
LLDSAL: A Low-Level Domain-Specific Aspect Language
for Dynamic Code-Generation and Program Modification

Mathias Payer
Department of Computer Science

ETH Zurich, Switzerland

Boris Bluntschli
Department of Computer Science

ETH Zurich, Switzerland

Thomas Gross
Department of Computer Science

ETH Zurich, Switzerland

Abstract
Dynamic binary translation frameworks enable late modifi-
cations of binary programs. The binary translator needs to
generate dynamic code at runtime for trampolines, trans-
lated control flow instructions, additional runtime checks,
and lookups. The code must be efficient, low-level, and can-
not rely on any calling conventions.

A Low-Level Domain Specific Aspect Language (LLD-
SAL) is a natural fit to specify dynamically generated code
snippets at compile time. The code is then generated by the
translator on demand at runtime and integrated into the trans-
lated application code. The LLDSAL is tightly coupled to a
host language and provides full access to data structures of
the host language. The syntax of the LLDSAL is compara-
ble to inline assembler but the code is generated at runtime.
The advantage of an LLDSAL that generates dynamic code
is that references to runtime data structures are encoded di-
rectly in the machine code without indirections. Most param-
eters in the generated low-level aspects can be hard coded to
reduce the number of passed parameters.

This paper presents the design and implementation of
such an LLDSAL. The LLDSAL is integrated into a binary
translation framework that enforces application security.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors — Code generation

General Terms Performance

Keywords Assembly Language, Dynamic Low-Level Do-
main Specific Language, Aspect Language, Program Modi-
fication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSAL’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1128-1/12/03. . . $10.00

1. Introduction
Dynamic Binary Translation (BT) is a well known tool for
late and on-the-fly program modifications. The application
is dynamically translated at runtime. Additional features and
aspects are added during the compilation/translation. A BT
framework must dynamically generate (low-level) code se-
quences to implement the aspects for the individual transla-
tion functions, to alter the control flow, to switch between
translated code and code of the BT framework, and to apply
optimizations that improve the translated code. The required
code sequences are not known at compile-time, they must be
constructed dynamically at runtime.

The dynamically generated code must be fast and can-
not rely on a regular runtime environment or some spe-
cific calling conventions (i.e., callee/caller save registers)
due to low-level BT details. The BT framework runs along-
side the application. Low-level code that transfers control to
the BT internal functions must store all registers and code
that switches back to the translated application must resume
to the same state from before the BT function. Aspects that
are woven directly into the translated code must adhere to
the same restrictions and may not leave any artifacts after
they complete. In addition, the generated code needs access
to thread local data structures (e.g., the thread local code
cache or the thread local mapping table between translated
and untranslated code). The location of these data structures
is known only at runtime. Due to features like Address Space
Layout Randomization and dynamic runtime data it is not
possible to statically foresee the number of threads or the
dynamic memory addresses.

BT therefore needs a flexible, fast way to generate low-
level machine code at runtime. A Low-Level Domain-
Specific Aspect Language (LLDSAL) solves the problem
of dynamic on-the-fly code generation for program modi-
fications in a BT. The aspects generated by the LLDSAL
are woven into the translated application code at runtime.
Aspects are used to change the application behavior, e.g.,
to change control flow transfer targets, to collect profiling
information, or to generate dynamic policies.

The syntax of the DSL is similar to inline assembler
in system languages. The code can be specified using an

extended assembler syntax with access to high-level data
structures. The extensions allow access to C structs and
fields, access to high-level functions that are part of the
BT framework, and rich runtime extensions for control flow
transfers.

Listing 1 shows how the DSL is used to implement on-
demand low-overhead profiling for unmodified applications
in a binary translator. The DSL-code is located in the BT-
internal function that translates indirect jumps. LLDSAL
generates dynamic code that is added to the translated in-
direct jump. The DSL resolves the indirect reference to the
thread local nr ind calls variable and uses the final ad-
dress in the generated machine code. If the instrumented ap-
plication executes the translated indirect jump it executes the
DSL-added code as well.

BEGIN_ASM(code)

// ’incl’ does not change flags

incl {&tld ->stat ->nr_ind_calls}

END_ASM

Listing 1. Dynamic profiling of generated code.

The LLDSAL is compiled into machine code snippets in
the final file. These snippets are used to construct machine
code sequences at runtime with pointers to dynamic data
structures directly encoded in the machine code. The advan-
tage is that no parameters are passed to these low-level as-
pects. The machine code accesses the hardcoded parameters
through direct references and does not use indirect pointers
and parameters. This trade-off reduces the number of passed
parameters by generating specialized code.

