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Abstract. Current systems are under constant attack from many dif-
ferent sources. Both local and remote attackers try to escalate their priv-
ileges to exfiltrate data or to gain arbitrary code execution. While inline
defense mechanisms like DEP, ASLR, or stack canaries are important,
they have a local, program centric view and miss some attacks. Intru-
sion Detection Systems (IDS) use runtime monitors to measure current
state and behavior of the system to detect an attack orthogonal to active
defenses.

Attacks change the execution behavior of a system. Our attack detection
system HexPADS detects attacks through divergences from normal be-
havior using attack signatures. HexPADS collects information from the
operating system on runtime performance metrics with measurements
from hardware performance counters for individual processes. Cache be-
havior is a strong indicator of ongoing attacks like rowhammer, side chan-
nels, covert channels, or CAIN attacks. Collecting performance metrics
across all running processes allows the correlation and detection of these
attacks. In addition, HexPADS can mitigate the attacks or significantly
reduce their effectiveness with negligible overhead to benign processes.

1 Introduction

Software is constantly under attack using a wide set of attack vectors. The attack
surface increases as more devices go online. Connected devices expose running
services but also request services from untrusted parties through potentially
vulnerable client-side software like web browsers.

Current systems leverage a wide range of different attack detection and pro-
tection mechanisms, many of them in combination. Protection mechanisms like
Address Space Layout Randomization (ASLR) [21], Data Execution Prevention
(DEP) [27], stack canaries [12] protect against some memory corruption attacks.
Host-based protection mechanisms mitigate exploitation attempts of unknown
or unpatched vulnerabilities in software but terminate the application when-
ever an attack is detected. Patching removes the vulnerability and mitigates
attacks. Unfortunately, patches are not readily available when a vulnerability is
disclosed. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems
(IPS) on the other hand detect an attack before, during, or after it happened.
Commonly, intrusion detection systems measure a set of parameters and check
if the fingerprint matches any of the known signatures (note that signatures can
be Turing complete verifiers). Network-based IDS like Bro [22] match network



packets against known signatures and alert if an attack is detected. Host-based
IDS collect information about a system and match this information against a set
of rules or attack signatures. An IDS is either misuse-based, matching observed
behavior with a set of attack signatures or anomaly-based, detecting divergences.

Existing host based defense mechanisms focus on memory corruption and
code reuse attacks but offer limited to no protection against information leaks,
side channel, and covert channel attacks. Existing host-based IDS detect a set
of individual attacks by matching fingerprints of individual attacks against the
runtime collected statistics but are limited to the collected software metrics. Due
to the limited software metrics provided by the operating system itself, memory-
based attacks like side channels and covert channels cannot be observed directly
and are therefore stealthy (to available metrics). Software under attack it be-
haves differently compared to a regular execution. Lightweight, low performance
overhead program analysis tools like performance counters (both hardware-based
and software-based) allow a detailed fingerprinting of the execution behavior of
software. We leverage the information collected from a set of specific probes to
detect attacks through their anomalies, matching execution behavior of processes
against attack classes. Using additional runtime metrics from the performance
counters allows us to uncover these otherwise undetected attacks.

We propose HexPADS, a host-based, Performance-counter-based Attack De-
tection System that measures performance characteristics of all processes and
detects attacks by matching a set of signatures. HexPADS is especially apt at
detecting long running Covert and Side Channel (CSC) attacks. Compared to
per-attack signatures, HexPADS uses broader per attack-vector signatures, gen-
eralizing signatures to all attacks in an attack class whenever possible, e.g.,
protecting against all CSCs by detecting cache performance anomalies instead
of detecting specific cache attacks. HexPADS collects statistics about running
processes and measures common performance parameters using existing low-
overhead, hardware-based performance counters. To our knowledge, HexPADS
is the first IDS that leverages per-process performance counters to detect attacks.
In our evaluation we show that our prototype implementation achieves negligible
(non-measurable) overhead and in a set of case studies we show how HexPADS
detects (and mitigates) rowhammer [25], CSCs [24,39,37,18,11], and CAIN [2]
attacks. Side-channel based information leaks are used to extract data from run-
ning systems and processes or to corrupt memory in the case of rowhammer.
Such memory CSC attacks can, e.g., be used to break AES cryptographic key
generation, or to break ASLR in the cloud [2]. The main contributions are:

1. Design of HexPADS, a host-based attack detection system that detects
stealth attacks through fine-grained process monitoring using performance
counters and performance metrics exported by the kernel.

