Mathias Payer, Antonio Barresi, Thomas R. Gross

PURDUE ETH Zirich

FFmpeg and a thousand fixes

>1,000 bugs found
and fixed

2 person-years &
fuzzing on large
cluster

http://jOOru.vexillium.org/?p=2211 Jan-10, 2014

Software 1s unsafe and insecure

* Low-level languages (C/C++) trade type safety
and memory safety for performance

- Programmer responsible for all checks

» Large set of legacy and new applications
written in C / C++ prone to memory bugs

* Too many bugs to find and fix manually
- Protect integrity through safe runtime system

Code Reuse
Attacks

Attack scenario: code reuse

* Find addresses of gadgets
 Force memory corruption to set up attack
* L everage gadgets for code-reuse attack

Control-flow hijack attack

Q

» Attacker modifies code pointer

é — Function return

- Indirect jump

- Indirect call
» Control-flow leaves valid graph

* Reuse existing code

- Return-oriented programming
- Jump-oriented programming

Control-Flow
Integrity

Control-Flow Integrity (CFl)

* CFI enforces that each dynamic indirect control
flow transfer must target a statically determined
set of locations

e Three sources of indirect transfers
- Indirect jJump
— Indirect call

- Function returns

Control-Flow Integrity (CFl)

 Statically construct Control-Flow Graph

- Find set of allowed targets for each location

e Online set check

Oxa

jmpl *%eax —* Oxb

OxcC

call *(0xb) 0xd Oxd

” > Oxe 0x2
call *(0xc) > Oxf

Control-Flow Integrity (CFI)

 Statically construct Control-Flow Graph
- Find set of allowed targets for each location

 Online set check

Attacker may write to memory,

code pointers verified if used

Fine-grained CFI for binaries

* Fine-grained CFlI relies on source code
» Coarse-grained CFl is imprecise

* Goal: enforce fine-grained CFI for binaries

- Support legacy, binary code

— Support modularity (libraries)

- Leverage precise, dynamic analysis
- Low performance overhead

Lockdown design

Shadow stack | Shadow stack Shadow stack \E>UX*down
Domain

Binary Translator CFT Verifier

| oads translate()

ELF

files

\>>App.
: Domain
Run-time
....... ICT
validation
User

Kernel System Call Interface

“Iread only [readable + executable

Dynamic CFl analysis

* Leverage program's modularity through loader

/bin/<exec> /1ib/1ibc.so0.6 /1ib/1ib*
exported | imported exported | imported exported | imported
- puts puts _d1* funcA ifunc*
scanf scanf funcB
funcA mprotect
. text . text .text
call puts » puts -» funcA:
lea fptr, %eax » mprotect: - P funcB:
o o /
call *Seax T e——————— T e

—» allowed Control Flow transfer
------------ » 1illegal Control Flow transfer

"] symbol table of ELF DSO
“ | .text section of DSO

Dynamic CFl analysis

» |Leverage program's modularity through loader

Modularity increases precision.

No source needed.
Leverage context of transfers.

lea fptr, %eax e mprotect : P funcB:
... “"‘m P "-.““‘“__.‘.
call * %eax ‘ ------ e & LTI L L LG EL L

"] symbol table of ELF DSO —» allowed Control Flow transfer
"] text section of Dso = v » illegal Control Flow transfer

Lockdown CFl rules

 Return instructions must return to the caller
- Precise due to shadow stack

« Call instructions must target valid functions
- Imported in the current module (context)

* Jump instructions must target valid instructions
Inside the current symbol (or functions)

Performance: Apache 2.2

e 15,000,000 requests
56 kB HTML file, 1054 kB image

* Apache 2.2 runs under default configuration

Single threaded 30.41% 1.94%
Concurrent 6.2/7/% 1.09%

Concurrent with 15.80% 3.00%
keep-alive

7.87%
1.83%
4.36%

Security evaluation

« CVE 2013-2028 compromises nginx
- Both RORP (ret) or COP (icall) exploitation possible

ROP attack 30 / 0

COP attack 30 0 (487%) 99

* reachable, but protected by shadow stack

Necessity of shadow stack

» Defenses without stack integrity are broken

- Loop through two calls to the same function
— Choose any caller as return location

* Lockdown enforces a protected shadow stack

- Attacker restricted to arbitrary targets on the stack
- Each target can only be called once, in sequence

Conclusion

Conclusion

* Protect in the presence of bugs
» Supports legacy and binary code

» Control-flow hijack protection

- Shadow stack, dynamic CFl, and locality
- System call policy as secondary protection

 Reasonably low overhead

Performance overhead

Performance: SPEC CPU2006

160

140
120
100
80
60
40
o MmN __
X -

S S O ND S ~ 0 & e o

RSICREINENE N %6%®6Q\®+4\’<§0§\'Q’\00& SRS
S S B KL

D 9@@ NS XNV 5

B BT ®Lockdown

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

