
Protecting Applications Against TOCTTOU
Races by User-Space Caching of File Metadata

Mathias Payer
Department of Computer Science

ETH Zurich, Switzerland

Thomas R. Gross
Department of Computer Science

ETH Zurich, Switzerland

Abstract
Time Of Check To Time Of Use (TOCTTOU) race conditions for
file accesses in user-space applications are a common problem in
Unix-like systems. The mapping between filename and inode and
device is volatile and can provide the necessary preconditions for
an exploit. Applications use filenames as the primary attribute to
identify files but the mapping between filenames and inode and
device can be changed by an attacker.

DynaRace is an approach that protects unmodified applica-
tions from file-based TOCTTOU race conditions. DynaRace uses
a transparent mapping cache that keeps additional state and meta-
data for each accessed file in the application. The combination of
file state and the current system call type are used to decide if (i)
the metadata is updated or (ii) the correctness of the metadata is
enforced between consecutive system calls.

DynaRace uses user-mode path resolution internally to resolve
individual file atoms. Each file atom is verified or updated accord-
ing to the associated state in the mapping cache. More specifically,
DynaRace protects against race conditions for all file-based system
calls, by replacing the unsafe system calls with a set of safe system
calls that utilize the mapping cache. The system call is executed
only if the state transition is allowed and the information in the
mapping cache matches.

DynaRace deterministically solves the problem of file-based
race conditions for unmodified applications and removes an at-
tacker’s ability to exploit the TOCTTOU race condition. DynaRace
detects injected alternate inode and device pairs and terminates the
application.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection; D.3.4 [Programming Languages]: Pro-
cessors — Run-time environments

General Terms Security

Keywords Security, TOCTTOU races, Race protection, File-
based TOCTTOU race protection, Dynamic protection, Virtual-
ization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

1. Introduction
Attacks to local security by privilege escalation are a challenging
problem because a potential attacker already has access to some
privileges on the same machine. An attacker can use these privi-
leges to exploit local bugs in an application to escalate privileges
and/or to impersonate a different user.

File-based race conditions are a typical form of Time Of Check
To Time Of Use (TOCTTOU) attacks [4, 5]. The application pro-
cess leaves a window of opportunity to the attacker where a spe-
cific bug is exploitable. A second process may interfere on a shared
resource whereas the original process assumes that it is using the
resource exclusively. These interferences can be used to replace ac-
cessed files between checks or, e.g., to deadlock privileged pro-
cesses. As multicore systems become more and more popular, we
expect an increase in attacks that employ multiple (concurrently)
executing processes. Multicore systems enable an attack to run
alongside the original program; the attacking process can then use
cache effects, or other timing issues to exploit a process.

In a Unix-like system file accesses are particularly prone to
race conditions. Potential race conditions arise because the map-
ping from a filename to a unique inode and device number can
change. Filenames are volatile and the corresponding inode and
device number can change upon every system call invocation. If
a path and filename are passed to a system call then the kernel dy-
namically resolves the path and filename. The kernel then maps the
resolved inode and device number (which corresponds to the file
at that moment in time when the system call was executed) to a
file descriptor that is then passed back to the application. The map-
ping from inode and device number to a file descriptor is unique
and race-free but the mapping from filename to inode and device
number is volatile.

File-based race conditions can occur either in the path to the
file (i.e., a directory is a symbolic link that can be changed by
the attacker), or in the final file atom (i.e., the last file atom is an
attacker-controlled symbolic link). The POSIX community tried to
address the problem of file-based races by introducing new system
calls that work relative to a specific file descriptor [1, 2]. These new
system calls can be used to, e.g., test permissions of files relative to
a given base directory. A programmer can use these system calls to,
e.g., authorize a directory (e.g., using user-mode path resolution)
and then safely create a file atom in that directory provided that
the directory is validated appropriately. If used properly the new
system calls solve the problem of race conditions in the path to the
final file atom, but they do not solve the problem of race conditions
if the final file atom is a symbolic link.

Much work has been done by the system security community
to resolve TOCTTOU races [3, 9–13, 15, 16, 18–20, 22, 23, 27–
33, 35–37]. Recently a practical, portable solution has been found
that can deterministically solve the problem without requiring mod-

ifications to the kernel or its API: user-mode path resolution [30].
This solution, however, suffers from a serious drawback: a pro-
grammer must manually identify and modify all pairs of system
calls that are vulnerable to TOCTTOU races.

DynaRace builds on and extends user-mode path resolution by
removing the burden of manual program modification. DynaRace
deterministically performs safe user-mode file path resolution1 for
unmodified applications by applying some user-defined action to
every atom along the file path in a race-free manner. The key
idea is that DynaRace defines user-defined actions such that they
guarantee that the metadata of file atoms do not change between
invocations of vulnerable system call sequences. DynaRace then
dynamically intercepts and replaces these vulnerable sequences
with their deterministically-safe alternative. To this end, DynaRace
maintains a cache holding the metadata of accessed files and a state
machine that quickly identifies periods of vulnerability.

DynaRace is an approach that protects unmodified applications
from file-based TOCTTOU race conditions. DynaRace adds a hid-
den layer between the unmodified application and the operating
system that keeps state and metadata in a mapping cache for all
accessed files. This mapping cache is used to verify the integrity
and consistency of consecutive file accesses according to a state
machine. Each accessed file has an associated state. The mapping
cache is either updated with the current metadata or the existing
metadata is enforced for the accessed file according to the state
of the file. Each file can be in four different states: new for new
files, update for files where the metadata is updated between sys-
tem calls, enforce for files where the cached metadata is enforced
between system calls, and retire for files that are no longer used in
the application.

Individual unsafe system calls like access followed by open
are redirected dynamically to race-free implementations. These
race-free implementations are part of the DynaRace framework.
They check the state of the file according to the internal mapping
cache and the state machine. If the system call executes without a
race condition then the mapping cache is updated and the result of
the system call is returned to the application.

Our implementation prototype uses user-space binary transla-
tion and system call interposition to weave a deterministic race
protection framework into the application. An important aspect of
our implementation prototype is that neither the application nor any
library must be aware of the safe system calls. The system call re-
placement system works in the background of the process without
any coordination. The user-space application can use unsafe system
calls and our approach ensures that no file system race conditions
are possible.

The contributions of this paper are as follows:

1. DynaRace, a lightweight approach to protect unmodified appli-
cations from file-based race conditions.

2. An evaluation and discussion of a DynaRace prototype imple-
mentation.

DynaRace keeps state and metadata for each accessed file in
an intermediate layer between the application and the operating
system. DynaRace redirects all file-based system calls to a state-
ful inspection framework. This inspection framework uses a state
machine and the cached metadata to validate that the metadata of
a file has not changed between system calls that test file properties
and system calls that use or change files or file metadata.

1 See [30] for a detailed description of user-mode path resolution.

2. Attack model and background information
This section describes the attack model used for the DynaRace ap-
proach and presents background information on file-based TOCT-
TOU race conditions. File-based race conditions enable an attacker
to escalate privileges, e.g., to access, read, or write privileged files.

2.1 Attack model
An attacker has user-access to the system and tries to escalate
privileges. The user has no root-privileges and the attacker has no
direct hardware access. The DynaRace protection runs with the
same privileges as the protected application. A successful attack
breaches the security of the application and enables additional
privileges to the attacker. DynaRace terminates the application if
an attack is detected; denial of service attacks are not part of the
attack model.

2.2 File-based TOCTTOU race conditions
Table 1 shows a classic TOCTTOU race condition presented by
Mazières et al. in [19]. A privileged (SUID) garbage collector
script cleans the /tmp directory. An attacker prepares a temporary
directory containing an empty file with the same name like the
target file. The script reads the directory and relies on the fact that
the directory will not change between individual system calls. The
attacker removes the temporary directory and replaces it with a link
to an existing directory. The script then deletes the file with the
same name in the privileged directory.