2. Evaluation of a prototype implementation of our attack detection system
that detects cache attacks, DRAM attacks like rowhammer, and memory
deduplication attacks like CAIN at negligible overhead.

3. A discussion of mitigation mechanisms that protect against cache, DRAM,
and memory deduplication attacks.



2 Threat model and attacker goals

We assume a powerful threat model where the attacker can execute user-level
code on the system. An attacker can achieve these capabilities either through
a legitimate service on the system that offers the computational capabilities or
through the exploitation of a service. HexPADS configures performance counters
for all processes. To ensure integrity of our monitor, we assume that HexPADS
is running as a separate process at higher privileges than the attacker and that
the attacker cannot access the monitor or disable performance monitoring.

The trusted computing base contains the underlying hardware, hypervisor,
and operating system. An alternative, hypervisor-based implementation would
remove the operating system from the trusted computing base. We assume that
the attacker does not have raw memory access and that we can rely on the
performance counter results. We trust the integrity of memory, assuming that
we detect attacks like rowhammer before memory is corrupted.

The attacker’s goals are to escalate privileges, to communicate with other
processes, to leak information, or to execute code while remaining undetected.
HexPADS continuously monitors the system and detects an ongoing attack. At-
tack detection is inherently restricted to the precision of the measured runtime
characteristics and limited by the effectiveness of the monitor to distinguish
between benign behavior and attacks.

3 Background

HexPADS leverages existing process metrics and performance counters to collect
information about all running processes. Both process metrics and performance
counters are available and supported on all major operating systems. Here we
give, without loss of generality, an overview of process metrics and performance
counters on Linux systems.

3.1 Process metrics

Operating systems continuously collect basic information about all running pro-
cesses. This information is exposed to user-space to administer processes and to
diagnose problems with user-space utilities. Linux provides the /proc pseudo-
filesystem as an interface to kernel data structures which are accessible from
user-space. The files in the exported directory are mostly read-only and used
for informative purposes but kernel settings can be changed by writing to these
files as well. Most Linux distributions make the /proc directory accessible to
user-space processes, exposing information about all running processes.

Each running process has its own directory under the root /proc directory
named after the process’ PID. The file stat contains a wide range of process
metrics, including name of the executable, process state, the PID of the parent,
the process group, the associated terminal, the amount of page faults, total
execution time in both user and kernel space, priority, number of threads for



this process, when the process was started, memory limits for regions like heap
or stack, which processor the task runs on, and the scheduling policy1. HexPADS
collects all stat information.

The recommended way of using this information is to scrape all numerical
directories in the /proc directory, thereby iterating over all running threads
and processes. Tools like ps, top, or killall all leverage the files in the /proc

directory to fulfill their tasks.

3.2 Performance counters

Hardware performance counters are available in all major CPU architectures.
These performance counters are special-purpose registers that collect informa-
tion about the executed instructions. The names of the counted events differ be-
tween platforms and the number of available registers (and thereby the amount
of performance events that can be sampled at the same time) is platform spe-
cific with low-end architectures generally featuring less performance counting
infrastructure. An advantage of using hardware performance counters is that
the overhead to count specific events is negligible (as the hardware is responsi-
ble for all the heavy lifting). The individual counters and their configuration are
managed by the Performance Monitoring Unit (PMU).

The Intel x86 platform offers detailed configurable performance counters since
the Intel Pentium. The Intel Core i7 family supports base level and enhanced
architectural performance monitoring with four general-purpose, configurable
performance counters (i.e., four types of events can be counted on any core at
any point in time) [4, chapter 18.2]. In addition to counting, the Intel architecture
also supports precise event-based sampling. Instead of counting the occurrences
of an event, the PMU also takes a snapshot of the processors state at the time
of the event. On x86, such a snapshot consists of the instruction pointer, stack
pointer, and all general purpose registers. AMD processors have similar counters
and hardware capabilities.

