Lightweight Memory Tracing

Mathias Payer*, Enrico Kravina, Thomas Gross
Department of Computer Science
ETH Zurich, Switzerland

* now at UC Berkeley

Memory Tracing via Memlets

Execute code (memlets) for every memory access

A memlet inspects a single memory access based on
target address, type of memory access, instruction,
or prior state

Memory tracing enables detailed memory access
logs, debugging of memory accesses, security checks,
privacy extensions

Memory Tracing by Example

Binary translation weaves memlets into executed code

memTrace is general, for talk let’s focus on example:
e Unlimited watchpoints: check if R/W watchpoint is set

addl (%ebx), %eax

jg bbl ea (%ebx @
jmp bb2 cm uo

/* tra i ction */
addl (%ebx), %eax

jg bbl

jmp bb2

Key to Lightweight Memory Tracing

Modern CPUs support multiple ISAs: x86/x86_64
* Most programs still 32-bit x86

Cross-ISA binary translation allows the tracer to use
additional hardware available in target ISA:

* Wider address space: isolation & performance

* Additional registers: flexibility & performance

Outline

Lightweight Memory Tracing
* Requirements
e User-defined Memlets
e Cross-ISA Binary Translation (BT)
* Implementation

Evaluation
Related Work

Conclusion

Tracing Requirements

F
v
1
'

http://eli\' We‘.k

Flexibility through BT

. Translates individual basic blocks
. Checks branch targets and origins
. Weaves memlets into code

Memlets execute
alongside application

x64 Kernel

Isolation: Larger Memory Space-

Application memory Shadow memory Translator memory

— —
O] o E_,' o
o ® > S >
o o wn wn wn
@ T % (D T A o = o
2 . O o 2 N o & H K o
- © ~ O C, ~ n = »
Q = OB © =
'y Q_ o3 = o

(@) Q ~

0x0000°0000 OxO’FFFF'FFFF (4GB) Ox?’'FFFF'FFFF (x*4GB)

Wider memory space

Isolates tracer from application

Key to Low Overhead

Fast, efficient binary translation

Letting the hardware do most of the work...
* use 64-bit addressing (aligned 4GB blocks)
» keep state in additional/wider registers
e optimize for EFLAGS usage

Implementation

memTrace implementation (open source)
e Cross-ISA translator
* Sample memlets

Small, lean implementation

Code Comments
memTrace 13,800* 3,300
Memlets 150-200 100-200

*4 900 LOC for the translation tables

Outline

Evaluation
* Unlimited Watchpoints
e Safe Memory Allocation

Related Work
Conclusion

Unlimited Watchpoints

Watchpoints trigger on memory reads/writes

Memlet checks if read/write watchpoint is set for
each memory access

addl (%ebx), %eax /* check */

jg bb1 lea(%ebx

jmp bb2 cm -lw. 0x0
jnz handler_92746
/* translated instruction */
addl (%ebx), %eax
jg bbl
jmp bb2

Evaluation Setup

SPEC CPU2006 benchmarks evaluated
 System: Ubuntu 12.04, GCC 4.6.3 (64bit)
e |Intel Corei7-2640M @ 2.80GHz, 4GB RAM

Four configurations:
* Native
* Binary translation (BT) only
* Memory Tracing
* Full Watchpoints

: Low Perf. Impact

SPEC CPU 2006

ueo|A ‘09D
93eJlany
i EXUlyds z8y
m— U C]| "0/ 17
S —— d1a4swa9’6Sy

___ X1|NJ|ed"ySty
e w Aeinod €gy

x9|dos 0SY
l|e|Sp Lyt
__ pweu'yyiy
__ PESISOI'LEY

N e |\ QSN QS
i % SOBWOJ3 GEY

—— ¢ LIS N9z 't € {7
e i O|lWESY
___ i SSoweg 9Ty
___ SOAEBMQ 0TV
i W wgoue|ex €8y
w JBISE'E/ Y
ddisuwo't/y
___ $91¥9¢Y 9P
___ wniuenbqi|'zoy
3uals'ggy

Jowwy9sy
dwqo3 Sy
s pwreey
__ 208'€0v
e & youaq4ad oot

Full Watchpoints

| — |
=

= Memory Tracing

= Binary Translation

2X

Memory Overhead

160%

2500

140%

X X

S © X X X °
N O O O O O
— i (o] (o] < o o

|/

2000
1500
1000

500

Uea|\ "0995
93eJaNY
exulyds-zgy
wql'oLy
01U01'S9t
dladsweo eSt
XIN3[ed vSvy
Aeianod-gqy
x9|dos'0St
l|esp" Ly
pweu'yyy
PESIISII'LEY
INQVsn1ed 9ey
SOBWO043 GEY
dwsnazysy
W EEY
ssaweg 9Ty
soAemMqOTv
Juqoue|ex egy
Jeise‘s/y
ddisuwo't/y
$9479¢Y V9V
wniuenbql|'zoy
3uafs'ggy
Wy 9gy
NwWqod Sy
PWecy
203'€0Y
¢dizq'10¥
yauaqiad ooy

M Native Execution [MB] mEBinary Translation [MB]

mm Full Watchpoints [MB]

Ovhd. [%]

Safe Memory Allocation

Check for use-after-free bugs and heap corruption

Intercept callstomalloc and free
* Protect metadata of allocated blocks

* Check for read/write accesses to freed blocks until they
are reused

Outline

Related Work
Conclusion

Related work

Valgrind allows high-level transformations on
machine code with performance cost (~7x for
nullgrind, ~26x for memcheck)

GDB/Hardware watchpoints allow a limited set of
watchpoints with negligible overhead

Limitations of other dynamic tracing systems are (i)
limited ISA support, (ii) high overhead, or (iii) limited
flexibility

Outline

Motivation and Introduction
Lightweight Memory Tracing
Evaluation

Related Work

Conclusion

Conclusion

memTrace enables lightweight, low-overhead <90%
memory inspection for unmodified applications

e Use resources of modern CPUs

Memlets allow user-configurable checks for each
memory access
* Flexible framework for memory tracing

Source:
e http://nebelwelt.net/projects/memTrace/
e https://github.com/gannimo/memTrace

http://nebelwelt.net/projects/memTrace/
https://github.com/gannimo/memTrace