SUID program Attacker
mkdir("/tmp/x")
creat("/tmp/x/passwd")

readdir("/tmp")
lstat("/tmp/x")
readdir("/tmp/x")

rename("/tmp/x", "/tmp/y")
symlink("/etc", "/tmp/x")

unlink("/tmp/x/passwd")

Table 1. A potential attacker can race against the privileged appli-
cation and delete a critical system file.

Table 2 shows a typical TOCTTOU race condition presented
in [5]. The access system call is used to check permissions of the
user in a SUID program. A privileged application relies on the fact
that the mapping from a file to an inode and device id remains the
same over subsequent system calls. An attacker replaces the file
with a link to a privileged file. The privileged application then uses
the sensitive file instead of the original file that was authenticated.

SUID program Attacker
access("file")

unlink("file")
link("sensitive", "file")

fd = open("file")
read(fd, ...)

Table 2. A potential attacker can race against the privileged appli-
cation and read a privileged file.

3. The DynaRace approach
DynaRace adds a hidden abstraction layer between the application
and the operating system. This abstraction layer keeps track of all
file-based system calls and keeps information about accessed files
and directories in a metadata cache. The monitoring of all file-based

system calls allows DynaRace to keep track of all directories and
files that are accessed. Our implementation prototype extends a dy-
namic system call interposition framework to dynamically monitor
all file-related system calls of an application as well as all loaded
libraries.

Application
(plus libraries)

Kernel

System
Calls

Figure 1. Execution without DynaRace checks for file-related sys-
tem calls.

Figure 1 shows a system without DynaRace. Potentially unsafe
system calls are executed directly by the kernel without additional
checks for race conditions. Each system call is executed in isolation
and without knowledge of the results of prior system calls. Appli-
cations without special checks (e.g., storing file state internally, or
checking for safe accesses using hardness amplification, see Sec-
tion 7.5) for these unsafe system calls are prone to race conditions.

Application
(plus libraries)

Kernel

Other SysCalls

DynaRace
(state cache
for accessed

files & checks)

File-based
system calls

SysCall Interposition

Figure 2. Overview of the DynaRace approach.

Figure 2 shows the DynaRace system. All file-related system
calls are intercepted using system call interposition and are redi-
rected to the DynaRace module. DynaRace keeps state for each ac-
cessed file and dynamically checks for file-based race conditions.
Unsafe system calls like access followed by open are replaced
dynamically with the new and safe race-free sequence of system
calls. File-based system calls are no longer executed in isolation
but use the state and metadata from prior system calls to validate
the current system call. Neither the application nor any library must
be aware of the safe system calls. The system call replacement sys-
tem works in the background of the process without any coordi-
nation. The user-space application can use unsafe system calls and
DynaRace ensures that no file system race conditions are possi-
ble. Due to the replacement strategy of system calls DynaRace can
be applied to pre-existing libraries and applications. The DynaRace

module works as an independent additional module and can be used
in combination with other approaches.

Filenames and directory names can be changed by a concurrent
process, e.g., by using symbolic links to redirect a file to a different
location. The presented approach uses two security concepts: (i)
A chain of trust of known directories from the root directory (/)
to the directory of the file is constructed by iterating through all
the different file atoms. This chain enables the use of the new
system calls that are relative to a specific directory. (ii) A thread-
local transparent mapping of file statistics that keeps track of all
accessed, opened, stated, and modified files.

3.1 File states
The general rewriting policy for unsafe system calls replaces an un-
safe system call with a set of dynamic atomic checks. These checks
ensure that if a filename is equal to an already accessed filename
then the following open system call can rely on the subsystem to
ensure that the files are also equal.

Equality is defined as same inode number, device id, and par-
ent directory for existing files. For files that do not exist equality is
defined as same parent directory and an error code. The file meta-
data that is stored in the mapping cache must contain the complete
metadata to show equality between different files or, if the file does
not exist, information about the base directory and the fact that the
file does not exist. The metadata of a file includes a pointer to the
metadata of the directory of the file.

Every file that is accessed has an associated state. Depending on
the system call that is executed on the file and the state of the file
different checks are executed.

Figure 3 shows the different states and the checks that are
executed during a transition. Nodes correspond to the states with
associated checks and edges to different groups of system calls
that force transitions between states. The three states are update,
enforce, and retire. A file can be in any of these three states if the
same filename has already been used in the program, or in the start
state new if the file is used the first time.

new update

enforceretire

use &

test
test

use

test

use

use

close test

Figure 3. State machine with file states and dynamic checks.

The edges of the state machine correspond to different groups
of system calls. The transition from one state to another depends on
the system call and the current state. The system calls are separated
into different sets depending on their function:

Test: the application uses system calls in this set to gather infor-
mation and to check file metadata (e.g., permissions, or status).

The system calls in this group do not change the file or any as-
sociated metadata. Examples for test system calls are access
or any of the stat system calls.

Use: this group of system calls works with files or changes file-
related metadata. The system calls in this group modify the file
or the associated metadata. Examples for use system calls are
open, creat, or chmod.

Close: the group of system calls that closes or deletes files: close,
unlink, and unlinkat. The application uses these system
calls to close or delete files. These system calls signal the kernel
that the application no longer works with the specified files.

Depending on the prior state of the file and the new state (as
determined by the system call) a set of checks is executed. The
metadata is updated if the file has not been changed by the appli-
cation (e.g., in the states new, update, and retire). If the file transi-
tions from the update state to the enforce state (or stays in the en-
force state), then DynaRace enforces the correctness of the avail-
able metadata. If the file is a new file that has not been used by
the application then DynaRace adds the metadata into the metadata
cache. If the file has been closed then DynaRace updates the meta-
data and warns if there is a mismatch in the metadata cache. This
“check and warn” case is used for files that have already been used
in the application but were closed.

The state machine in Figure 3 is updated depending on the type
of the system call.

Update: all state transitions that end in the update state (new →
update, retire → update, and update → update) update the
information of a file in the metadata cache or create a new
entry for a new file in the metadata cache. This state gathers
information about the different files used in the application.

Enforce: whenever a file is used (i.e., either the file itself or the
metadata of the file changes) in the application then the state of
the file changes to enforce. Enforce ensures that the application
can always work with the same file. DynaRace enforces equal-
ity if valid information about the file is available in the metadata
cache (this holds for the transitions update→ enforce and en-
force→ enforce). If a system call of the use group is used for a
new file (new→ enforce) then DynaRace adds the information
to the cache and changes the state of the file to enforce. If a file
has been closed by the application and a system call of the use
group is executed (retire→ enforce) then DynaRace checks and
updates the metadata and emits a warning if there is a mismatch
between the cached and the current information.

Retire: a file ends in this state if it has been closed or discarded by
the application (enforce → retire). This special state discards
and retires files that are no longer used by the application after
they have been in the enforce state.

The retire state offers the possibility to retire files that are no
longer used by the application. A retired file can be changed by
a concurrent process without a security violation. This feature is
important to enable ownerships transfers like, e.g., log rotation.
Process P1 checks and opens a log file for writing. A second
process P2 rotates the logs (compresses the open log and creates a
new, empty log file). Process P2 then signals process P1 to reopen
its log files. Process P1 closes the log file (thereby retiring the
metadata information), checks, and reopens the new file.

