
On Cybersecurity of Freeway Control Systems:1

Analysis of Coordinated Ramp Metering Attacks2

Jack Reilly*3

Graduate Student4

Department of Civil and Environmental Engineering5

University of California Berkeley6

652 Sutardja Dai Hall7

Berkeley CA 9472017108

Phone: (916) 768-17559

Email: jackdreilly@berkeley.edu10

Sebastien Martin11

Graduate Student12

Massachusetts Institute of Technology13

Mathias Payer14

Assistant Professor15

Department of Computer Science16

Purdue University17

Alexandre M. Bayen18

Chancellor Associate Professor19

Director, Institute of Transportation Studies20

Department of Electrical Engineering and Computer Sciences21

Department of Civil and Environmental Engineering22

University of California, Berkeley23

* - Corresponding Author24

words + 7 figures + 1 tables25



ABSTRACT1

This article focuses on cybersecurity of transportation systems and investigates their vulnerability2

to attacks on the sensing and control infrastructure. An array of different attack points, classi-3

fied into physical, close-proximity, and virtual layers, are reviewed and investigated. We construct4

two benchmark scenarios which exploit these vulnerabilities to identify the potential harm of a5

traffic control system compromise. A more in-depth analysis is then presented on the takeover of6

a series of networked onramp metering traffic lights. The analysis is conducted using a method-7

ology for precise and intelligent onramp metering attacks based on finite-horizon optimal control8

techniques and multi-objective optimization. The methodology is demonstrated in simulation for9

two examples of high-level attack objectives: congestion-on-demand, which aims to create precise10

pockets of congestion, and catch-me-if-you-can, which attempts to aid a fleeing vehicle from chasing11

pursuants.12
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INTRODUCTION1

Public traffic infrastructure is arriving in the cyber age with increasing connectivity between the2

different segments of roadways. For example, freeways are commonly instrumented with loop3

detectors that allow for real-time monitoring of roadway speeds (1). Estimates of road traffic4

conditions are then fed directly into onramp traffic light metering algorithms which regulate traffic5

flow to improve congestion (2). Finally, these metering algorithms can be coordinated and controlled6

by a remote command and monitoring center, leading to a regional network of interconnected sensors7

and controllers (3).8

Increased efforts to build systems which understand and utilize the interconnectivity are9

evidenced by integrated-corridor-managament (ICM) projects such as Connected Corridors (4) and10

mobile applications which use GPS probe data to improve navigation (5).11

This connectivity offers great potential to better analyze, control and manage traffic but12

also poses a significant security risk. A compromise at any level of the traffic control infrastructure13

can lead to both direct access of an attacker to alter traffic lights and changeable message signs, and14

indirect access via spoofing of sensor readings, which may trick the control algorithms to respond15

to false conditions.16

A number of traffic-related atacks of infrastructure systems have already been demonstrated17

in the past few years. A man-in-the-middle attack on GPS coordinate transmissions from mobile18

navigation applications showed it is possible to trick navigation services into inferring non-existent19

jams (6), while a similar attack used a fleet of mobile phone emulators to mimic the presence of20

many virtual vehicles on a roadway (7). A popular type of vehicle-detection sensor was revealed to21

use a type of wireless protocol vulnerable to data injection attacks, and a demonstration showed22

that the access point could be tricked into receiving arbitrary readings (8). Cyber attacks on a23

centralized command center remain a serious threat given the frequent discovery of networking24

vulnerabilities, such as the Heartbleed bug (9). Even insider attacks on command centers have25

precedent as two Los Angeles traffic engineers in 2009 were found guilty of intentionally creating26

massive delays by adjusting signal times at key intersections (10).27

Given the existence of such vulnerabilities and the scale at which they can be exploited,28

understanding the nature and costs of such attacks becomes paramount to public safety. In this ar-29

ticle, we present a systematic approach to analyzing the topic of traffic control system vulnerabities30

and their potential impact.31

To do so, we begin by constructing a taxonomy of different vulnerabily locations in traffic32

control systems, defining three distinct layers: physical, close-proximity, and virtual. Difficulty, im-33

pact, and cost values are also associated with each potential attack. We motivate our classifications34

by presenting two scenarios that combine a number of attacks to accomplish a high-level goal.35

We then focus our analysis on an in-depth exploration of freeway attacks using coordi-36

nated, ramp metering.. We show using the developed method that ramp metering control permits37

an attacker to achieve very precise congestion patterns. An attacker can then consider high-level38

objectives, such as permitting a fleeing vehicle to escape pursuants on a particular freeway stretch.39