On Linux, the PMU can be configured using the perf event open system
call (which does not have a libc-based wrapper but needs to be called using
inline assembly). Some user-space programs, e.g., perf provide a command-line
interface to the PMU and allow the collection of detailed performance events for
executing software. The Linux perf event interface tries to unify performance
counter access across architectures and processor families. Performance counters
can be assigned system-wide or per-process with a wide range of conditions
(e.g., the processor the task runs on). After setting up the PMU, the event can
be configured using the ioctl system call. Samples can be read explicitly by
polling through a read system call or implicitly by setting up a signal that is
delivered whenever the counter reaches a pre-defined value (or the buffer used
to store the samples when sampling overflows).

The only additional overhead when using hardware-based performance coun-
ters comes from (i) configuring the PMU whenever a process is scheduled and (ii)

1 Additional information and details are available on the proc manpage.



updating the aggregates whenever the process is interrupted. Collecting counters
might incur some overhead during execution but these effects are hidden by the
microarchitecture. In addition, if an event is sampled (and not just counted) then
there is also additional cache pressure when samples are written into the sample
buffer. The overhead of running performance counters alongside the executed
software is in the noise (less than 1%).

4 HexPADS design

The core principle of HexPADS is to search for general attack behavior and
attack artifacts in all running processes. The underlying hypothesis is that soft-
ware attacks significantly change the environment or the behavior of a process
or processes. Both the attacking process (if run on the same machine) and the
attacked process (usually a service) will exhibit behavior that can be mapped to
an attack. If an attacker uses, e.g., a cache-based CSC to communicate or to leak
information from a benign process then the cache miss rate will increase signif-
icantly. Such changes can be observed by regularly checking key parameters of
all running processes. A challenge for a detection mechanism is to detect attacks
with few false positives. If applications run in phases then phase transitions can
lead to a significant change in the observed behavior as well. A detection mech-
anism must be able to distinguish between phase changes and attacks. Figure 1
gives an overview of the HexPADS system. HexPADS leverages information from
the operating system to collect core process characteristics of all running pro-
cesses and uses the CPU’s PMU to collect detailed low-level performance events
from the underlying hardware.

We design HexPADS as a generic process behavior collection mechanism with
a plugin-based detection subsystem for different attacks. The core of HexPADS
continuously measures a set of parameters for all running processes at negligible
overhead. A flexible plugin interface extends the collection mechanism and allows
detectors to analyze the behavior of processes. Each plugin detects a certain type
of attack using past and current performance data of a process. HexPADS detects
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Fig. 1. Overview of the HexPADS system.



attacks by collecting and analyzing system information in five stages that are
periodically repeated when the system is running:

1. To gather the necessary runtime information, HexPADS polls detailed pro-
cess statistics of all running processes. This data is stored in a buffer across
iterations to allow aggregate checks, e.g., page faults per iteration. This step
takes care of registering new processes (including the setup of performance
counters) and cleaning up dead processes.

2. Poll necessary performance counters for each running process. All perfor-
mance counter results are stored in a buffer to allow aggregate checks and
the counters are reset to 0.

3. Calculate performance statistics for each process to, e.g., allow checking if
any measured parameter has changed rapidly.

4. Evaluate a set of attack signatures on the measured performance statistics
for each process. If an attack signature matches the behavior of a process
then a potential attack is detected.

5. If any potential attacks were reported, this step takes evasive or counter
measures and reports the attack.

In its default configuration, HexPADS will collect the following performance
counters: number of executed instructions, number of last level cache accesses,
and number of last level cache misses. In addition to the performance counters,
detectors can use the status information of each process as exported from the
kernel, e.g., number of minor page faults, number of major page faults, and
execution time are used in our signatures. In addition to this baseline, all other
information available in the exported process’ status can be used and additional
counters can be configured. If the amount of desired performance events exceeds
the available hardware registers, a time-based sampling scheme can multiplex
the available registers (with some loss of precision). HexPADS uses a buffer to
store the samples, all elements are initialized with the first measurement.