3.2 File resolution
All file-based system calls are replaced by safe handler functions
that dynamically use the mapping cache to verify that identical file-
names conform to the same file identified by a unique inode number

and device id. File resolution is performed in a manner similar to
the chk use algorithm presented by Tsafrir et al. [29, 30]. Dyna-
Race uses the user-defined function in the chk use algorithm to
verify and update the mapping cache as the file is resolved atom by
atom. The handler functions resolve files in the following way:

1. Split path names into (i) a directory path that contains the
directory and (ii) the actual filename.

2. Rewrite relative directory path names to absolute paths accord-
ing to the current working directory.

3. Identify and check the directory using the directory path.

(a) If the directory path is already in the mapping cache then
the handler function can open the directory and verify that
the current directory and the data in the mapping cache are
identical.

(b) Otherwise the handler function builds a chain of trust from
the root of the file system to the directory path by open-
ing every single directory on the way and adding the in-
formation about the directory to the mapping cache, e.g.,
for /var/tmp/file the directories /, var relative to /, and
tmp relative to /var are checked and added to the mapping
cache.

This function returns a file descriptor that can be used for
system calls relative to the verified directory.

4. Next the filename is resolved using the resolved and checked
directory. The file is opened and parameters are checked in the
handler function (using the new relative system calls openat
and fstat64). If the file is already in the mapping cache then
the handler function ensures that the current file and the cached
metadata is identical. Otherwise the new file information is
added to the mapping cache.

If there is a mismatch between any metadata of either a directory
or the file then the application is terminated with a race warning.
After the file is resolved the system call handler is executed. This
handler might then add new file information to the mapping cache
or change existing information, according to the system call that is
executed.

4. Implementation
The current prototype implementation of DynaRace relies on sev-
eral software layers. A binary instrumentation toolkit detects and
rewrites all unsafe system calls related to file handling. These sys-
tem calls are then redirected transparently to the DynaRace module.
The application (and all libraries used by the application) still issue
the original (unsafe) system calls. Using binary rewriting, Dyna-
Race keeps track of all accessed directories and files.

DynaRace extends the interposition layer from the libdetox
framework [21] to check all system calls that modify files. All sys-
tem calls that execute unsafe file operations are redirected to spe-
cial handler functions. Each handler function handles one system
call. These handler functions either (i) update the mapping cache
between filenames and inode and device information for files that
have not been used before, or (ii) use available information in the
mapping cache to ensure that the filename still maps to the same
physical file.

Related work [15, 28, 35] often matches specific predefined
pairs of system calls to identify potential races. DynaRace intro-
duces a new mapping cache that keeps track of all accessed files;
all file-related system calls are rewritten to use this new mapping
cache. This approach detects potential race conditions between any
combination of file-related system calls.

The handler functions first resolve the file according to Sec-
tion 3.2 and then check the actual system call or rewrite specific
parameters. Handler functions exist for the following system calls:

Test: the following system calls are in the test group:

stat*: all stat related system calls (e.g., stat, stat64) are
rewritten to ensure that the specified file ends up in the
cache. fstat64 is used as the actual system call.

access: this unsafe system call has no replacement that uses
a file descriptor, so the handler function implements this
system call using fstat64.

Use: the following system calls are in the use group:

open: check flags, if O CREAT is used then the handler ensures
that O EXCL is set as well, handling potential errors. openat
is used as the actual system call, relative to the current
directory.

creat: reuses the check for the open system call.

chmod: the handler ensures that the current metadata of the
modified file is equal to the cached metadata and changes
the system call to use fchmod with the tested file.

Close: the following system call is in the close group:

close: the handler closes the file and reduces the number of
open instances of the current file. If the counter reaches 0
then the file enters the retire state.

Section 3.1 explains the different states in more detail. The
current implementation prototype emits a warning and terminates
the application if an unimplemented system call is used, but the
implementation can easily be extended to include other system calls
as well.

DynaRace is released as open source. The prototype implemen-
tation is included as a module of the libdetox binary translation
framework. The source code can be downloaded from the libdetox
homepage at http://nebelwelt.net/projects/libdetox.

4.1 Tracking of file states and metadata
A transparent file mapping cache keeps the information of all used
files and directories. This file mapping cache enables a secure way
to identify files and is used in the handler functions of unsafe
system calls. These handler functions rely on the file mapping
cache to identify files that have already been used in earlier system
calls, e.g., a rewritten open system call that is preceded by a
(rewritten) access system call uses the file mapping cache to
ensure that if the filenames passed to the system calls are equal
then the files themselves are also equal.

The data structure for file entries contains the following fields:

state: the current state of the file. Possible states for files are either
update, enforce, retire, or new (see Figure 3). Directories are in
one of two possible states. A directory is either accessible or in
an error state.

nropen: the number of open file descriptors for this file that are in
use by the application. A file can only transition to the retire
state if all open instances of a file are closed.

fd: this field contains either 0 if the file is OK, the open file
descriptor if the file is currently opened for DynaRace checks,
or the error code if the file is invalid.

filename: a string that contains the file atom for files or the full
path for directories.

stat: holds the result of the fstat64 system call when the file was
last accessed. This field is used to check equality of files.

dir: a pointer to a file data structure that contains information about
the directory of the file. A file is always verified alongside the
directory that it is in.

The file mapping cache is constructed lazily. Whenever a new
file is used by the application then the file’s metadata and state
are added to the mapping cache. If a file or directory is reused
then the current state of the file system must conform to the data
in the mapping cache. The handler functions update the mapping
cache for system calls that change metadata after the system call is
executed but before control is returned to the translated application.

4.2 File resolution
File resolution is split into two steps according to Section 3.2. The
first step constructs an authenticated chain from the directory of the
file to the root of the file system to authenticate the path. The second
step uses the base directory to authenticate the remaining file atom
(the last component in the path) against the already authenticated
base directory using the new file-based race-free system calls. The
following sections discuss the implementations to resolve directo-
ries and file atoms.

4.2.1 Directory authentication
Path authentication starts with a full path and recursively authen-
ticates single directories moving towards the root directory. The
recursive function first checks if the current directory is already
in the cache, otherwise a new cache entry is constructed. Newly
constructed entries are linked to the parent directory, and the cor-
rect parent directory is also verified. Each directory is stored in the
cache with the full path to enable a fast lookup.

Directory authentication is implemented using an approach sim-
ilar to chk use [30]. chk use consumes a path one atom at a time,
starting with the root directory. The intention of chk use is to spec-
ify a check function (e.g., access), and a use function (e.g., open)
which are then executed after another in a race-free way. Dyna-
Race uses the chk use function to authenticate the directory by
traversing the path one atom at a time and inserting the metadata
information of each sub-path into the cache.

A notable difference to the original chk use implementation is
that DynaRace uses the new system calls like openat to traverse
the directory path. This setup removes the need to change the
current working directory of the process in the chk use function
and allows DynaRace to support multiple concurrent threads.

The path authentication function checks each directory once. If
the check fails then an error is recorded in the list of paths. If there
is an error during the authentication of the chain then this error
is propagated upwards to the initial directory (and to the caller as
well).

Path authentication takes a full absolute path as an argument
and returns either a valid open directory or an error. The opened
directory can be used for further authentication of files in that
directory.

4.2.2 File authentication
File authentication takes an authenticated directory and authenti-
cates a file atom in that directory. This function keeps track of the
state of individual files and validates correctness according to Fig-
ure 3. New files are initialized and added to the list of accessed
files, existing files are authenticated according to their current state
and the target state.

File authentication first searches the list of already accessed
files using the authenticated directory and the file name. If there
is a cache hit then the file metadata is either updated or verified
according to the state of the file. If the directory and the file are not

http://nebelwelt.net/projects/libdetox

in the cache (i.e., this combination is used for the first time) then a
new entry is constructed with the available information.

This function throws two types of warnings. The first type
warns if a file was changed by an external process during the
runtime of this process. This type of warnings shows potential
attacks against the program that were fixed. The second type warns
if files are used without validation (e.g., opening files without
checking the permissions first). This type shows protocol violations
by the application. If a race attack is detected (i.e., the cached
information changes in the enforce state) then the application is
terminated.