To achieve this, we develop a methodology based on adjoint computations and finite-horizon op-40

timal control for finding optimal metering rates to create a desired disruption on the freeway. We41

additionally give an overview of multi-objective optimization and discuss how such an approach is42

useful for solving high-level attack objectives which contain many conflicting sub-goals.43

Two detailed applications of the multi-objective optimal control approach to ramp metering44

attacks are then given. The first application shows how ramp metering can allow an attacker to45

cause congestion in precise locations and at precise moments in time along a freeway. The second46

application finds a strategy to solve the aforementioned problem of allowing a fleeing vehicles to47

escape pursuants. Numerical results are presented, as well as a discussion of the benefits of the48
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FIGURE 1 The physical roadway, sensors, connected vehicles and controllers near a
freeway/onramp junction in Figure 1(a) form a cyber-physical network we refer to as a
local freeway control system. In Figure 1(b), the local controllers are wired together,
then connected to a command center via a relay box to form the global control system.
This article analyzes vulnerability locations associated with each component.

multi-objective optimization method. We conclude with some future areas of study for traffic system1

security as well as extensions of the multi-objective optimization approach to other transporation2

applications.3

TRAFFIC SYSTEM VULNERABILITIES4

The Freeway Control System5

Modern freeways encompass control and monitoring mechanisms which permit traffic management6

to mitigate congestion and improve traffic flow in real-time. While the exact combination of sensors,7

controllers and transmitters differ from location to location, this article chooses one particular8

instatiation of a freeway control system, which we find to be representative. Figure 1(a) shows a9

control system installed near a junction of a freeway and an onramp. We consider three elements10

of the control system:11

• Sensors, used to gather information about the freeway state. For example, loop detectors12

are used to acquire the flow of vehicles along the freeway and onramps/offramps, while13

the trajectory of vehicles equipped with GPS (or containing GPS-powered smartphone14

applications) can be used for estimating real-time traffic conditions (5).15

• Actuators, used to influence the evolution and efficiency of the freeway. The most common16

actuation strategy is ramp metering, where traffic lights installed on freeway onramps17

control the influx of vehicles to the mainline. Other actuators include variable speed18

limit control (11) and variable message signs. For the purposes of this article, the ramp19

meters are the only actuators we will consider.20

• Local controllers, such as 2070 boxes (12) and the older 170 boxes (13), which allows21

interaction between the sensors and ramp meters.22

We assume control boxes are wired to the nearby metering light and have a wireless connection to23

nearby sensors. Vehicles with navigation devices such as TomTom (14) automatically analyze radio-24

broadcasted traffic reports from traffic control centers to improve their navigating functionality.25
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In order to allow coordinated control and sensing across a freeway stretch with many on-1

ramps, the local control systems are connected to allow for a more global configuration. Figure 1(b)2

depicts our representative global communication architecture. The local control boxes are wired3

together along the freeway to form the actuation network, with intermediary relay boxes allowing4

for an uplink and downlink to a remote command center. The command center contains instrumen-5

tation and personnel for monitoring traffic conditions and setting the metering lights accordingly.6

Infrastructure Weaknesses7

Infrastructure is built up of several layers and each layer poses individual security risks, starting8

from tampering with the actual devices, cables or wireless signals, to attacking the software of9

deployed devices or attacking the command center. Attackers can leverage vulnerabilities in the10

infrastructure to control or disrupt these connected systems. Individual attacks can thereby target11

the physical layer, the communication layer, at the layer of the control center, or any combination12

thereof.13

Direct physical access: The physical layer is the lowest attackable layer and involves direct14

access to individual wires, opening and accessing the control box, or tampering with individual15

sensors. Physical attacks involve clipping, tampering, removing, or replacing of wires or hardware.16

For instance, copper wire theft near freeways is a common occurence (15, 16). Such attacks need17

low sophistication, are easy to carry out, and are hard to protect against as each device must be18

physically protected given that software-based protection is not effective against physical attacks.19

On the other hand, the attack is costly as (i) direct physical access is needed, (ii) the attacker is20

exposed, and (iii) the attack does not scale (i.e., each piece of equipment is attacked individually).21

Examples of such an attack in Figure 1(a) include clipping or removing wires between sensors and22

the 2070 controller, tampering with individual sensors, the ramp meter, or the 2070 controller.23

Proximity access (locality): Figure 1(b) depicts multiple control boxes chained together24

to form a corridor where actuators have a coordinated plan between the different control boxes.25