Attack detectors are functions that evaluate, based on the history of perfor-
mance samples, if a process is either under attack or attacking another process.
If an attack detector matches then it reports the potential attack and the PID
to the attack reporting and mitigation module.

Distinguishing between attacking and attacked process is not always straight
forward (e.g., a cache-based CSC attack will increase the cache misses in both the
attacking and the attacked process). Countermeasures therefore cannot just kill
the reported process and other mitigation strategies must be used. Any attack
will be reported to the administrator who can decide on specific counter mea-
sures. In addition, HexPADS supports a set of automatic counter measures that
can mitigate or slow down the attack. HexPADS, e.g., slows down the attacking
process (reducing the bandwidth of CSC attacks), stops the attacking process
until an administrator can evaluate the situation, or enforces specific schedul-
ing decisions (e.g., pinning processes to disjoint processors2). Other mitigation
strategies are possible as well, depending on the attack vector.

2 Scheduling processes on disjoint cores is not enough as the last level cache is shared.



5 Implementation

Following a least privileges principle, HexPADS runs as a user-space daemon and
collects information of all running processes. If multiple virtual machines share
a single CPU then a HexPADS daemon must run on each VM. Results can then
be collected by a central daemon and are evaluated across all running processes
on all VMs. Our prototype implementation currently supports monitoring on a
single system without distributing the results.

Our prototype follows the design outlined in Section 4 and implements the
described analysis loop: it (i) crawls all running processes, updates status in-
formation, and initializes performance counters for new processes, (ii) polls the
performance counters of all processes, (iii) calculates performance statistics, (iv)
evaluates if an attack is in progress, and (v) deploys potential countermeasures
against the affected processes. The ringbuffer for the measurements stores the
last 60 samples and the scan interval is set to once each second.

The prototype is open-source3 and the implementation uses less than 2,000
lines of C code. The prototype implementation includes the base framework,
detectors for rowhammer, cache CSC attacks, and CAIN attacks and the slow-
down and stop the process counter measures. The slow-down counter measure
reduces the priority of the identified process and optionally pauses the process to
some extend. The stop counter measure stops the process through the SIG STOP

signal. We discuss individual detectors in Section 6 as a set of three case studies.

6 Evaluation

Evaluating the performance overhead of HexPADS on a modern system shows
that the increased protection results in negligible (non-measurable) performance
overhead. Using a set of case studies, we show how HexPADS can detect dif-
ferent attacks: rowhammer attacks, cache CSCs, and CAIN attacks. We have
run HexPADS with these detectors on both desktops and servers with regular
workload for several days without false positives.

6.1 Performance overhead

The perceived overhead for HexPADS is negligible and makes up for less than
1% of CPU time on a single core on a modern system. To measure impact
on other running processes we measured the performance overhead using the
SPEC CPU2006 and PARSEC 3.0 benchmarks. We ran our experiment on an
Ubuntu 14.04 system with an Intel Core i7-3770 CPU at 3.40 GHz with 4 cores
(8 threads), 16 GB of memory. We compiled all SPEC CPU2006 C/C++ bench-
marks with clang 3.4 and O3. To reduce noise we averaged over 3 runs using the
ref dataset (the default configuration for a reportable run in SPEC CPU2006).
We compiled PARSEC 3.0 in its default configuration and evaluate it using the
native dataset and 16 threads.

3 The source code of HexPADS is available at http://github.com/HexHive/HexPADS.

http://github.com/HexHive/HexPADS


SPEC CPU2006 Idle PADS Overhead

400.perlbench 306 302 -1.32%
401.bzip2 396 389 -1.80%
403.gcc 242 238 -1.68%
429.mcf 234 211 -10.90%
445.gobmk 374 371 -0.81%
456.hmmer 327 325 -0.62%
458.sjeng 405 403 -0.50%
462.libquantum 287 289 0.69%
464.h264ref 419 417 -0.48%
471.omnetpp 292 292 0.00%
473.astar 304 298 -2.01%
483.xalancbmk 198 197 -0.51%
433.milc 349 334 -4.49%
444.namd 289 288 -0.35%
447.dealII 214 213 -0.47%
450.soplex 195 194 -0.52%
453.povray 126 126 0.00%
470.lbm 200 198 -1.01%
482.sphinx3 400 396 -1.01%