4.3 Replacing system calls
The system call interposition framework checks all system calls
and redirects all file-based system calls to handler functions. These
handler functions implement the DynaRace core and keep state for
each accessed file and all used directories.

The handler functions use directory authentication from Sec-
tion 4.2.1 and file authentication from Section 4.2.2 to update the
state cache of individual files and directories. These authentication
functions abstract the bookkeeping problem and enable clean and
simple handler functions.

The current implementation provides handler functions for the
stat, access, open, creat, chmod, and close system calls. This
section shows one system call from each state, access for the
update state, open for the enforce state, and close for the retire
state. Functions of the form systemcall int (e.g., fstatat int,
openat int, close int) are helper functions in the virtualization
layer that execute the real system calls.

The prototype implements a subset of all file-based system calls.
Missing system calls can be added using the available authentica-
tion functions and the existing handler functions.

4.3.1 access system call
The access system call handler intercepts access system calls
and rewrites them dynamically to use fstat64. The handler func-
tion takes the given filename and splits it into an absolute pathname
(resolved using getcwd if the path is relative) and a file atom.

The absolute path is authenticated according to Section 4.2.1.
All directories on the path are consequently added to the directory
cache. Directory authentication returns an open file descriptor for
the directory of the used file. This file descriptor is then used to
execute a fstat64 system call. The stat information is needed to
construct the state information of the file atom. The file metadata
entry is then constructed depending on the return values of direc-
tory authentication and the following stat system call using the
file authentication function.

The stat64 struct contains all information needed to reimple-
ment the access system call. A macro uses the stat information,
the user id, and the group id to return the same information like the
access system call. The return value of the access handler func-
tion is either an error value for invalid files or 0. The state update
can trigger warning messages that are logged.

4.3.2 open system call
The open system call handler intercepts all open system calls and
rewrites them to use the safe alternatives. The given pathname is
split into a file atom and an absolute path similar to the access
system call handler. The absolute path to the file atom is then
authenticated using directory authentication.

The file atom is then opened using the openat system call rel-
ative to the authenticated base directory. If the application uses the
truncate attribute to remove the file’s contents then the attribute is
removed from the executed open system call. The truncating is de-

layed until after the authentication and the update of the metadata.
The handler function then updates file metadata using the file au-
thentication function.

The handler function either returns an error value or the open
file handle. If there are authentication errors then the program ter-
minates. If the application opens unchecked files that are in the
“new” state then DynaRace emits a warning (in the file authentica-
tion function).

4.3.3 close system call
Similar to the access and the open system calls, the close system
call is redirected to a handler function. The close system call has
the advantage that the file is already open and there are no potential
race conditions when accessing this open file descriptor.

The handler function searches the cache using the unique inode
number and device id. If the file is opened multiple times then
the number of open files is reduced. If the last file descriptor of
a specific file is closed then the state of the file is updated to the
special retire state.

4.3.4 New system calls
DynaRace can coexist with applications that already use new sys-
tem calls that use relative directory file descriptors (accessat,
openat, fstatat64, etc.). The new system calls are handled just
like regular file-based system calls and redirected to a handler func-
tion by the interposition framework. The handler function then up-
dates the file metadata and executes the new system call using the
information provided by the application.

5. Implementation alternatives
Our prototype implementation of DynaRace uses and extends the
libdetox binary rewriting framework for the execution of untrusted
code. Three other implementation approaches are possible. The
first approach extends the Linux kernel and implements the Dyna-
Race approach, e.g., as a kernel module. The second approach ex-
tends the standard libc and implements the DynaRace approach on
top of the library. The third approach uses the ptrace debugging
framework to implement DynaRace in a concurrent process.

5.1 Kernel DynaRace implementation
An alternative implementation could extend the kernel with a mod-
ule that implements the DynaRace approach and keeps a cache of
accessed files on a per-application basis. This state cache could then
be used whenever the application requests an unsafe system call.

An advantage of this implementation approach is that there is
no overhead for binary translation and that the kernel can also keep
track of all accessed files for all running applications.

A disadvantage is that a kernel-based implementation needs
kernel level access. The kernel-based implementation can contain
bugs and lead to exploits. Another point is that the Linux kernel
already provides file-based system calls relative to open directories.
These system calls can be used to implement safe applications.
DynaRace is only needed for potentially unsafe applications. New
functionality should only be added to the kernel if a user-space
implementation is not feasible.

We argue that the risk of potentially exploitable code in the ker-
nel is not worth the advantage of the lower overhead. In addition a
user-space implementation is preferable if safe alternatives already
exist in the kernel like the set of safe system calls that DynaRace
uses.

5.2 libc-based DynaRace implementation
A second alternative implementation could extend the standard libc
library. This library contains wrappers for most of the file-based

system calls. These wrappers are then used by the application.
The implementation would extend the wrappers for all file-based
system calls to implement the DynaRace approach. A static cache
of accessed files and states would be initialized during the standard
libc initialization and used whenever a file is accessed.

An advantage is the lower overhead compared to our prototype
implementation because no binary translation is needed to redirect
and catch the system calls.

A disadvantage is that the application can still execute native
system calls in using an unpatched (“third-party”) library. This
third-party library breaks the security of the race detection. A sec-
ond potential problem is that the DynaRace race checks are exe-
cuted at the same privilege level as the application. Our implemen-
tation uses binary translation for the application; the file-based sys-
tem calls are then intercepted from the sandbox and redirected to
the DynaRace implementation in the privileged part of the sandbox
in user-space.

We argue that the risk of a third-party library that executes a
direct system call is too high compared to the performance over-
head for binary translation. A possible implementation should offer
“complete” protection for all system calls, and not only the system
calls that are executed through the libc.

5.3 ptrace-based DynaRace implementation
A third alternative implementation leverages the ptrace2 system
call to implement the DynaRace approach. A separate DynaRace
process controls the target process and observes all system calls
externally. The DynaRace process intercepts and inspects all file-
related system calls.

DynaRace replaces the unsafe system call with a piece of code
that executes a set of safe system calls and some checks. The
DynaRace process would inject that code into the running process
and redirect the execution flow to the injected code. This injected
code would then replace the original system call and return the
result from the kernel to the unmodified application code.

An advantage of this approach is that the application does not
need to be translated and virtualized. Depending on the implemen-
tation of the DynaRace process this setup could lead to some per-
formance speed-up compared to our prototype implementation.

A disadvantage is that the DynaRace process must either stop
the traced process upon every system call, a setup that leads to high
context-switching overhead, or DynaRace must inject new code
into the application that could lead to unwanted side-effects. The
implementation of the DynaRace process and the code-injection
technique is critical to keep the overhead low. Original system calls
must be permanently redirected to injected code to reduce the task
switching overhead between the DynaRace process and the appli-
cation process. Another disadvantage is that the application process
does not profit from the additional protection that the sandbox of-
fers.

We argue that a feasible ptrace-based implementation will be
too complex due to the need to inject code in the application do-
main. A virtualization-based implementation adds new code natu-
rally and instruments the executed system calls using simple redi-
rection. Binary rewriting tools provide additional opportunities for
error checking that are hard to replicate with external debugging
techniques like ptrace.

2 The ptrace system call is used to remotely control a process. The tracing
process can read and write memory locations and registers of the target
process, controls signals and signal delivery, and can inspect system calls
and parameters.

6. Evaluation
The DynaRace prototype is implemented on top of the user-space
security toolkit libdetox. This section evaluates (i) the raw perfor-
mance of the DynaRace prototype implementation using several
microbenchmarks, (ii) end-to-end performance of the DynaRace
prototype implementation using a complex Apache setup, and (iii)
evaluates DynaRace using several application scenarios. The dis-
cussion of the application scenarios shows how DynaRace protects
from file-based race attacks in these scenarios.