An attack on the communication layer forges, removes, replaces, or inserts attacker-controlled26

measurements into the control system, which may then make further decisions based on forged27

data. An attacker can either replace or add sensors to the current sensor network to inject new28

measurements or attack the software running on sensors and/or actuators to take over control.29

Both aspects of the attack are feasible; the first aspect needs additional hardware and an attacker30

that delivers the hardware, the second aspect needs to find a software vulnerability with a security31

analysis of the existing devices. These attacks need higher sophistication and knowledge but no32

longer need direct hardware access to the existing sensors and scales to some extent.33

Networked/virtual access: Remote connections from the physical freeway infrastructure34

to the command center defines another layer with potential vulnerabilities. An attack on this35

layer can be done by forging or controlling messages from/to the command center and possibly36

even compromises the command center itself. For this scenario an attacker needs to find software37

vulnerabilities in the software running in the command center. Direct access to these centers is38

usually not given and this attack therefore is highly sophisticated (or needs insider access). This39

attack is the hardest possible attack as command centers and back links are usually guarded but40

allows a great scaling effect as many control boxes can be controlled directly.41

Table 1 gives a (partial) list of vulnerabilities in our freeway control system along with42

classifications for each attack.43

Attack Scenarios44

We will consider two fictional but realizable attack scenarios and study their consequences on the45

compromised network. The first scenario involves indirect control of the freeway, through spoofing46
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Attack Description Access Control Complexity Cost

copper theft/clipping wires physical low low low
replacing a single sensor/actuator physical low low low
attacking a single sensor/actuator locality low medium low
replacing a single control box physical medium medium medium
replacing a set of sensors/actuator physical medium medium medium
attacking a set of sensors/actuator locality low medium low
replacing a corridor of control boxes physical high medium medium
attacking a corridor of control boxes network high high medium
attacking the control center network high high high
spoofing GPS data network medium high medium
attacking navigation software network medium medium medium

TABLE 1 List of possible infrastructure attacks with access to different layers that is
needed, level of control that the attacker gains, sophistication of the attack, and cost.

the sensors, to achieve a local objective. The second scenario involves complete control of the ramp1

meters to achieve a global objective along a larger stretch of freeway.2

Indirect Attack: VIP-lane3

The objective of the attacker is to clear a predetermined section of a regularly congested freeway.4

The attacker decides to drop low-cost wireless transmitters near the 2070 controllers of the freeway5

section1. As the actual loop-detector sensors communicate with the control box wirelessly, the6

attacker will be able to override the loop-detector signals and send false data that indicates a fully7

congested freeway. This will indirectly affect the ramp meters, which will respond by limiting8

onramp flow and thus clearing the mainline of the freeway. The attacker will then transmit false9

GPS location data via a set of hacked cellphones to trick navigation software into believing the10

freeway is congested. Approaching vehicles using navigation software will then be rerouted around11

the fake congestion which leads to a further reduction in incoming flow. The net effect of the12

attack is a congestion-free commute for the attacker: a private VIP lane created purely by indirect,13

sensor-based attacks.14

Direct Attack: catch-me-if-you-can15

The objective of the attacker is to escape from pursuants along a large section of freeway. In order16

to achieve this objective, a full control of the ramp meters is used. One approach is to hack the17

command center itself, with the downside being the expensiveness and complexity of such an attack18

(see Table 1). Another solution is to begin by hacking of the 2070 boxes, and since all the 207019

boxes are networked along the freeway (see Figure 1(b)), a single hacked box can serve as a means20

of compromising the other nearby boxes, leading to a cascading attack. The attacker can then21

acquire full control of all the 2070 boxes, and in turn, the ramp metering lights.22

Once full control is obtained, precise control must be applied to achieve the desired objective.23

The remainder of this article describes how a freeway can be controlled just by varying the metering24

lights in a coordinated fashion, and how the catch-me-if-you-can scenario can be achieved.25

1see our link (17) for a Youtube video depiction
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THEORY FOR COORDINATED FREEWAY ATTACKS1

An attacker can negatively influence the performance of the freeway network or achieve some2

criminal goal by setting the metering lights to a particular configuration. Such an attack can be3

carried out by leveraging a discrete dynamical freeway model to compute metering rates using4

finite-horizon optimal control and multi-objective optimization techniques.5

Freeway Model6

We model the freeway as a sequence of n mainline links (labeled 1, . . . , n), where both an onramp7

and offramp are present between consecutive links2. Flow dynamics along a link i is modeled8

using a discretized version of the Lighthill-Whitham-Richards (18, 19) (LWR) partial differential9

equation. The continuous LWR equation takes the following form:10

∂ρi (t, x)