Average 292.47 288.47 -1.39%
Geo.Mean 279.59 275.64 -1.43%

PARSEC native PADS Overhead

blackscholes 36.98 36.93 -0.12%
bodytrack 29.88 30.44 1.88%
canneal 57.06 58.26 2.10%
dedup 13.73 14.02 2.11%
facesim 94.45 96.28 1.94%
ferret 63.64 64.77 1.77%
fluidanimate 72.21 72.40 0.26%
freqmine 81.83 80.88 -1.17%
netdedup 13.04 13.81 5.92%
netferret 407.20 410.16 0.73%
netstr.clust. 132.60 133.32 0.54%
raytace 64.25 65.07 1.27%
streamcluster 121.35 121.93 0.48%
swaptions 45.33 44.95 -0.83%
vips 21.29 21.60 1.47%
x264 17.84 19.48 9.17%

Average 1272.69 1284.30 0.91%
Geo.mean 52.05 52.93 1.69%

Table 1. Performance results for HexPADS on SPEC CPU2006 and PARSEC. Native
and HexPADS numbers are in seconds, overhead is in percent.

Table 1 shows the performance results. In general, the overhead for HexPADS
is negligible and in our experiment we observed a slight performance improve-
ment for SPEC CPU2006 (likely due to cache variations and fluctuations of
the scheduler placing benchmarks on different cores) and a slight performance
degradation for PARSEC. The average and geometric mean is less than 2% and
therefore likely noise for both benchmarks. The only infrequent false positives
we measured were for CAIN on dedup/netdedup (see Section 6.4).

We conducted our experiments on an idle system with multiple cores. The
SPEC CPU2006 benchmarks are single threaded but the PARSEC benchmarks
are highly parallel. Most of the information is collected by low overhead per-
formance counters and the HexPADS process sleeps most of the time. When
observing HexPADS with the htop command it uses less than 1% of the CPU
to continuously scan, measure, and analyze performance data. In comparison,
ninja [7] detects illegal suid processes by scanning the process list at 1.5 - 2%
overhead.

6.2 Case study: rowhammer

Rowhammer [25] is a DRAM vulnerability that causes bit flips in DRAM cells,
triggered by frequent accesses to neighbouring cells. The DRAM accesses to the
adjacent cells cause an interaction with the cell in between, resulting in random



bit flips. The rowhammer attack executes cache flush instructions and accesses
memory locations in a tight loop. In the attack scenario described by Google’s
P0 security group, they managed to cause bit flips in a Page Table Entry (PTE)
that causes the PTE to point to a physical page under the control of the attacker.
This hardware bug allows the attacker to escalate her privileges from user-space
to the highest software level, side-stepping all hardware security layers, execution
layers, and defense mechanisms.

While incredible powerful, the rowhammer attack is extremely noisy (on the
memory bus) and long running. The attack only succeeds if a very large amount
of adjacent DRAM accesses are executed in short order, i.e., between refresh
intervals that negate all intermediate effects. The attack relies on a high band-
width to the DRAM cells and therefore has limited interaction with the operating
system, e.g., through the page fault handler that adds overhead, reducing the
bandwidth for the attack. The overall amount of page faults (or page fault ratio)
is therefore low.

i ranges from 0 to NR_SAMPLES , not inclusive

cur = current iteration

prev = previous iteration

cache_access = sum(cache_access[i])/NR_SAMPLES

cache_miss = sum(cache_miss[i])/NR_SAMPLES

miss_rate = cache_miss / cache_access

fault_rate = page_faults[cur] / page_faults[prev]

if (

miss_rate > 0.70 and

cache_miss > 500 ,000 and

fault_rate < 0.01

) cache_attack_detected ();

Fig. 2. Pseudo code for rowhammer detector based on cache misses and page faults.