6.1 Performance evaluation
The set of features and the security guarantees raise the question
about the total overhead for libdetox. Optimizations in the dynamic
translation process result in an average overhead of between 6% to
9.3% for the SPEC CPU2006 benchmarks, depending on the set of
security guarantees that is used [21].

The prototype implementation of DynaRace is not yet opti-
mized and there is potential to reduce the number of executed sys-
tem calls and to use better data-structures for the mapping cache.
Table 3 shows overheads for specific microbenchmarks depicted
in Listing 1. Every microbenchmark executes the code sequence
1,000,000 times in a loop. The microbenchmarks are executed
on an Intel Core i7 950 CPU at 3.07GHz using a 64bit version
of Ubuntu 10.10 and the most recent libdetox version 0.3.0. The
benchmarks are compiled using gcc version 4.5.2.

/* 1) long test */
if (access (" input", R_OK|W_OK)==0) {

int fw = creat("test", 660);
if (fw == -1) perror ("Creat ");

int fr = open(" input", 0);
if (fr == -1) perror ("Open ");
close(fw);
close(fr);

} else {
printf (" Unable to open dir ");

}

/* 2) access test */
int j = access (" input", R_OK|W_OK);

/* 3) open/close test */
int j = open(" input ");
close(j);

Listing 1. Microbenchmarks used for the evaluation (C code).

Native libdetox DynaRace
1) long test 4.73ms 4.00ms 20.96ms (4.4x)
2) access test 1.59ms 1.62ms 6.11ms (3.8x)
3) open/close test 1.93ms 1.00ms 6.90ms (3.6x)

Table 3. Results of the microbenchmarks compared to native per-
formance.

An interesting result of Table 3 is that libdetox is able to out-
perform the native execution for raw system call throughput in the
open/close test. Two reasons for this behavior are (i) trace lineariza-
tion inside the code cache (of the binary translator) for the trans-
lated standard libc function and (ii) the inlining of all system calls
from the ld-linux.so library.

The DynaRace prototype implementation uses multiple system
calls to verify that already accessed files have not changed between
system calls. For new files additional system calls are used to

gather information for the mapping cache. This setup leads to
an overhead for file-based system calls of around 3-4x (for raw
system call performance) to remove potential race conditions. Only
the small set of file-based system calls that check or modify file
metadata incur overhead. The overhead can be reduced through
future optimizations that reuse more information or keep frequently
accessed files open. All other (non file-related) system calls do not
incur overhead.

The overhead is tolerable as system calls used to check the meta-
data of files and to open/close files are rare compared to read or
write operations or computation. There is no overhead in the ac-
cess to a file’s data (e.g., reading from a file or writing to a file).
Any overhead caused by DynaRace is associated with file meta-
data management. For most programs system calls that modify file
metadata are not on the hot path. The time spent for I/O dominates
the time spent for metadata management. The additional checks’
overhead is small compared to the cost of a potential exploit.

6.2 Apache web server study
This section presents an end-to-end performance evaluation using
the Apache web server. The web server study compares the perfor-
mance of a system with active DynaRace protection for the Apache
server and all scripts to a system without DynaRace. This study
shows the completeness and end-to-end performance of our proto-
type implementation. The study uses Apache 2.2 on 32bit Ubuntu
10.04 LTS on a Core i7 950 CPU at 3.07 GHz in a VirtualBox vir-
tual appliance using a single core. Apache uses the default Ubuntu
configuration (multiple processes multiple threads, full support for
the dynamic PHP interpreter and other modules). The study uses
the ab3 Apache benchmark in a different virtual machine on a dif-
ferent core on the same CPU to download four different files from
a server. Each file is downloaded 100’000 times and Apache is
restarted between iterations.

The four different files are index.html, a 5kB HTML file;
picture.png, a 1mB image; test.php, a short PHP script that
generates 90B output; and test2.php, a PHP script that executes
phpinfo() and generates 48kB of output.

The evaluation uses three different system configurations: (i)
native, Apache runs unmodified and unprotected; (ii) libdetox,
Apache runs in a protected environment under the control of lib-
detox4; (iii) DynaRace, Apache runs in a protected libdetox envi-
ronment with a DynaRace module that protects all file accesses as
well. All three configurations run inside a virtual machine.

Native libdetox (ovhd.) DynaRace (ovhd.)
index.html 1464 1675 -14.5% 1601 -9.4%
image.png 48 51 -6.3% 47 1.6%
test.php 1773 1562 12% 1498 15.5%
test2.php 463 343 26% 320 30.9%

Table 4. Results for the Apache benchmark showing the number
of requests per second. The benchmark uses four different files to
compare native performance, libdetox performance, and DynaRace
performance.

Table 4 shows the performance numbers of the Apache bench-
mark. The three different system configurations are evaluated for
each file. Each column shows the number of completed requests per
second, the libdetox and DynaRace columns also show the over-
head compared to native performance. The relative overhead shows

3 The command used for the measurements is: ab -c 2 -n 100000
http://${VM}/${FILE}.
4 Libdetox [21] protects applications from code-injection exploits, return
oriented programming [26], and other control-flow oriented attacks

that libdetox and DynaRace exhibit a small performance improve-
ment compared to the native performance for static files. The im-
provement comes from the binary translation that results in greedy
trace extraction for hot code.

For the dynamic files (test.php and test2.php) libdetox
results in 12% and 26% overhead due to the translation of the
dynamic PHP interpreter (which results in many indirect control
flow transfers). Comparing the libdetox and DynaRace columns
shows that DynaRace results in roughly 6% more overhead than
libdetox alone. This overhead comes from the additional system
calls for the directory and file atom authentication.

The overhead of both libdetox and DynaRace is tolerable, es-
pecially when considering that only a prototype implementation is
evaluated. The prototype implementation still leaves room for ad-
ditional performance optimization (e.g., additional caching of open
file descriptors, better code optimization, and other optimizations).
The current prototype implementation shows that the DynaRace
approach is feasible and the overhead is tolerable. Additional opti-
mization is left as a topic for future work.

6.3 Evaluation of the protection for file-based race conditions
DynaRace relies on the handler functions for the different system
calls and the state of each file to protect and to remove potential
race conditions. The file state is updated using transitions from one
state to another.

This section shows three important usage scenarios that are
common in applications. The usage scenarios are (i) checked file
access where access permissions for a file are checked before it
is used, (ii) temporary file creation where a file is created in an
unsafe directory, and (iii) log rotation where files are replaced
by an external process. Each usage scenario is dissected into the
individual system calls and what (implicit) assumptions are used
between the system calls. The described usage scenarios are prone
to race conditions in their original form. DynaRace adds additional
state to each file and enforces the assumptions between the system
calls.

State transitions between system calls are shown in the follow-
ing way:

oldstate
systemcall−−−−−−−→
targetstate

newstate

The state associated with a file transitions from oldstate to
newstate if a systemcall system call is executed that induces the
targetstate state. Both newstate and targetstate are needed for files
that are in the enforce state. If a system call would induce the
update state (e.g., the access system call) and the file is currently
in the enforce state then the file remains in the enforce state.

6.3.1 Checked file access
The checked file access pattern consists of four steps to work with
a file. The first step checks access permissions of the existing file
using the access (or stat) system call. The second step opens
the same file using the open system call, returning a file descriptor.
The third step uses the file (e.g., reading from, or writing to the
file descriptor using the read and write system calls; read and
write system calls do not change the state of the file). The fourth
step closes the file again using the close system call, completing
the usage pattern.

A potential attack races to exchange the checked file after the
first validation step and before the second opening step. Using
mazes of connected directories [6] an attacker can win this race
every time if he or she can inject a symbolic link into any part of
the file name (see Section 7.4).