∂t
+
∂f (ρi (t, x))

∂x
= 0, (1)

with ρi (t, x) representing the density of vehicles at a particular point in space and time, and f11

capturing the relationship between the density and flow of vehicles, a relationship referred to as a12

fundamental diagram of traffic. We assume f has the following triangular form (20):13

f(ρ) = min (vρ, w(ρmax − ρ), fmax) ,

where v, w, ρmax and fmax are characteristics of the particular freeway section.14

Our discrete model is adapted from (3, 21) and was chosen for its suitability to ramp
metering applications. Following (3), we discretize Equation (1) into cells of spatial size 4x and
temporal size 4t using a Godunov-based or cell-transmission-model (CTM) scheme (20, 22, 23).
The resulting discrete model has T time-steps, N spatial cells, and N onramps and offramps. The
state of cell i ∈ [1, N ] at time k ∈ [1, T ] is given by ρ [i, k], while the number of vehicles on the
adjacent onramp is given by l [i, k]. The states of cell and onramp i are advanced from time k to
k + 1 according to the following equations:

δ [i, k] = min (vρ [i, k] , fmax) (2)

σ [i, k] = min (w (ρmax − ρ [i, k]) , fmax) (3)

d [i, k] = min (l [i, k] /4t, rmax) (4)

f in [i, k] = min (σ [i, k] , d [i− 1, k] + β [i, k] δ [i, k]) (5)

fout [i, k] =


δ [i, k] if pf in[i+1,k]

β[i,k](1+p) ≥ δ [i, k]
f in[i+1,k]−d[i+1,k]

β[i,k] if f in[i+1,k]
1+p ≥ d [i+ 1, k]

pf in[i+1,k]
(1+p)β[i,k] otherwise

(6)

r [i, k] = f in [i, k]− β [i, k] fout [i, k] (7)

ρ [i, k + 1] = ρ [i, k] +
4t
4x

(
f in [i, k]− fout [i, k]

)
(8)

l [i, k + 1] = l [i, k] +4t (D [i, k]− r [i, k]) (9)

Equations (2)-(9) model the merging of onramp and mainline flows, as well as the propoga-15

tion of congestion waves across the freeway network.16

2Spatial cells which do not have an adjacent onramp (or offramp), one can set the vehicle demand to zero (set the
offramp turning ratio to zero).
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Onramp Metering Model We introduce a control parameter ui [k] ∈ [0, 1], a scaling factor on the1

demand of onramp i at time-step k and represents the influence of onramp traffic lights on the2

discrete model. We augment Equation (4) to include the introduced control:3

d [i, k] = u [i, k] min (l [i, k] /4t, rmax) (10)

Finite-Horizon Optimal Control and the Adjoint Method.4

Using the model in Section 4.1, we seek a method to compute a coordinated ramp metering policy5

u [i, k] over all space i ∈ [1, N ] and time k ∈ [1, T ], which minimizes (or reduces) some specified6

objective. We cast the problem as a finite-horizon optimal control problem, and present a method-7

ology, referred to as the adjoint method, for solving such constrained optimization problems.8

Generally speaking, we consider the minimization of some objective that is a function of9

both the control variables and the state variables. The state variables are assumed a deterministic10

function of the control variables. Let u be the concatenation of all metering control parameters11

u [i, k] and let ρ be the concatenation of all state variables (variables not controlled directly, e.g.12

density and queue length variables). After concatenating all the discrete Equations (2)-(9) and mov-13

ing all terms to the left-hand side, one can succinctly express the discrete, controllable dynamical14

system by:15

H (u, ρ) = 0. (11)

Given some objective function J (u, ρ), our goal is now to find the optimal u∗ which solves the
following constrained finite-horizon optimal control problem:

min
u

J (u, ρ) (12)

subject to: Equation (11). (13)

Gradient Methods via the Adjoint Method As J and H may be non-convex functions of the con-16

trol and state, it is not always possible to efficiently find the global optimum of J in Problem (12)-17

(13). Thus, we use a first-order gradient descent approach as a means of reducing the objective18

value.19

We now need to compute the gradient of J with respect to the control variables u subject20

to the H constraints. With the partial derivative3 expressions of H and J , we can compute the21

gradient of J with respect to u:22

∇uJ
(
u′, ρ′

)
=
∂J (u′, ρ′)