Our rowhammer detector (see Figure 2) measures cache accesses and cache
misses of all running processes and checks if the cache miss rate is higher than
70% (i.e., more than 70% of all cache accesses are cache misses), the total amount
of cache misses is significant, and the number of page faults is low. As rowham-
mer is a long running attack, our detector averages the cache misses over the
sliding window of collected samples. In addition, the average page table miss rate
must be low, otherwise the memory accesses would not happen fast enough. If
the cache miss rate is too low then no bits are flipped. Using the rowhammer pro-
totype implementation4 we always measured a cache miss rate of > 90% (more
than 4,000,000 cache misses per iteration, the highest number of cache misses
of a benign process was 101,000 cache misses per iteration) and the attack is

4 Google’s prototype implementation is available at https://github.com/google/

rowhammer-test.

https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test


detected immediately after the process starts up. Any successful rowhammer
attack will always be noisy and the cache miss rate per instruction must be
high for the attack to be successful. The default counter measure slows down an
offending process for a configurable amount of time.

6.3 Case study: cache-based CSCs

Cache CSCs are very similar in their cache access patterns to the rowhammer
attack. Generally, a cache CSC uses one of three ways to communicate [8]: (i)
evict and time (the attacker measures execution of the victim’s code, evicts the
cache, and measures the same code again), (ii) prime and probe (the attacker
fills its own memory and measures through access times what data was evicted
by the victim), or (iii) flush and reload (the attacker flushes shared memory and
measures what memory was reloaded by the victim). All these attacks have in
common that they result in a huge amount of cache misses in a short amount of
time as large memory areas have to be flushed and read/written.

We have tested two cache covert channels: (i) cache template attacks [11]
which is based on flush and reload and (ii) an enhanced version of C5 [18] which
is based on prime and probe. The observed memory access pattern is very similar
to rowhammer attacks with the difference that a cache CSC is only concerned
about the cache itself and not if the memory is written back to DRAM. In our
experiment, cache template attacks results in about 1,500,000 cache misses per
iteration and C5 attacks in about 2,300,000 cache misses per iteration.

We therefore use the same detector as for rowhammer to detect cache CSCs.
The covert channels described above rely on a combination of repeated flushing
or filling of the cache and measuring timing. The cache flushing and filling is
measurable through cache misses, indicating that a cache CSC is being used.

Our current detector does not distinguish between rowhammer and cache
CSCs and successfully detects both attacks. Cache CSCs will always incur a high
amount of cache misses, just like rowhammer attacks. If the attacker lowers the
speed of the cache attack, the bandwidth will decrease alongside which results in
additional noise on the channel. After a certain noise level is reached the attack
becomes unrealistic.

6.4 Case study: CAIN

CAIN (Cross VM ASL INtrospection) [2] leverages memory deduplication as a
side channel to recover ASLR base addresses of loaded libraries in co-located
virtual machines. For a successful attack, an attacker needs to execute user-
space code on a virtual machine that is co-located with the target machine (i.e.,
runs on the same physical hardware). Memory deduplication searches for shared
memory pages across virtual machines and coalesces any common pages. A write
to a merged page results in a page fault caught by the VMM and triggers a copy-
on-write operation, resulting in a timing side channel that allows the detection
of specific memory pages in concurrently running virtual machines. Memory
deduplication saves physical memory but causes performance degradation when



pages are unmerged (e.g., when one virtual machine writes to the page). CAIN
generates a large amount of page candidates for specific libraries, picking a page
that is static except for a set of pointers relative to the library’s base address.
Each generated page candidate then has the probability of 1

ASL entropy of being

present in the target virtual machine. CAIN uses all available memory to gen-
erate target pages and then waits for the memory deduplication mechanism to
merge a candidate page and the target page. The correct target page is then de-
tected by measuring timing when writing to the page (due to the copy-on-write
it takes a longer time to write compared to an unmerged page).

CAIN behavior is naturally bursty and generates a large amount of page
faults and cache misses in a short time whenever new candidate pages are gen-
erated. This behavior is easily detected by measuring the gradient of page faults
and the amount of cache misses (for writing).

cur = current iteration

prev = previous iteration

page_faults = array of page fault measurements

cache_miss = array of cache miss measurements

page_miss_rate = page_faults[cur]/ executed_instr

if (

page_faults[prev] > 2.0 * page_faults[cur] and

page_faults[cur] > 100000 and

cache_miss[cur] > 10000 and

page_miss_rate > 0.001

) CAIN_attack_detected ();

if (

page_faults[prev] + page_faults[cur] > 256000

) CAIN_attack2_detected ();

Fig. 3. Pseudo code for CAIN detector based on cache misses and page faults.