With DynaRace the following four state transition sequences are
possible:

The file has not been accessed/used before by the application:

new
access−−−−→
update

update
open−−−−−→

enforce
enforce

close−−−−→
retire

retire (1)

The file has been used before but was closed by the application:

retire
access−−−−→
update

update
open−−−−−→

enforce
enforce

close−−−−→
retire

retire (2)

The file has been accessed by the application:

update
access−−−−→
update

update
open−−−−−→

enforce
enforce

close−−−−→
retire

retire (3)

The file is still opened by the application:

enforce
access−−−−→
update

enforce
open−−−−−→

enforce
enforce

close−−−−→
retire

enforce

(4)
The above state transition sequences leave no opportunity for a

potential attacker to change files between a check system call and
a “use” system call. An attacker could swap files in the update or
retire state but not if the current state or next state is enforced.

A potential attacker tries to change a file after the access
system call and before the open system call. Using the DynaRace
states an attacker can change the file only before the access system
call in Equation 1; in Equation 2 and Equation 3 a warning is
printed, and in Equation 4 the application is terminated with a race
condition error message. DynaRace guarantees that in all cases no
unchecked file can be injected between the access and the open
system call. A potential attacker can change the files before the
permissions are checked but never between the permission check
and the system call that uses the checked file.

As soon as a file transitions into the enforce state the last
checked or accessed information is fixed and verified. This setup
results in a guarantee to the program that the last checked informa-
tion of a file is enforced when that information is used later.

6.3.2 Temporary file creation
Safe temporary file creation is an important and hard problem. An
access test using an access or stat system call first checks that
the file does not exist. A following creat system call (or an open
system call with the create exclusive flag) then creates the file. An
attacker can try to race between the existence check and the file
creation to add a link to an already existing file that will then be
overwritten.

new
access−−−−→
update

update
open−−−−−→

enforce
enforce (5)

Equation 5 shows the state transitions when a new file is created.
The state information contains a valid directory and the error code
for the file after the access or stat system call. The directory
where the file will be placed in must exist but the temporary file
must not exist.

6.3.3 Log rotation
Log rotation is a technique that is used by many daemons to re-
new/rotate their log files. A daemon opens a log file and writes
information to that file. A rotation daemon moves these log files to
a different place and signals the original daemon to reopen the log
file. The daemon then closes the old file and reopens the log file
(which no longer points to the same inode and device id).

DynaRace’s retire state enables log rotation. When a file is
closed it can be reopened even if the metadata of the file has
changed. The retire state is similar to the new state where we do
not know anything about the file. The information in the cache is
updated and enforced only if there exists a valid set in the cache.

...
lfd = open(tmp , O_CREAT|O_EXCL|O_WRONLY ,

0644);
...
if (lfd < 0) {

unlink(tmp);
}
...
write(lfd , pid_str , 11);
/* unchecked relaxation */
chmod(tmp , 0444);
...

Listing 2. TOCTTOU vulnerability in X.org (os/utils.c, C code).

enforce
close−−−−→
retire

retire
access−−−−→
update

update
open−−−−−→

enforce
enforce (6)

Equation 6 shows a sequence of system calls that is used during
the rotation of a log file. The file is closed by the daemon, checked,
and reopened. The access system call following the close system
call prints a warning message that the file has changed. The daemon
continues in the update state and enforces the information from the
check when the file is opened.

This scheme leaves a window of opportunity for the attacker
where he or she can change the log file after it was closed but before
it is accessed. The access check in the daemon catches these attacks
and the state information is later enforced.

6.4 X.org file permission change vulnerability
Version 1.4 to 1.11.2 of the X.Org X11 X server had a severe
TOCTTOU race condition [34]. The X server creates a temporary
lock file and relaxes the permissions of the lock file using unsafe
system calls. Any local attacker with permission to run the X server
can exploit this vulnerability to set the read permission for any file
or directory on the system.

Listing 2 shows the code containing the race condition. The
variable tmp contains a fixed string of /tmp/.tXn-lock where
X is the n-th X display running on that computer. An attacker
executes the SUID X binary as P1. The attacker stops P1 after
the write system call and before the chmod system call. In a
second execution P2 of the X binary the open system call fails
and the temporary file created by P1 is removed using the unlink
system call. The attacker kills P2 and links /tmp/.tXn-lock to an
arbitrary file (e.g., /etc/shadow) and continues P1. P1 will then
set the arbitrary file to world-readable.

DynaRace would protect from this TOCTTOU race condition.
As soon as the file identified by the tmp variable is in the enforce
state it can no longer be modified by a concurrent process. Equa-
tion 7 shows the states for the temporary file for P1. Before the
chmod system call P1 is stopped and P2 depicted in Equation 8 is
executed. P1 then continues and DynaRace throws an error because
the metadata of the enforced temporary file has changed.

P1 : new
open−−−−−→

enforce
enforce

chmod−−−−−→
enforce

FAIL (7)

P2 : new
open−−−−−→

enforce
enforce

retire−−−−→
unlink

retire (8)

7. Related work
DynaRace is a dynamic TOCTTOU race detection mechanism that
is implemented as a libdetox extension. File-based race detection

can be built on different techniques. Static race detection analyzes
the program source code or the binary of the application before ex-
ecution; dynamic race detection uses code that is added during the
compilation of the program to detect races at runtime; dynamic race
prevention uses added code to prevent possible races; and novel
race-free APIs change the available file system API to remove or
reduce potential races.

7.1 Static race detection
Static source-code analysis [10, 11, 23, 33] can be used to detect
potential file-based race conditions. A scanner reads the source-
code of the application and observes calls to library functions or
system calls. If a sequence of calls opens a race condition then the
static analysis tool emits a warning.

Static analysis tools often have a high number of false positives
because they rely on pattern matching and they cannot use runtime
data to verify potential races. Due to the high error rate these
approaches are not feasible for online services that must meet some
response time constraints.

The DynaRace approach adds state to each accessed file. Due to
the classification of system calls into groups and the additional state
DynaRace decides for each system call if a potential race condition
occurs.

7.2 Dynamic race detection
A dynamic approach can observe all system calls as they hap-
pen. These system calls can either be logged and analyzed post-
mortem [18] or an online analysis can evaluate the pair of system
calls according to a given policy [28]. Aggarwal and Jalote [3] use
static binary translation to add dynamic guards that are executed at
runtime.

IntroVirt [16] uses OS virtualization and a virtual machine mon-
itor to run predicates outside of the OS scope. These predicates
check the health of system software and also check for file race con-
ditions if the programs have the right predicates. Wei and Pu [35]
enumerate likely TOCTTOU pairs that are used for common tasks.
Goyal [15] uses the strace framework to collect system call traces
and detect TOCTTOU attacks.

The technique of enumerating pairs of system calls misses the
opportunity to detect race conditions dynamically between any
combination of system calls. This approach is similar to black-
listing several pairs of system calls without looking at all possible
combinations. Only an approach like DynaRace that takes care of
all file-based system calls can protect from all race conditions. Due
to the added state DynaRace looks at all possible combinations and
sequences of system calls and therefore provides complete cover-
age.

7.3 Dynamic race prevention
RaceGuard [12] defends against several classes of TOCTTOU at-
tacks using an in-kernel cache but is limited for file swap at-
tacks where the file itself is changed from one execution to the
other. Tsyrklevich and Yee [31] implement pseudo-transactions in
a kernel module to detect specific combinations of check/use sys-
tem calls targeting the same file. Multiple similar approaches fol-
lowed [20, 27, 32, 36].

Several novel race-free APIs have been proposed to replace the
POSIX-like system calls for file handling. Some of these novel
APIs use transactions to run a set of related system calls atomi-
cally [22, 37]. The OS insures that no other application may inter-
fere with these system calls.