∂ρ

dρ

du
+
∂J (u′, ρ′)

∂u
(14)

or in abbreviated notation:23

∇uJ = Jρduρ+ Ju (15)

It is often prohibitively expensive to compute duρ explicitly. Therefore, as the gradient of24

H with respect to u is always zero (since the right hand size is constant for feasible u, ρ):25

∇uH = Hρduρ+Hu = 0, (16)

we can add it to Equation (15) with a Lagrange-like multiplier λ:26

3The partial derivative terms are not always defined in terms of classical derivatives. We omit this technical detail
to simplify the presentation and instead refer the reader to (24, 25, 26).
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∇uJ = Jρduρ+ Ju + λT (Hρduρ+Hu) (17)

=
(
Jρ + λTHρ

)
duρ+

(
Ju + λTHu

)
(18)

The adjoint method chooses the λ value to set the first term to zero (and eliminate duρ),1

and arrive at the following expressing for ∇uJ :2

∇uJ =
(
Ju + λTHu

)
(19)

such that: HT
ρ λ = −Jρ (20)

The λ variable is commonly referred as the discrete adjoint variable (24, 27), while the3

system of equations in (20) is referred as the discrete adjoint system. It is shown in (3) that for4

freeway traffic network applications, the adjoint method leads to gradient computations which scale5

linearly with the size of the network and time-horizon, making it especially suitable for real-time6

applications.7

Several Objectives: Interactive Multi-objective Optimization8

Some objective are hard to state: as a consequence, traducing a goal into an objective function to9

minimize is not always an easy thing to do. A solution is to divide the objective into multiple and10

smaller sub-objectives that are easier to state.11

For example, in the catch-me-if-you-can scenario the attacker wants to escape from his12

chasers. Hence the attacker wants to cross the freeway as quickly as possible, but also wants to13

slow down the chasers. As a consequence, we have two simpler but competing objectives.14

Such a situation with multiple, competing objectives can be described as a multi-objective15

optimization problem.16

Multi-objective Optimization and Pareto Front17

Definition 4.1 (Multi-objective optimization problem). Given N ∈ N, let (fi (u, ρ)) be a set18

of objective functions describing the goal of a freeway attack. The multi-objective optimization19

problem we consider is the following simultaneous minimization problem:20

min
x∈X

(f1(x), f2(x), . . . , fN (x)) (21)

As we want to minimize a vector and not a scalar, we need to define how a solution of21

equation (21) can be “better” than another.22

Definition 4.2 (Pareto front). An solution x ∈ X is said to Pareto dominate another solution x′23

if:24

• ∀i ≤ N fi(x) ≤ fi(x′)25

• ∃j ≤ N fj(x) < fj(x
′)26

A solution x ∈ X is called Pareto optimal if there is no other solution x′ that dominates it. The27

set of all Pareto-optimal solutions is called the Pareto front, P ⊆ X28

Hence, we consider Pareto-optimal solutions to be the solutions of Equation (21).29
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Decision Maker1

There are many ways to find a Pareto-optimal solution. For example if we have three objective2

functions, we can minimize f1 first, minimize f2 on the subset arg minx∈X f1(x) and finally minimize3

f3 on the remaining subset to obtain a Pareto-optimal solution. But we could also do the same in4

any order, with potentially very different results. Thus, the Pareto front can sometimes be very5

large and hard to explore.6

As a consequence, we need to be able to identify the most desirable solutions within the7

potentially large Pareto front. As all Pareto-optimal solutions are equally considered solutions of8

Equation (21), human expertise is needed to select the preferred solutions.9

The Decision Maker (DM) represents the human whose expertise will help solve the multi-10

objective optimization problem. We assume that the DM is able to discriminate any solution11

on the Pareto front. As a consequence, the DM has a hidden objective function: u (u, ρ), the12

utility function, which can only be indirectly observed through probing the DM. With u, we can13

reformulate the multi-objective optimization problem as:14

min
x∈P

u(x) (22)

The DM is essential to most multi-objective optimization techniques, and there are several15

ways to interact with him:16

• He can evaluate his utility function u on any given Pareto-optimal solution.17

• He can give more general preferences on the Pareto front, for example a preference for18

one of the objective functions, or for a given subset of the Pareto front.19

Finite-horizon oOptimal Control and Multi-objective Optimization20

Scalarization In order to find Pareto-optimal solutions, we will reduce the problem to the common21

scalar minimization problem, which can be solved with the optimal control tools of Section 4.2.22