Our detector (see Figure 3) checks if (i) the amount of page faults in the
current iteration is more than double the amount of page faults in the previous
iteration (i.e., the amount of page faults doubled), there were more than 100,000
page faults, more than 10,000 cache misses in this iteration, and the page miss
rate per executed instruction in the last interval was higher than 0.001 or (ii)
the amount of page faults in the last two iteration is higher than 256,000 (which
corresponds to 1024MB of memory being initialized in a short interval). The first
part of the detector checks the increasing flank while the second part checks for
a high amount of new memory that is allocated in a short burst. Our detector
currently does not check for the ratio between read and write cache misses, for
CAIN the amount of write cache misses would be much higher than the amount of
read cache misses. Only the PARSEC dedup/netdeup benchmarks experienced



false positives as this benchmark allocates a huge amount of memory during
startup. For the complete evaluation, the first check results in 1 false positive
and the second check in 24 false positives. CAIN attacks are not time critical,
so for a future detector we will ensure that benign cases that continuously use
the allocated memory do not trigger a detection.

The current detector measures the memory allocation pattern of a CAIN
attack through page faults, cache misses, and the amount of allocated memory.
CAIN attacks could mitigate the detection by allocating less memory, which
would reduce the effectiveness of the attack. An extension of the detector could
measure the absence of accesses after detection to detect the phase where CAIN
is waiting for the VMM to merge individual pages.

6.5 Discussion, limitations, and future work

The efficiency and success of HexPADS depends on the ability of the detectors
to distinguish benign behavior from malicious behavior. The attacks evaluated
in the case studies are fundamentally different from benign applications due
to the underlying constraints of the attacks. With knowledge of the signatures
(which will likely be widely distributed and analyzed), an attacker could launch
some form of targeted Mimicry [30] attacks. Mimicry attacks hide the malicious
behavior in benign behavior, thereby circumventing detection. HexPADS is not
immune to Mimicry attacks and an attacker could, e.g., slow down the num-
ber of cache accesses to evade the rowhammer detection. But by slowing down
the attack it becomes less efficient and more likely to fail, e.g., for rowhammer,
if the attack does not achieve a sufficiently high number of memory accesses
between memory refresh operations then the attack will fail. The design of effec-
tive detectors depends on a threshold where the attack is no longer successful,
yet the amount of false positives remains low. We acknowledge the difficulty of
finding such efficient thresholds, especially for programs with different program
characteristics where the threshold must be conservative.

In the current version, the baseline behavior and the signatures are hard-
coded. The current signatures are based on manual analysis of program execu-
tions. As future work we will look into ways of coming up with tighter and more
precise signatures automatically, e.g., by collecting benign traces of a wide vari-
ety of applications and workloads and using machine learning to automatically
extract a baseline pattern and classify the different samples into general sig-
natures. In addition, we will look into aggregating performance measurements
of child processes to mitigate an attacker that constantly spawns children to
prevent detection. The current motivating examples and case-studies focus on
memory attacks. In future work, HexPADS can either be extended to include
other attack vectors (e.g., by sampling other performance events), or its concept
can be integrated into other attack detection frameworks.

The current prototype implementation is limited to single host detection
and does not coordinate information across different virtual machines (i.e., the
detection mechanism must run on the same virtual machine as the attacker).
This is merely an engineering limitation and the prototype can be extended



through additional programming effort. A CAIN attack can only be observed
on the same system, so the detector must either run on the attacker machine
(e.g., in the case where the attacker controls only a user-space application) or at
the level of the hypervisor. An advantage of the current implementation is that
the daemon has negligible overhead and runs without any elevated privileges.
Disadvantages of such an implementation are that (i) only effects on the system
can be observed, attacks from non-monitored systems (virtual machines) are
missed and (ii) the operating system is a part of the trusted computing base,
any attacker with elevated privileges (administrator privileges) can disable the
monitoring and detection mechanism.