The implementation of the LLDSAL and some design
details focus on the IA32 Instruction Set Architecture (ISA)
and the C language. The general concepts can be applied to
other ISAs and languages as well.

2. Design
A dynamic binary translator needs a way to generate dy-
namic machine code at runtime to implement aspects that
modify the input program, for translated control flow trans-
fers, and for system access (e.g., system calls, and signals).
The machine code is specified using an extended assembler
syntax. Dynamic code generation is an essential component
of the BT framework and should be as simple as possible. A
domain specific language for dynamic low-level code gener-
ation must fulfill the following requirements:

Usability: the language must be easy to read and easy to
maintain. The language follows a trade-off between raw
assembly code and access to high-level language con-
structs of the host language. Compared to related ap-
proaches the language should simplify programming and
facilitate debugging.

Integration into host language: the DSL integrates natu-
rally into the host language. The DSL supports expres-

sions of a host language inside the DSL code (e.g., access
to individual fields of data types of the host language).
These expressions are resolved during the DSL integra-
tion step in the compiler toolchain.

No runtime dependencies: the DSL must compile to static
code that fits into the BT framework. This reduces both
runtime overhead and dependencies to external libraries.

The LLDSAL defines a dynamic assembly language to
express and generate dynamic low-level code at runtime.
The LLDSAL is used in a BT framework to implement the
dynamic code generator, the translator, and to weave aspects
into the translated application code.

The assembly language is extended with additional se-
mantics to access high-level data structures and variables.
Other differences to assembly language are that the LLD-
SAL includes functions and extensions to redirect control
flow to dynamic locations (e.g., to encode targets that are
only available at runtime).

2.1 Dynamic assembly language
The BT framework needs a way to specify low-level code
that is independent from any calling conventions or runtime
environments. Assembly language is a natural fit for these
requirements.

Dynamic assembly language in LLDSAL has the same
expressiveness as inline assembler in system languages. Any
instruction of the target ISA can be expressed using the reg-
ular assembler mnemonic. It makes sense to use the gen-
eral IA32 assembler syntax for the LLDSAL. As our im-
plementation of the LLDSAL is integrated into libdetox [8]
and builds on the GNU C compiler toolchain, we choose the
AT&T assembler syntax.

void eip_gadget () {

char *eip;

char *(* code)(void);

// code must be mapped executable

code = (char *(*)()) mmap(0, 4096, \

PROT_READ|PROT_WRITE|PROT_EXEC , \

MAP_PRIVATE|MAP_ANON ,-1,0);

// code generation modifies ’ptr’

char *ptr = (char *)code;

BEGIN_ASM(ptr)

movl (%esp), %eax

ret

END_ASM

// execute generated code

eip = code ();

}

Listing 2. DSL example: modification of a local variable.

The LLDSAL is used in a regular program when dynamic
code needs to be generated with runtime parameters. The
code is generated at a specific address and can include dy-
namic parameters. BEGIN ASM(ptr) starts a dynamic LLD-
SAL block and END ASM ends it, generated code is stored at
ptr. Listing 2 shows a simple example of the LLDSAL that
generates a dynamic function that determines the current in-
struction pointer.

2.2 Data (variable) access
Interaction between LLDSAL and the host language is an
important topic. The LLDSAL needs access to variables and
state of the host language as well as functions of the host
program. LLDSAL uses the {expr} expression to evaluate
expr at runtime in the context of the host language.

char *code = ...

BEGIN_ASM(code)

// store %esp value in some_var

movl %esp , {&tld ->some_var}

END_ASM

Listing 3. DSL example: access to structured data.

Listing 3 shows a variable access to some var. The LLD-
SAL embeds the reference in the generated code at runtime.
The generated code uses a direct reference when executed
and no longer needs the indirection through tld->some var.
Table 1 shows an overview of all possible reference patterns.

Pattern Description
${&foo} use address of foo
${foo} use static value of foo at translation
{&foo} use dynamic value of foo (indirect reference)
{foo} use dynamic value of the address of foo

(double indirect reference)

Table 1. List of supported variable access patterns.

2.3 LLDSAL Macros
Frequently used code fragments are encapsulated in macros.
These macros are used like regular statements in the code.
LLDSAL extends these statements and executes additional
code (e.g., additional checks or logic). The BT framework
uses macros to generate direct jumps and direct calls at run-
time. The macros take absolute target addresses and calcu-
late relative offsets that are encoded in the IA32 machine
code. Additional checks ensure the targets are reachable with
the given addressing scheme (e.g., the target of an 8 bit rela-
tive conditional jump must be within -128 to 127 bytes from
the jump instruction).