This process is called scalarization. As our particular scalarization, we use a linear combination of23

the individual objective functions:24

f(x) =
∑
i≤N

aifi(x). (23)

The DM can favor a specific objective fi over other objectives by increasing the ai coefficient.25

As a consequence, we can explore at least a subset (with the hope that this subset is26

representative of the entire Pareto front) of the Pareto front by minimizing a linear combination of27

the objective functions.28

A Posteriori Method Equation (23) allows one to sample the Pareto front by exploring the space29

of the coefficients which can provide to the DM a representative subset of Pareto-optimal solutions.30

The DM can then chose a posteriori his preferred solutions. And as such this method is called an31

a posteriori method.32

This method can be computationally costly, but provides a good overview of the Pareto33

front. In particular, it gives an estimation of the lower and upper bounds of each objective function.34

Thus one can scale each objective function to take values only between 0 and 1, allowing the different35

objectives to be easily compared.36
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Interactive Method Unlike with the a posteriori method, Interactive methods are based upon a1

repeated interaction with the Decision Maker.2

1. The DM gives an indication of how to compute the next Pareto-optimal solution — for3

example an idea for the next set of coefficients (ai) to use and his evaluation of the4

previous simulation.5

2. The interactive scalarization process uses that indication to create a scalar objective —6

for example using Equation (23), we obtain a scalar objective with the set of coefficients7

given by the DM.8

3. The finite-horizon optimal control method is used to solve the corresponding optimization9

problem, and gives the result to the DM.10

This process is repeated until the DM is satisfied with the results.11

The important part of the interactive method is the kind of indications that can be given12

by the DM, and how the indications and the simulation history will be used in the scalarization13

process. Section 5.2 gives an example of an interactive method.14

ATTACKS15

We will now apply the tools of adjoint-based finite-horizon optimal control and multi-objective16

optimization from Section 4 to two examples of attacks. The first attack highlights the precision17

of coordinated ramp metering attacks, while the second showcases the benefits of multi-objective18

optimization.19

First Attack: congestion-on-demand20

Congestion-on-demand describes a class of objectives where an attacker wishes to create congestion21

patterns of a precise nature. This can be done by constructing objectives which maximize total-22

travel-time over the desired region in space and time, and minimize total-travel-time everywhere23

else.24

The attacks for the first example, box objective (to be described), use a macroscopic freeway25

model of a 19.4 mile stretch of the I15 South Freeway in San Diego California. The model was26

split into 125 links with 9 onramps and was calibrated (28, 29) using loop-detector measurements27

available through the PeMS loop-detector system (1).28

Figure 2(a) is a Space-time diagram of the I15 freeway. It plots a color representation of29

traffic density ρ for every time and location. Given the relationship between ρ, the velocity v and30

the flow f (see Section 4.1), the space-time diagram gives a good indication of the entire freeway31

state. There is no ramp metering control applied to the simulation in Figure 2(a), i.e. the ramp32

meters are always set to green.33

Examples34

Box Objective The box objective creates a box of congestion in the space-time diagram, i.e. con-35

gestion will be created on a precise segment of the freeway during a precise time interval.36

As we have two competing goals (maximize congestion in the box, minimize congestion
elsewhere), we apply the multi-objective optimization procedure in Section 4.3. Indeed, we have
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0 mi.

(a) Simulation with no metering.

4.5 mi.

14 mi.

8:20 8:40

(b) Trade-off: α = 0.3 (c) Trade-off: α = 0.5 (d) Trade-off: α = 0.9

FIGURE 2 Figure 2(a) depicts a space-time diagram of vehicle densities on 19.4 mile
stretch of I15 Freeway with no ramp metering. The box objective, and example of
congestion-on-demand, is applied in Figures 2(b)-2(d). The user specifies a “desired”
traffic jam between postmile 4.5 and 14, for a duration of 20 minutes between 8:20 and
8:40. For this, the α parameter enables the proper design of tradeoffs in the objective.

the following two objective functions:

f1 (u, ρ) = −
∑

(i,k)∈Box

ρ [i, k] (24)

and f2 (u, ρ) =
∑

(i,k) 6∈Box

ρ [i, k] (25)

To solve this multi-objective problem, we will follow the method described in Section 4.3 and1

balance our two objectives using a linear combination. As we limit ourselves to one degree of2

freedom, we introduce a single parameter α ∈ [0, 1] and minimize the following objective function:3