Dean and Hu prove that no deterministic solution to prevent
races exists (with the set of available system calls in 2004) and
introduce a probabilistic way to prevent races [13]. They rely on the

assumption that an attack is unable to win all races. Therefore they
propose hardness amplification. Hardness amplification executes
the check multiple times in a loop (a so called K-loop) and checks
if all results are as expected.

Transactions of system calls need kernel modification. In addi-
tion to the new code in the kernel the applications must be rewrit-
ten to include transactional code. DynaRace supports a gradual ap-
proach that adds protection from file-based TOCTTOU races. Ap-
plications and libraries can use a mix of old file-based system calls
and new file-based system calls. Using the file-state and the new
system calls DynaRace deterministically protects every file-based
system call.

7.4 Maze-based race attacks
Borisov et al. break the probabilistic approach by enabling an
attacker to win all races [6]. If all races are won by the attacker
then the check proposed by Dean and Hu [13] is unable to detect
the race condition. An attacker constructs so called mazes. A maze
is a chain of temporary directories that contains a link to the next
chain as the leaf. The attacked program needs time to go through
the maze (e.g, once for access and once for open) and in that time
the attacker swaps the final link.

7.5 Hardness amplification-based race protection
Mazières and Kaashoek [19] propose an alternate approach that
uses inodes (low level file objects) instead of filenames. If the
binding between inode and filename is immutable then no file
swap race conditions are possible when the target file changes.
Tsafrir et al. [29, 30] implement a similar approach in user-space.
Their approaches render the maze attack from Borisov et al. [6]
impossible. User-space checks guard applications from TOCTTOU
attacks. A file is resolved step by step. The algorithm checks for
each part of the filename if the current part is a file or a symlink.
Files are opened using an approach similar to Dean and Hu [13]
using a K-loop probabilistic check. Symlinks are opened using a
recursive check using the same algorithm.

Chari et al. take a different approach and extend Tsafrir’s work
to implement a safe-open mechanism [9] that ensures that all
elements of a path are safe to open by the current user id. Safe
file elements can be modified only by the same user or root.

DynaRace introduces a hidden mapping and state cache and
rewrites unsafe system calls. This technique gives similar guaran-
tees as Mazières and Kaashoek without the need to change the im-
plementation of the application or the libraries. DynaRace resolves
a file step by step similar to Tsafrir et al. but uses safe system calls.
Using the new system calls DynaRace is deterministic and does not
rely on a probabilistic approach.

7.6 System call interposition in binary translators
System call interposition adds an intermediate layer between the
application and the operating system. This intermediate layer in-
tercepts every single system call and enables checks based on the
system call, the parameters, and the state of the application.

Binary translation is a natural solution to this problem as it
translates the running program and can intercept any instruction or
any memory location. Static binary translation is limited to stat-
ically known code, dynamic binary translation enables loadable
modules as well. Dynamic binary translation can be used to weave
additional security guards into the running application by modify-
ing the executed machine code with low overhead. libdetox [21],
Vx32 [14], Strata [24, 25], Program shepherding [17], and Dy-
namoRIO [7, 8] enable low overhead dynamic binary translation.

We choose libdetox for our implementation because it contains
many additional security guards that protect the running application

from other attack vectors like buffer overflows, code injection, and
(to some extent) data attacks.

8. Limitations and weaknesses
This section discusses limitations and weaknesses of the DynaRace
approach and highlights insights obtained through the DynaRace
prototype implementation. The idea of DynaRace is to associate
state to each file. Files are identified using a mapping cache that
maps filenames to unique inodes and device numbers.

Using the state machine in Figure 3 enables specific checks for
file-based system calls, whereas the state transitions are decided
based on the group that the current system call is in and the state of
the file. All usage cases of a file inside an application are covered
using the state diagram that never throws an exception if the file has
not been changed between different system calls.

The retire state enables multiple concurrent processes to modify
files in a safe way. Closing a file in one application retires the
information in the mapping cache and the application no longer
assumes that the state of the file remains the same. Ownership
transfers in, e.g., log rotation, are only possible using the special
retire state.

8.1 Retirement schemes
The current implementation keeps all files in the enforce state after
they have been used with a system call of the use group. A possible
extension of the state machine in Figure 3 would be a retirement
scheme for system calls that change the file but do not return an
open file descriptor (e.g., chmod, chown, or more general system
calls in the use group without creat and open).

These system calls do not return an open file descriptor when
they are executed. The application does not signal the kernel that it
no longer expects to use the associated file (e.g., through the close
system call for opened files). DynaRace therefore cannot check if a
file is no longer used for these system calls. The retirement scheme
for these system calls could be implemented through a timer that
starts when the system call is executed. The timer would signal
when these files can be retired and the state of the file would
move from enforce back to update, thereby enabling concurrent
modification without terminating the program.

A timer is of course a dangerous addition as it opens a new
windows of opportunity for an attacker to delay the application
until the timer runs out and the file state is no longer enforced. We
leave this problem to future work.

8.2 Broken (legal) usage scenarios
DynaRace protects from changes to file-metadata from concurrent
processes if the file state is enforced (i.e., if the application assumes
that information from prior system calls is still valid). Possible
broken usage scenarios are concurrent file/directory modification
and polling.

If an application works with a file in the enforce state and a con-
current process changes the parent directory (e.g., by moving the
directory, or by renaming the directory) then the directory verifica-
tion will fail and an error is thrown. Two concurrent processes also
cannot work together on a single file if it is in the enforce state in
both processes.

Polling (i.e., checking metadata of the file) from concurrent pro-
cesses works as long as the file is in the update state. If both pro-
cesses want to work with the file (e.g., reading, writing, changing
metadata), then DynaRace will terminate the second application
due to a metadata mismatch.

DynaRace limits the number of modifiers of each file to a single
process. If multiple processes try to modify a file at the same time

then all processes except the first are terminated due to metadata
mismatches.

9. Conclusion
This paper presents DynaRace, a novel approach to detect and
prevent file system races in unmodified applications. DynaRace
adds state to each file and keeps metadata for all accessed files in a
mapping cache.

File system races are detected if the information in the mapping
cache does not match the information of the current file. Our proto-
type application emits a warning and terminates the application if
races are detected.

DynaRace ensures that there are no file-based races possible and
dynamically rewrites unsafe system calls into safe versions that are
race-free. A benefit of the DynaRace approach is that it protects
all file-based system calls. DynaRace allows partial migration of
individual libraries to the new set of file-related system calls. The
new system calls are no panacea, even with new system calls a
programmer still has to worry about the state of individual files.
DynaRace removes this burden from the programmer and offers a
state-based dynamic approach for all file-related system calls.

Currently programmers have to live with potential races when
they use standard system calls, and it is hard to program race-free
applications using the new system calls. The DynaRace approach
enables programmers to use both the unsafe and the new system
calls without the need to add explicit additional safety checks in the
application while closing the door to attacks that attempt to exploit
file system races.

10. Acknowledgments
We thank the anonymous reviewers for their detailed feedback
and suggestions on how to improve the paper. Special thanks for
pointing out [30].

References
[1] New system calls. https://lwn.net/Articles/164887/.

[2] openat syscall. http://linux.die.net/man/2/openat.

[3] AGGARWAL, A., AND JALOTE, P. Monitoring the security health of
software systems. In ISSRE’06: 17th Int’l Symp. Software Reliability
Engineering (nov. 2006), pp. 146 –158.

[4] BISHOP, M. Checking for race conditions in file accesses. Tech. rep.,
University of California at Davis, 1995.

[5] BISHOP, M., AND DILGER, M. Checking for race conditions in file
accesses. Journal for Computing Systems (1996), 131–152.

