
HI-CFG: 
Construction by Dynamic Binary 

Analysis, and Application to 

Attack Polymorphism

Dan Caselden, Alex Bazhanyuk, 

Mathias Payer, Stephen McCamant, 

Dawn Song, UC Berkeley



Recovering Information

Knowledge of information (data) flow and 

control flow of an application crucial for analysis
• Current tools focus on just one type of flow

Combine information flow and control flow into 

high-level data structure

• Hybrid, Information- and Control-Flow-Graph (HI-

CFG) using binary analysis



HI-CFG Overview

1

2

3 4

5
6

Buffer A

Buffer B

CFG view Data flow view

Buffer C



Outline

Motivation

Attack Polymorphism

Dynamic HI-CFG Construction

Evaluation

Conclusion



HI-CFG: Attack Polymorphism

Step one: phase partitioning
• Divide a computation into steps that transform data 

from an original input to an internal format

• Based on HI-CFG buffers, information-flow and 

producer/consumer edges

Step two: phase aware input generation

• Aim is to produce an input that triggers a vulnerability 

deep within a program

• Use phase structure to divide and conquer

• Symbolic execution with search pruning



HI-CFG: Attack Polymorphism

Program (with target condition)

Input



HI-CFG: Attack Polymorphism

Program (with target condition)

Input buf0 buf1 buf2
trans. trans. trans.

PoC

Input



HI-CFG: Attack Polymorphism

Program (with target condition)

Input buf0 buf1 buf2
trans. trans. trans.

SESESE
PoC

Input



Outline

Motivation

Attack Polymorphism

Dynamic HI-CFG Construction

Evaluation

Conclusion



HI-CFG: trace-based construction 1/3

Trace enables us to recover both control-flow 

and information-flow of an application using 

some concrete input

1. Start with specific input data

2. Collect an instruction level trace (TEMU)

3. Process the traces to create a HI-CFG



HI-CFG: trace-based construction 2/3

Work through the execution trace and group 

“related” memory accesses
• Categorize buffers hierarchically

• Conservative and taint-based information flow

Grouping heuristics
• Instructions use same base pointer

• Temporally and spatially correlated memory accesses 



HI-CFG: trace-based construction 3/3

Apply graph partitioning algorithms to divide the 

HI-CFG at “natural” boundaries to separate 

code and data structures
• Extract functionality into separate modules for reuse 

or transformation

No source info needed, except 
addresses of malloc/calloc/free



Outline

Motivation

Attack Polymorphism

Dynamic HI-CFG Construction

Evaluation
• Scalable Symbolic Execution

• Poppler Case Study

Conclusion



Scalable SE is key

Vulnerability detection
• Both in malware and legit applications

Model extraction
• Automatically learn security-relevant models

Binary code reuse

• Identify interface and extract components



Evaluation setup

Simple transformation
• RLE decoding

• Output as target, SE produces input

Configurations

• KLEE

• FuzzBALL

Detailed results from TR Berkeley/EECS-2013-125



Limitations of SE



Limitations of SE

Vanilla symbolic execution does not scale!



Transformation-aware SE

Computations rely on input transformations

Focus on transformations to reduce complexity
• Surjectivity guarantees existing pre-image

• Sequentiality ensures output is never revoked

• Streaming bounds the transformation state

Covered transformations include decryption, 

decompression, escape sequences, image or 

sound decoding



Feedback-guided optimization (FGO)

Search pruning
• if target “unreachable”

Search prioritization
• look for short inputs that maximize size of output

Symbolic array accesses

• treat choice of index like a branch (baseline)

• combine all possible values into formula



Evaluation setup

Simple transformation
• RLE decoding

• Output as target, SE produces input

Configurations

• KLEE

• FuzzBALL

• FuzzBALL-FGO



FGO: 1 order of magnitude



Transformation-aware SE

Divide-and-conquer strategy for SE
• HI-CFG captures transformations

• Split SE on transformation boundaries



Evaluation setup

Two transformations
• HEX decoding

• RLE decoding

Different configurations:

• KLEE/FuzzBALL

• FuzzBALL-FGO

• FuzzBALL-HI-CFG (includes FGO)



Transformation-aware SE: another 1 

order of magnitude



Poppler Case Study

Poppler PDF viewer
• Type 1 font parsing vulnerability CVE-2010-3704

HI-CFG construction using benign document 

that loads a font
• PDF generated by pdftex using a small tex file 



Poppler Phases

I/O

Flate

decode

Read 

Font
Parse 

Font



Poppler Buffers

space

bf792000

4096

alloc

828b420

312

alloc

829f008

34104

alloc

82b7550

9887

memcpy

GfxFont::readEmbed

FontFile(Xref*, int*)

FlateStream::getHuffmanCode

Word(FlateHuffmanTab*)

FoFiType1

::parse()

(implicit)



Poppler Buffers

space

bf792000

4096

alloc

828b420

312

alloc

829f008

34104

alloc

82b7550

9887

memcpy

GfxFont::readEmbed

FontFile(Xref*, int*)

FlateStream::getHuffmanCode

Word(FlateHuffmanTab*)

FoFiType1

::parse()

(implicit)
Automatically produces compressed exploit



Outline

Motivation

Attack Polymorphism

Dynamic HI-CFG Construction

Evaluation

Related Work

Conclusion



Related Work

HOWARD (Slowinska et al., NDSS’11, ATC12):

Type and data structure inference from binaries
• HI-CFG looks at code & relationships between code 

and data (not just data structures)

AEG (Avgerinos et al., NDSS’11) and

MAYHEM (Cha et al., Oakland’12):

SE-based attack input generation
• HI-CFG enables focus on iterative and scalable SE 

(not focus on coverage)



Outline

Motivation

Attack Polymorphism

Dynamic HI-CFG Construction

Evaluation

Related Work

Conclusion



Conclusion

Presented HI-CFG as new data-structure
• Construction from binary execution traces

HI-CFG enables

• Deep program analysis

• Recover components from binaries

• Guide SE along probable paths

FuzzBALL symbolic execution engine:

• http://github.com/bitblaze-fuzzball/fuzzball

http://github.com/bitblaze-fuzzball/fuzzball