Jα (u, ρ) = α f1 (u, ρ) + (1− α) f2 (u, ρ) , (26)

where α is a trade-off parameter: α = 1 is complete priority on the congestion inside the box, while4

α = 0 is complete priority on limiting density outside the box.5
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The results of the box objective are presented in Figures 2(b)-2(d). We give space-time1

diagrams for three different values of the parameter α. The box of the objective is shown as a black2

frame with an actual size of 10 miles and 20 minutes. As the trade-off moves from α = 0.3 to 0.9,3

there is a clear increase in the congestion within the box, at the expense of allowing the congestion4

to spill outside the desired bounds. In fact, Figure 2(d) (α = 0.9) activates the bottleneck near5

the top-left of the box earlier than Figure 2(b) (α = 0.3) to congest the middle portion of the box,6

which leads to a propagation of a congestion wave outside the bottom-right of the box.7

FIGURE 3 Space-time diagram obtained following a congestion-on-demand attack
with a Cal logo as the objective. The attack was simulated on a 90 miles and 33-
onramp freeway, for a 2 hours simulation time and using coordinated ramp metering.

Arbitrary Patterns Any congestion pattern may be created if the network has enough control8

ramps. Indeed, we can choose the negative and positive coefficients of the congestion-on-demand9

method carefully to match a desired pattern. We give an example in Figure 3: with the proper ramp10

metering strategy, we are able to create a space-time diagram resembling the logo. See (30)11

for a video simulation of the Cal attack.12

Attack 2: catch-me-if-you-can13

We will now show that the use of the multi-objective optimization methods introduced in Section 4.314

can allow the design of even more realistic and hard to define attacks. We will consider the15

example of a vehicle chase, presented in Section 3.3.2. Some vehicles are pursuing the driver along16

the freeway, while the driver wishes to escape. This objective is distinct from the congestion-on-17

demand attack, as our desired congestion pattern cannot immediately be imagined beforehand and18

is highly dependent upon the eventual path of the driver.19

This attack cannot easily be translated into a scalar objective function. Therefore, we20
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translate it into a multi-objective problem (see Section 4.3). We can split this attack into four1

simpler and sometimes conflicting goals, each goal associated with an objective function to minimize:2

1. The followers (everyone behind the driver) should cross the freeway section as slowly as3

possible — Minimizing f1 will maximize the traffic density of all freeway sections behind4

the driver’s trajectory.5

2. In particular, those vehicles directly behind the driver should be impeded with increased6

priority — Minimizing f2 will maximize the traffic density difference between the cells7

of the driver’s trajectory and the cells immediately behind.8

3. As to not arrouse suspicious from monitoring traffic managers, most other travel times9

should be reduced — Minimizing f3 will reduce the total travel time of all the vehicles10

on the freeway to avoid unneccessary congestion.11

4. The driver should quickly exit the freeway — Minimizing f4 will reduce the driver’s travel12

time, to allow him to cross the freeway as quickly as possible and escape his followers.13

We have four objective functions. In practice, presenting the results is clearer with only14

three functions, and we have chosen to keep only f1, f2 and f3 in this article, as f4 was not15

essential for producing interesting results. We will use the linear scalarization technique presented16

in Section 4.3, and chose three coefficients a1, a2, a3 ∈ R+, so that
∑3

i=1 ai = 1. The objective17

function we want to optimize is then the following:18

J (u, ρ) =
3∑
i=1

ai fi (u, ρ) (27)

Implementation19

Graphical Representation The space-time diagram in Figure 4 for a 21 miles freeway with 6 ad-20

jacent onramps and a 20 minutes simulation time, is an example output of the optimal control21

scalarization method. Such plots are useful for the DM to discern between “good” and “bad” me-22

tering rates. The driver’s trajectory is represented in blue, while the trajectory of three pursuants23

(a, b, c) are also depicted losing ground on the driver.24

Ternary Graph The triangle in Figure 4 depicts the chosen set of coefficients ai. The red dots25

represents the weighted average of the three corners of an equilateral triangle: the closer the red26

circle is to the ai corner, the closer ai is to 1. This is called a ternary graph. The top edge will27

always be a1, and the right and left a2 and a3 respectively. In this example, we can see that the28

dominant coefficients are a1 and a2. As a consequence, we have an significant congestion behind29

the driver, forming immediately behind him.30

A posteriori Method - Grid Exploration Our approach for the a posteriori method is to automat-31

ically “explore the triangle of coefficients” to help the Decision Maker find a preferred solution.32

Figure 5 presents the result of the a posteriori method. We plot the values of each objective function33

for the optimal solution associated with all sets of ai coefficients. The lowest values of each fi are34

always reached with the highest values of ai (where fi has been normalized to take values between35

0 and 1; see Section 4.3). Any non-monotonicity in the graphs are attributed to early terminations36

of the optimizer’s gradient descent or convergence to sub-optimal local minima. The conflicting37

nature of the objectives is apparent. Figure 5(b) shows that f1 is penalized more by high a3 values38
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0 mi.