[6] BORISOV, N., JOHNSON, R., SASTRY, N., AND WAGNER, D. Fixing
races for fun and profit: how to abuse atime. In 14th USENIX Security
Symposium (2005), pp. 303–314.

[7] BRUENING, D., DUESTERWALD, E., AND AMARASINGHE, S. De-
sign and implementation of a dynamic optimization framework for
Windows. In ACM Workshop Feedback-directed Dyn. Opt. (FDDO-4)
(2001).

[8] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An in-
frastructure for adaptive dynamic optimization. In CGO ’03 (2003),
pp. 265–275.

[9] CHARI, S., HALEVI, S., AND VENEMA, W. Where do you want to
go today? escalating privileges by pathname manipulation. In NDSS
(2010).

[10] CHEN, H., AND WAGNER, D. MOPS: an infrastructure for examining
security properties of software. In CCS’02: Proc. 9th ACM Conf.
Computer and Communications Security (2002), pp. 235–244.

The source code of the DynaRace framework and additional examples can
be downloaded at http://nebelwelt.net/projects/libdetox.

http://nebelwelt.net/projects/libdetox

[11] CHESS, B. V. Improving computer security using extended static
checking. In S&P’02: IEEE Symp. on Security and Privacy (2002).

[12] COWAN, C., BEATTIE, S., WRIGHT, C., AND KROAH-HARTMAN,
G. RaceGuard: Kernel protection from temporary file race vulnerabil-
ities. In Proc. 10th USENIX Security Symposium (2001), p. 12.

[13] DEAN, D., AND HU, A. J. Fixing races for fun and profit: how to
use access(2). In Proc. 13th USENIX Security Symposium (2004),
SSYM’04, pp. 14–14.

[14] FORD, B., AND COX, R. Vx32: lightweight user-level sandboxing
on the x86. In ATC’08: USENIX 2008 Annual Technical Conference
(2008), pp. 293–306.

[15] GOYAL, B., SITARAMAN, S., AND VENKATESAN, S. A unified
approach to detect binding based race condition attacks. In CANS’03:
Intl. Workshop on Cryptology & Network Security (2003).

[16] JOSHI, A., KING, S. T., DUNLAP, G. W., AND CHEN, P. M. De-
tecting past and present intrusions through vulnerability-specific pred-
icates. In SOSP’05: Proc. 20th ACM Symposium on Operating Sys-
tems Principles (2005), pp. 91–104.

[17] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P. Secure
execution via program shepherding. In Proc. 11th USENIX Security
Symposium (2002), pp. 191–206.

[18] KO, C., AND REDMOND, T. Noninterference and intrusion detection.
In S&P’02: Proc. 2002 IEEE Symposium on Security and Privacy
(2002), pp. 177–187.

[19] MAZIÈRES, D., AND KAASHOEK, M. F. Secure applications need
flexible operating systems. In HotOS’07: Workshop on Hot Topics in
Operating Systems (1997), pp. 56–61.

[20] PARK, J., LEE, G., LEE, S., AND KIM, D.-K. RPS: An extension of
reference monitor to prevent race-attacks. In PCM’04: 5th Pacific Rim
Conf. on Multimedia (2004), pp. 556–563.

[21] PAYER, M., AND GROSS, T. R. Fine-grained user-space security
through virtualization. In VEE’11: Proc. 7th ACM SIGPLAN/SIGOPS
Int’l conf. Virtual execution environments (2011), pp. 157–168.

[22] SCHMUCK, F., AND WYLIE, J. Experience with transactions in
quicksilver. In SOSP’09: Proc. 13th ACM Symposium on Operating
Systems Principles (1991), pp. 239–253.

[23] SCHWARZ, B., CHEN, H., WAGNER, D., LIN, J., TU, W., MORRI-
SON, G., AND WEST, J. Model checking an entire Linux distribution
for security violations. In Proc 21st Computer Security Applications
Conference (2005), pp. 13–22.

[24] SCOTT, K., AND DAVIDSON, J. Strata: A software dynamic transla-
tion infrastructure. Tech. rep., University of Virginia, 2001.

[25] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using software
dynamic translation. ACSAC’02: Annual Computer Security Applica-
tions Conference (2002), 209.

[26] SHACHAM, H. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In CCS’07: Proc.
14th ACM conf. Computer and Communications Security (Oct. 2007),
S. De Capitani di Vimercati and P. Syverson, Eds., ACM Press,
pp. 552–61.

[27] SPILLANE, R. P., GAIKWAD, S., CHINNI, M., ZADOK, E., AND
WRIGHT, C. P. Enabling transactional file access via lightweight
kernel extensions. In FAST’09: Proc. 7th conf. on File and storage
technologies (2009), pp. 29–42.

[28] SUK LHEE, K., AND CHAPIN, S. J. Detection of file-based race
conditions. Int’l Journal Information Security 4, 1-2 (2005), 105–119.

[29] TSAFRIR, D., HERTZ, T., WAGNER, D., AND DA SILVA, D.
Portably solving file TOCTTOU races with hardness amplification. In
FAST’08: Proc. 6th USENIX Conf. on File and Storage Technologies
(2008), pp. 13:1–13:18.

[30] TSAFRIR, D., HERTZ, T., WAGNER, D., AND DA SILVA, D. Portably
preventing file race attacks with user-mode path resolution. Tech. Rep.
RC24572, IBM T. J. Watson Research Center, June 2008.

[31] TSYRKLEVICH, E., AND YEE, B. Dynamic detection and prevention
of race conditions in file accesses. In Proc. 12th USENIX Security
Symposium (2003), pp. 243–255.

[32] UPPULURI, P., JOSHI, U., AND RAY, A. Preventing race condition
attacks on file-systems. In SAC’05: Proc. ACM Symposium on Applied
computing (2005), SAC ’05, pp. 346–353.

[33] VIEGA, J., BLOCH, J., KOHNO, T., AND MCGRAW, G. ITS4: a
static vulnerability scanner for C and C++ code. In ACSAC’00: Ann.
Comput. Security Applications Conf. (2000).

[34] VLADZ. Xorg file permission change vulnerability (CVE-2011-4029).
http://vladz.devzero.fr/Xorg-CVE-2011-4029.txt.

[35] WEI, J., AND PU, C. TOCTTOU vulnerabilities in UNIX-style file
systems: an anatomical study. In FAST’05: Proc. 4th conf. USENIX
Conf. File and Storage Technologies (2005), pp. 12–12.

[36] WEI, J., AND PU, C. A methodical defense against TOCTTOU
attacks: the EDGI approach. In ISSSE’06: IEEE Int’l Symp. on Secure
Software Engineering (2006).

[37] WRIGHT, C. P., SPILLANE, R., SIVATHANU, G., AND ZADOK, E.
Extending ACID semantics to the file system. Trans. Storage 3 (June
2007).

	Introduction
	Attack model and background information
	Attack model
	File-based TOCTTOU race conditions

	The DynaRace approach
	File states
	File resolution

	Implementation
	Tracking of file states and metadata
	File resolution
	Directory authentication
	File authentication

	Replacing system calls
	access system call
	open system call
	close system call
	New system calls

	Implementation alternatives
	Kernel DynaRace implementation
	libc-based DynaRace implementation
	ptrace-based DynaRace implementation

	Evaluation
	Performance evaluation
	Apache web server study
	Evaluation of the protection for file-based race conditions
	Checked file access
	Temporary file creation
	Log rotation

	X.org file permission change vulnerability

	Related work
	Static race detection
	Dynamic race detection
	Dynamic race prevention
	Maze-based race attacks
	Hardness amplification-based race protection
	System call interposition in binary translators

	Limitations and weaknesses
	Retirement schemes
	Broken (legal) usage scenarios

	Conclusion
	Acknowledgments

