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Recovering Information

Knowledge of information (data) flow and 

control flow of an application crucial for analysis
• Current tools focus on just one type of flow

Combine information flow and control flow into 

high-level data structure

• Hybrid, Information- and Control-Flow-Graph (HI-

CFG) using binary analysis
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HI-CFG: Attack Polymorphism

Step one: phase partitioning
• Divide a computation into steps that transform data 

from an original input to an internal format

• Based on HI-CFG buffers, information-flow and 

producer/consumer edges

Step two: phase aware input generation

• Aim is to produce an input that triggers a vulnerability 

deep within a program

• Use phase structure to divide and conquer

• Symbolic execution with search pruning
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HI-CFG: trace-based construction 1/3

Trace enables us to recover both control-flow 

and information-flow of an application using 

some concrete input

1. Start with specific input data

2. Collect an instruction level trace (TEMU)

3. Process the traces to create a HI-CFG



HI-CFG: trace-based construction 2/3

Work through the execution trace and group 

“related” memory accesses
• Categorize buffers hierarchically

• Conservative and taint-based information flow

Grouping heuristics
• Instructions use same base pointer

• Temporally and spatially correlated memory accesses 



HI-CFG: trace-based construction 3/3

Apply graph partitioning algorithms to divide the 

HI-CFG at “natural” boundaries to separate 

code and data structures
• Extract functionality into separate modules for reuse 

or transformation

No source info needed, except 
addresses of malloc/calloc/free
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Scalable SE is key

Vulnerability detection
• Both in malware and legit applications

Model extraction
• Automatically learn security-relevant models

Binary code reuse

• Identify interface and extract components



Evaluation setup

Simple transformation
• RLE decoding

• Output as target, SE produces input

Configurations

• KLEE

• FuzzBALL

Detailed results from TR Berkeley/EECS-2013-125



Limitations of SE



Limitations of SE

Vanilla symbolic execution does not scale!



Transformation-aware SE

Computations rely on input transformations

Focus on transformations to reduce complexity
• Surjectivity guarantees existing pre-image

• Sequentiality ensures output is never revoked

• Streaming bounds the transformation state

Covered transformations include decryption, 

decompression, escape sequences, image or 

sound decoding



Feedback-guided optimization (FGO)

Search pruning
• if target “unreachable”

Search prioritization
• look for short inputs that maximize size of output

Symbolic array accesses

• treat choice of index like a branch (baseline)

• combine all possible values into formula



Evaluation setup

Simple transformation
• RLE decoding

• Output as target, SE produces input

Configurations

• KLEE

• FuzzBALL

• FuzzBALL-FGO



FGO: 1 order of magnitude



Transformation-aware SE

Divide-and-conquer strategy for SE
• HI-CFG captures transformations

• Split SE on transformation boundaries



Evaluation setup

Two transformations
• HEX decoding

• RLE decoding

Different configurations:

• KLEE/FuzzBALL

• FuzzBALL-FGO

• FuzzBALL-HI-CFG (includes FGO)



Transformation-aware SE: another 1 

order of magnitude



Poppler Case Study

Poppler PDF viewer
• Type 1 font parsing vulnerability CVE-2010-3704

HI-CFG construction using benign document 

that loads a font
• PDF generated by pdftex using a small tex file 
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Related Work

HOWARD (Slowinska et al., NDSS’11, ATC12):

Type and data structure inference from binaries
• HI-CFG looks at code & relationships between code 

and data (not just data structures)

AEG (Avgerinos et al., NDSS’11) and

MAYHEM (Cha et al., Oakland’12):

SE-based attack input generation
• HI-CFG enables focus on iterative and scalable SE 

(not focus on coverage)
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Conclusion

Presented HI-CFG as new data-structure
• Construction from binary execution traces

HI-CFG enables

• Deep program analysis

• Recover components from binaries

• Guide SE along probable paths

FuzzBALL symbolic execution engine:

• http://github.com/bitblaze-fuzzball/fuzzball

http://github.com/bitblaze-fuzzball/fuzzball