7 Related work

Related work for HexPADS exists in different areas. On one hand, prior work on
CSC attacks is used as a motivation to develop our attack detection mechanism
and we use different CSC mechanisms to evaluate our work. On the other hand,
we compare our work against different existing CSC attack detection and mit-
igation mechanisms, showing key differences between our performance counter
based approach and other approaches that focus on mitigation instead of detec-
tion. Last but not least, we compare against other existing intrusion detection
mechanisms and explain why they detect attacks on a different abstraction level.

7.1 Covert and Side channel attacks

Last level caches are a prime target to extract information using CSC informa-
tion leaks across processes or even across virtual machines. Sensitive informa-
tion (e.g., cryptographic keys) can be extracted from unwilling sensitive pro-
cesses [24,39,37,11] or two malicious processes can use the covert channel to
communicate stealthily [18]. A challenge for these CSC attacks is the underlying
hardware configuration as each CPU family can be different. Unfortunately, an
automated exploration of the cache configuration is possible [19,11].

Other CSCs include, e.g., the last branch target buffer [1], the memory
bus [36], memory deduplication mechanisms [26,14,2], and attacks against the
underlying memory architecture [25].

7.2 Covert and side channel attack detection and mitigation

A CSC attack detection mechanism may be implemented at the level of the
hardware, the virtual machine monitor, the operating-system, or the application.

Hardware-based detection and mitigation mechanisms can be separated into
approaches that partition resources [6,31,32] with the downside of potentially
under-utilizing resources, randomizing accesses [32,33], or limiting the granular-
ity of the timer [17].

On the hypervisor level, HomeAlone [38] detects cross-VM side channel at-
tacks by monitoring cache misses and cache behavior. Other defense mechanisms



in the hypervisor either partition resources to be used exclusively for a given vir-
tual machine [15] (with the drawback that same-machine attacks are possible)
or limit the timer granularity for virtual machines [28]. HexPADS in comparison
measures fine-grained performance events on the process level and allows the
identification of individual processes that cause the outlier.

Düppel [40] employs periodic cache flushing to introduce noise and to reduce
the attacker’s bandwidth. This is a pure mitigation mechanism that does not
distinguish between benign behavior and attack behavior. HexPADS may use
a mechanism to mitigate an ongoing attack as soon as it is detected with the
advantage that cache flushing (and the associated overhead) only occurs during
active attacks and not whenever a sensitive operation is executed.

7.3 Intrusion detection and mitigation

Network-based IDS like Bro [22] detect an intrusion by inspecting network pack-
ets. Host-based IDS observe system characteristics like system call patterns and
parameters [13,34,20], log analysis [3], or file integrity checking (e.g., AFICK,
Tripwire, or AIDE [10,3]) to detect malicious activity. Intrusion detection sys-
tems are either misuse-based or anomaly-based. A misuse-based IDS matches a
set of patterns against the observed pattern [23,22,29]. An anomaly-based IDS
detects deviations from a well known, good baseline [5,16,9,20,35,7].

HexPADS targets microarchitectural features and uses performance counters
to collect fine-grained system information to detect attacks that are not directly
observable by regular introspection methods but need support from hardware
performance monitors (e.g., by measuring the amount of cache misses).

8 Conclusion

Intrusion detection and attack detection systems enable the detection of other-
wise uncaught attacks (i.e., if all other defense mechanisms fail). We have pre-
sented the design and open-source implementation of HexPADS, a novel attack
detection mechanism that leverages both core systems parameters and perfor-
mance counter-based statistics on program execution to detect ongoing attacks.
The core system measures a set of system parameters and performance charac-
teristics like, e.g., cache misses, executed instructions, or page faults. Through a
flexible plugin mechanism we can add dynamic detectors for individual attacks.
In three case studies we have evaluated HexPADS and shown its effectiveness
against rowhammer, cache-based covert and side channels, and CAIN attacks
by implementing simple detectors that use cache accesses, cache misses, page
faults, and number of executed instructions to detect attacks. The performance
overhead of HexPADS is negligible (non-measurable) and the flexible design and
plugin structure simplifies adding new detectors for other and future attacks.
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