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Memory Tracing via Memlets

Execute code (memlets) for every memory access

A memlet inspects a single memory access based on
target address, type of memory access, instruction,
or prior state

Memory tracing enables detailed memory access
logs, debugging of memory accesses, security checks,
privacy extensions



Memory Tracing by Example

Binary translation weaves memlets into executed code

memTrace is general, for talk let’s focus on example:
e Unlimited watchpoints: check if R/W watchpoint is set

addl (%ebx), %eax

jg bbl ea (%ebx @
jmp bb2 cm uo

/* tra i ction */
addl (%ebx), %eax

jg bbl

jmp bb2



Key to Lightweight Memory Tracing

Modern CPUs support multiple ISAs: x86/x86_64
* Most programs still 32-bit x86

Cross-ISA binary translation allows the tracer to use
additional hardware available in target ISA:

* Wider address space: isolation & performance

* Additional registers: flexibility & performance
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Tracing Requirements
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Flexibility through BT

. Translates individual basic blocks
. Checks branch targets and origins
. Weaves memlets into code

Memlets execute
alongside application

x64 Kernel




Isolation: Larger Memory Space-

Application memory Shadow memory Translator memory
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Wider memory space

Isolates tracer from application




Key to Low Overhead

Fast, efficient binary translation

Letting the hardware do most of the work...
* use 64-bit addressing (aligned 4GB blocks)
» keep state in additional/wider registers
e optimize for EFLAGS usage




Implementation

memTrace implementation (open source)
e Cross-ISA translator
* Sample memlets

Small, lean implementation

Code Comments
memTrace 13,800* 3,300
Memlets 150-200 100-200

*4 900 LOC for the translation tables
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Unlimited Watchpoints

Watchpoints trigger on memory reads/writes

Memlet checks if read/write watchpoint is set for
each memory access

addl (%ebx), %eax /* check */

jg bb1  lea(%ebx

jmp bb2 cm -lw. 0x0
jnz handler_92746
/* translated instruction */
addl (%ebx), %eax
jg bbl
jmp bb2




Evaluation Setup

SPEC CPU2006 benchmarks evaluated
 System: Ubuntu 12.04, GCC 4.6.3 (64bit)
e |Intel Corei7-2640M @ 2.80GHz, 4GB RAM

Four configurations:
* Native
* Binary translation (BT) only
* Memory Tracing
* Full Watchpoints



: Low Perf. Impact

SPEC CPU 2006
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Safe Memory Allocation

Check for use-after-free bugs and heap corruption

Intercept callstomalloc and free
* Protect metadata of allocated blocks

* Check for read/write accesses to freed blocks until they
are reused
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Related work

Valgrind allows high-level transformations on
machine code with performance cost (~7x for
nullgrind, ~26x for memcheck)

GDB/Hardware watchpoints allow a limited set of
watchpoints with negligible overhead

Limitations of other dynamic tracing systems are (i)
limited ISA support, (ii) high overhead, or (iii) limited
flexibility
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Conclusion

memTrace enables lightweight, low-overhead <90%
memory inspection for unmodified applications

e Use resources of modern CPUs

Memlets allow user-configurable checks for each
memory access
* Flexible framework for memory tracing

Source:
e http://nebelwelt.net/projects/memTrace/
e https://github.com/gannimo/memTrace
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