s control flow to perform desired computation.

Previous work mainly focused on how to make CFI more
practical. Zhang et al. presented a binary-rewriting approach
to enforce CFI on COTS binaries comprehensively [46].
Depending on relocatable information available on most
Windows applications, CCFIR [45] has more reliable dis-
assembly and static rewriting, and it also enforces CFI on
Windows binaries more efficiently than prior work [46]. At
the compiler level, modular control-flow integrity (MCFI)
added separate compilation supports for CFI [30], which al-
lows modules to be independently instrumented and linked.

Researchers also proposed approaches to enforce
lightweight CFI without modifying programs at all.

kBouncer uses branch tracing hardware available on modern
processors to detect ROP attacks [32]. It is efficient as it only
checks the branch histories upon system calls and kills the
program if an ROP attack is detected. ROPecker builds on
the ideas of kBouncer [15]. However, it checks more often
and thoroughly than kBouncer.

People have also examined privileged system software.
HyperSafe enforces lifetime CFI for a hypervisor [44].
We adopted their instrumentation approach (i.e., restricted
pointer indexing) in this work. kGuard protects the ker-
nel from ret2usr attacks by enforcing all indirect control
transfers within the kernel must not target a user-space
address [25]. Criswell et al. made the first attempt to enforce
CFI on conventional operating systems [17]. They built their
enforcement on top of the secure virtual architecture [18], a
software layer between the operating system and hardware.
However, their implementation suffers from high perfor-
mance overheads.

There are some recent efforts on tightening the enforced
CFI policy. Forward-edge CFI [41] uses a signature-based
approach to reduce the target set of indirect calls. Modular
CFI [30] uses a similar approach to enforce a stricter CFI
policy. However, signature-based approach has both false
positives and false negatives on our tested kernel software.
Per-input CFI [31] takes one step further by incrementally
building the enforced CFG at runtime, thus is able to reject
control transfers that are within the program’s CFG while
invalid for the current concrete input. However, Per-input
CFI requires secure runtime code patching, which is chal-
lenging for kernel software. We will explore this direction
as future work.

Unlike CFI that prevents programs from using unau-
thorized control data, code-pointer integrity ensures that
adversary must not overwrite the control data in the first
place [27]. They modified the compiler in such a way that
sensitive data such as return addresses are stored in a safe
region that adversaries have no easy access to.

However, a few recent proposals have shown that all
the coarse-grained CFI implementations are insufficient to
block advanced ROP attacks. Göktaş et al. demonstrated
an attack on Internet Explorer 8 against coarse-grained CFI
defenses [23]. Davi et al. also showed a similar attack
against CFI defenses [19]. Carlini et al. proposed history-
flushing approaches to bypass branch tracing as leveraged by
kBouncer and ROPecker [12]. Control-Flow Bending [11]
highlights limitations of CFI as a defense mechanism by
itself. Our fine-grained CFI-protected kernel significantly
raises the bar for these attacks in practice, making them
less likely or even impossible.

12. Conclusion

In this paper, we have presented an automated approach
for enforcing fine-grained control-flow integrity for ker-
nel software. We leverage and enforce constraints kernel
software adheres to for function pointers to compute a
fine-grained control-flow graph and authorize the indirect
control transfers in the resulting graph comprehensively and



efficiently. We also address system challenges that arise only
in kernel software to protect its entries and exits. The result
shows that our approach is both effective, i.e., eliminat-
ing over 70% of the indirect call targets in the FreeBSD
kernel and MINIX microkernel that are otherwise allowed
by current fine-grained CFI implementations and 99% of
the indirect control targets in a typical coarse-grained CFI
implementation, and efficient, i.e., incurring less overhead
than a comparable coarse-grained CFI implementation.
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