Listing 4 shows a DSL snippet that generates a dynamic
relative call at the given location. The call abs extension
takes a given absolute address, checks the location of the
target, and generates a relative call according to the current
code pointer at the location of the code pointer.

void function () { ... }

/* later */

char *code = ...

BEGIN_ASM(code)

call_abs {& function}

END_ASM

Listing 4. DSL example that calls a high-level function.

3. Implementation
LLDSAL is implemented as a minimally-invasive extension
of the GNU C compiler toolchain. The DSL is resolved in
an additional compiler pass between the C preprocessor and
the actual compiler. The LLDSAL is translated into C during
the compiler pass. The DSL parts of the input source file are
replaced with the generated C code in the output source file.

Source file
*.dsl

GNU C
preprocessor

LLDSAL
Processing

GNU
assembler

objdump

C output
*.c

GNU C
compiler

Compiled object
*.o

Figure 1. LLDSAL Compilation overview.

Figure 1 shows the implementation of the LLDSAL and
the integration into the GCC toolchain. First the GNU C pre-
processor is executed. This step resolves all macros in the
source file (including macros in the DSL parts). LLDSAL
is then implemented as a Python program that strips the as-
sembler code from the input file, executes the GNU assem-
bler to generate the matching machine code sequences, and
uses objdump to transfer the raw machine code back into
the source file. The GNU C preprocessor adds explicit line
number information from the original input source file. The
LLDSAL keeps this information intact and weaves the gen-
erated machine code into a temporary C file. The source file
is then compiled using the GNU C compiler.

The LLDSAL separates the low-level assembler code and
the C code. If the assembler code contains syntax errors
then the assembler in the LLDSAL step emits a warning or
an error that is mapped back to the original location using
the available line number information. On the other hand
if the C code contains any syntax or semantic errors then

the compiler can emit warnings or errors using accurate line
number information.

Listing 5 shows a simple translation from the C code en-
riched with LLDSAL code to regular C code. The assembly
code that is part of the LLDSAL block is extracted in the ad-
ditional compiler pass, translated using the GNU assembler,
disassembled by objdump, and the dumped machine code is
integrated back into the temporary C file.

char *code = ...

BEGIN_ASM(code)

nop

cmp $0 , {tld ->maptbl}(, %ebx , 8)

END_ASM

/* is translated to */

// BEGIN_ASM

// nop

*(code ++) = 0x90;

// cmpl

*(code ++) = 0x83;

*(code ++) = 0x3c;

*(code ++) = 0xdd;

((int)(code)) = \

(int)(tld ->maptbl);

code += 4;

// END_ASM

Listing 5. Simple DSL translation.

4. Implementation alternatives
LLDSAL uses an additional compiler pass to translate the
DSL into regular code of the host language. Other ap-
proaches are offline code generation (relying on inline as-
sembly directives), macro-based approaches, or feature-rich
JIT code generation toolkits and libraries.

4.1 Inline assembler
Inline assembler is a domain specific language that is avail-
able on top of many system languages like C or C++. The
syntax of LLDSAL is similar to inline assembler. Both do-
main specific languages enable the combination of assembly
code with access to high-level language constructs.

The difference between LLDSAL and inline assembler is
that inline assembler produces static code at compile time.
Source code written in inline assembler is directly integrated
into the compiled program as part of individual compiled
functions. LLDSAL, on the other hand, generates dynamic
code at runtime and not at compile time. LLDSAL can be
used for just-in-time code generation and self-modifying
code.

Inline assembler cannot encode direct pointers to dy-
namic or thread local data. The LLDSAL encodes direct
references to data structures in the machine code. Inline as-

sembler needs parameters to access dynamic data structures,
resulting in additional (unavoidable) overhead. Dynamically
generated code optimizes the accesses to these data struc-
tures, removes parameters, and reduces indirect memory
lookups.

4.2 Macro-based approach
C macros can be used to specify low-level instructions in
a semi-comfortable way. The machine code representation
is encoded in a macro that uses dynamic parameters as
well. The macros are then used to generate machine code
at dynamic locations at runtime.

#define PUSHL_IMM32(dst , imm) \\

*dst ++=0 x68; \\

*((int32_t *)dst) = imm; dst+=4

char *code = ...

PUSHL_IMM32(code , 0xdeadbeef);

Listing 6. Macro based translation.

Listing 6 shows a macro-based implementation. The state
of the source file after the GNU C preprocessor step is com-
parable to the state after the LLDSAL is integrated into the
final C file. Drawbacks of the macro-based approach are that
every used machine code instruction needs to be hand-coded
as a macro, changes to the program layout are cumbersome,
and (manually) hand-coding machine code instructions is er-
ror prone.

