
  

Fine-Grained Control-Flow Integrity
through Binary Hardening

Mathias Payer, Antonio Barresi, Thomas R. Gross

ETH Zürich



FFmpeg and a thousand fixes

http://j00ru.vexillium.org/?p=2211 Jan-10, 2014

2 person-years &
fuzzing on large
cluster

>1,000 bugs found 
and fixed



Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety 
and memory safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications 
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system





Code Reuse
Attacks



Attack scenario: code reuse

● Find addresses of gadgets
● Force memory corruption to set up attack
● Leverage gadgets for code-reuse attack

Code Heap Stack



Control-flow hijack attack

1

32

4 4'

● Attacker modifies code pointer
– Function return

– Indirect jump

– Indirect call

● Control-flow leaves valid graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming



Control-Flow 
Integrity



  

Control-Flow Integrity (CFI)

● CFI enforces that each dynamic indirect control 
flow transfer must target a statically determined 
set of locations

● Three sources of indirect transfers
– Indirect jump

– Indirect call

– Function returns



  

Control-Flow Integrity (CFI)

● Statically construct Control-Flow Graph
– Find set of allowed targets for each location

● Online set check

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)

0xa
0xb
0xc
0xd 0xd

0xe 0x2
0xf

1

32

4



  

Control-Flow Integrity (CFI)

● Statically construct Control-Flow Graph
– Find set of allowed targets for each location

● Online set check

…
jmpl *%eax
…
call *(0xb)
…
call *(0xc)

0xa
0xb
0xc
0xd 0xd

0xe 0x2
0xf

1

32

4

Attacker may write to memory,
code pointers verified if used



  

Fine-grained CFI for binaries

● Fine-grained CFI relies on source code
● Coarse-grained CFI is imprecise

● Goal: enforce fine-grained CFI for binaries
– Support legacy, binary code

– Support modularity (libraries)

– Leverage precise, dynamic analysis

– Low performance overhead



  

Lockdown design

System Call InterfaceSystem Call InterfaceKernel

User 

Lockdown
Domain

App.
Domain

ELF
Files

Loads
ELF
files

/bin/<exe>

Loader

libc.so.6

lib*

Code Cache

read only readable + executable

main() printf()

func*()

main'
func1()
func2()
...

func2'
printf'

Binary Translator

translate()

CFT Verifier

Run-time
ICT 
validation

Shadow stackShadow stackShadow stack



Dynamic CFI analysis

● Leverage program's modularity through loader

importedexported

.text

puts
scanf
funcA
...

/bin/<exec>

­

importedexported

.text

_dl*
...

/lib/libc.so.6

puts
scanf
mprotect
...

importedexported

.text

ifunc*
...

/lib/lib*

funcA
funcB
...

call puts
...
lea fptr, %eax
...
call *%eax
...

puts:
...
mprotect:
...

funcA:
...
funcB:
...

symbol table of ELF DSO

.text section of DSO

allowed Control Flow transfer

illegal Control Flow transfer



Dynamic CFI analysis

● Leverage program's modularity through loader

importedexported

.text

puts
scanf
funcA
...

/bin/<exec>

­

importedexported

.text

_dl*
...

/lib/libc.so.6

puts
scanf
mprotect
...

importedexported

.text

ifunc*
...

/lib/lib*

funcA
funcB
...

call puts
...
lea fptr, %eax
...
call *%eax
...

puts:
...
mprotect:
...

funcA:
...
funcB:
...

symbol table of ELF DSO

.text section of DSO

allowed Control Flow transfer

illegal Control Flow transfer

Modularity increases precision.
No source needed.

Leverage context of transfers.



Lockdown CFI rules

● Return instructions must return to the caller
– Precise due to shadow stack

● Call instructions must target valid functions
– Imported in the current module (context)

● Jump instructions must target valid instructions 
inside the current symbol (or functions)



Performance: Apache 2.2

Configuration Small file Image Combined

Single threaded 30.41% 1.94% 7.87%

Concurrent 6.27% 1.09% 1.83%

Concurrent with
keep-alive

15.80% 3.00% 4.36%

● 15,000,000 requests
● 56 kB HTML file, 1054 kB image
● Apache 2.2 runs under default configuration



Security evaluation

● CVE 2013-2028 compromises nginx
– Both ROP (ret) or COP (icall) exploitation possible

Length RET CALL/JMP/
SYS

ROP attack 30 7 0

COP attack 30 0 (487*) 99

* reachable, but protected by shadow stack



Necessity of shadow stack

● Defenses without stack integrity are broken
– Loop through two calls to the same function

– Choose any caller as return location

● Lockdown enforces a protected shadow stack
– Attacker restricted to arbitrary targets on the stack

– Each target can only be called once, in sequence



Conclusion



● Protect in the presence of bugs
● Supports legacy and binary code
● Control-flow hijack protection

– Shadow stack, dynamic CFI, and locality

– System call policy as secondary protection

● Reasonably low overhead

Conclusion



  

Thank you!  Questions?

Mathias Payer, Antonio Barresi, Thomas R. Gross



Performance: SPEC CPU2006

0

20

40

60

80

100

120

140

160

BT Lockdown

P
er

fo
rm

an
ce

 o
ve

rh
ea

d


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