FIGURE 4 Space-time diagram with a ternary graph representing the a1, a2, a3 co-
efficients (here 30%, 55% and 15% respectively) used for the scalarization process in
the catch-me-if-you-can example. The trajectory of the driver (blue line) appears to
always gain distance in relation to pursuants further upstream (black lines). Best
viewed in color.

than by high a2 values, i.e. lowering the total travel time at the expense of congesting the region1

behind the driver.2

The a posteriori method provides the DM with a global overview of the Pareto front,3

enabling him to immediately locate a desired solution, or at least identify interesting starting4

points in the Pareto front. For example, Figure 5 gives an indication that the center regions of the5

triangles have large variations and should be explored further.6

Interactive Method A web application (diagram in Figure 64 was developed to allow a full explo-7

ration of the interactive method. The DM first selects his desired coefficients (ai) by clicking on8

the appropriate spot within triangle b). Then, after a scalarization using the particular coefficients9

and an optimization of the resultant objective, the interface plots the space-time diagram of the10

resulting simulation in window a), along with the driver’s trajectory. Any other vehicle’s trajectory11

can be visualized by clicking at the starting point of the desired trajectory. To enhance the explo-12

ration process, the interactive program also chooses two random (but nearby) sets of coefficients13

and plots their simulation in c1) and c2).14

Figure 7 shows an overview of the results obtained while using the interactive interface.15

The first column shows simulations for the corners of the ternary graph, i.e. only one objective is16

active at a time. The results are intuitive in that optimizing f1 (Figure 7.1) produces congestion17

everywhere behind the driver, optimizing f2 (Figure 7.2) creates a distinct increase in congestion18

4Web application demo available at (30)
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Normalized

objective

values for fi

(b) Scaled values of f1 (c) Scaled values of f2 (d) Scaled values of f3

FIGURE 5 A grid exploration over the ternary graph. An optimization was conducted
for a grid of coefficients regularly spaced on the ternary graph. The resulting scalarized
objective is decomposed into the constituent objectives (normalized between 0 an 1)
and plotted on separate summary ternary graphs.

behind the driver, and optimizing f3 (Figure 7.3) maintains critical density everywhere, equivalent1

to maximizing throughput at maximum freeway speeds.2

The second column (Figures 7.A-C) shows an interactive shift from favoring f3 (minimize3

travel times) to favoring f2 (trajectory boundary congestion). The shift progressively limits con-4

gestion formation, and intelligently removes more congestion ahead of the driver, as to not impact5

the delay of pursuant vehicles.6

The last column of Figure 7 demonstrates how the interactive process allows for fine-tuning7

of the balance of the objectives. Figure 7.a appears to be overly congested in the driver’s trajectory.8

An interactive progression towards lower total travel times concludes with a desirable congestion9

boundary in Figure 7.c.10

CONCLUSION11

This article presents an overview of freeway traffic control systems and their vulnerability to phys-12

ical and cyber-attacks. The impact of an attack is understood via the response of the control13

system, with direct attacks on the metering lights being potentially more effective than indirect14

attacks on the sensing infrastructure. Coordinated ramp metering attacks, being the highest level15

compromise, are extensively analyzed using methods from the fields of optimal control and multi-16

objective optimization. Detailed numerical simulations of coordinated ramp metering attacks were17

conducted to demonstrate the hazards of such compromises and the utility of optimal control tools18

in not only the hands of traffic managers, but also of adversaries.19

As future work, we will develop methods that leverage knowledge of freeway dynamics20

to detect when a compromise of the traffic control system has occured and how to mitigate the21

potential harm. For instance, as already demonstrated on water SCADA systems (31), one can22

detect when sensor readings lie outside those expected given the dynamical assumptions and classify23

such a sensor as faulty or compromised.24
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FIGURE 7 Summary of catch-me-if-you-can simulations generated via the interactive
method. Column 1 shows optimizations over individual objectives. Column 2 shows
a transititon from favoring f3 to favoring f2. Column 3 shows a progression across all
three objectives.