Another drawback of this macro-based approach is that
the compiler cannot statically check the dynamic assembly
code. LLDSAL uses the compiler to check type sizes, as-
sembly mnemonics, and the correct encoding of instructions
at compile time.

4.3 JIT code generation
Another alternative is using just-in-time code generation
toolkits like GNU Lightning [1] or asmjit [6] that are more
complex than simple compilers with inline assembler di-
rectives. These projects provide an interface to generate
dynamic low-level code at runtime based on a high-level
interface.

The high-level languages are different from the assembler
syntax. The APIs are geared towards complex just-in-time
code generation, e.g., for virtual machines. Both libraries
add additional dependencies to the runtime image of the ap-
plication and support features like CPU/ISA detection and
code optimization. These features are not needed in a table-
based BT framework and only add unneeded additional com-
plexity and overhead.

JIT-based code generation can check the generated code
at runtime and throws a runtime exception if there is an er-
ror. Due to the library based implementation no compile-
time check is possible. On the other hand a full JIT compiler
is more flexible. JIT compilers can compile dynamic source

input, the LLDSAL must know at compile-time which in-
struction sequences are used at runtime.

5. Related work
A rich body of related work in the area of domain specific
languages already exists. This paper focuses on two aspects
of related work: (i) the implementation of the DS(A)L, i.e.,
focuses on implementation issues and other problems with
the integration of the DSL into the existing host language,
and (ii) DSL applications that look at specific application
scenarios for DSLs (e.g., meta-circular DSL languages, and
virtual machines).

5.1 DSL implementation
The specified syntax of the DSL must be integrated into
the selected environment. Many implementations choose
source-to-source translations to integrate the DSL into the
host language. Hudak et al. [5] and Mernik et al. [7] general-
ized the approaches how to build domain specific languages.
They also discussed the possible scenarios when DSLs are
useful. Stichnoth and Gross [10] present code decomposi-
tion to implement high-level transformations in compilers
using a DSL.

Porkolab et al. [9] developed a compile-time DSL parsing
and generation technique. The DSL is integrated into the
host language and causes minimal syntactical and semantic
overhead. They propose a template-based implementation to
integrate a DSL into C++. Our approach is similar in that
we also use an additional compiler pass to translate the DSL
into the host language, reducing overall complexity.

5.2 DSL applications
DSLs fill a special need in a specific environment. Guyer and
Lin [4] implement a specific DSL to optimize libraries for
different runtime environments. The DSL uses high-level in-
formation to select specific optimizations for the library that
fit the target environment. This makes it easier to develop the
best fitting library for each individual configuration.

Khepora [3] abstracts the idea of DSLs by implementing
a system to build source-to-source translated DSLs. The
Khepora system is implemented as a simple compiler that
parses the source file, resolves the DSL in the syntax tree,
and pretty prints the final file in the host language.

Coady et al. [2] present a DSAL for virtual machines. The
VM is implemented and extended using modular aspects.
Individual aspects and add-ons can be implemented easily
using the given DSAL. D4OL [11] is a specific DSAL that
is used to specify object layouts for virtual machine imple-
mentations. The object layout can be adapted according to
specific needs and constraints.

The implementation of LLDSAL is simple and straight-
forward. We choose to implement the DSAL directly using
an additional compiler pass. Other approaches like source-
to-source translation would be possible but would add addi-
tional complexity due to, e.g., the direct access to parameters

in the host language, and additional dependencies on exter-
nal libraries.

6. Conclusion
This paper presents the design and implementation of a Low-
Level Domain-Specific Aspect Language (LLDSAL). The
LLDSAL enables dynamic code generation in system lan-
guages without additional library dependencies. LLDSAL is
used to add features and aspects dynamically during the ex-
ecution of application code in a binary translator.

The comparison with other approaches shows that a
compiler-based implementation of the DSL is feasible and
no additional runtime libraries are needed. Using a low-level
DSAL raises the level of interaction between developer and
BT framework and thereby significantly adds to readability
and maintainability of system software.

References
[1] Using and porting gnu lightning. http://www.gnu.org/s/

lightning/, Dec. 2011.

[2] COADY, Y., GIBBS, C., HAUPT, M., VITEK, J., AND YA-
MAUCHI, H. Towards a domain-specific aspect language for
virtual machines. In DSAL’06: Proc. AOSD workshop on
Domain-Specific Aspect Languages (2006).

[3] FAITH, R. E., NYLAND, L. S., AND PRINS, J. Khepera:
A system for rapid implementation of domain specific lan-
guages. In DSL (1997), pp. 243–255.

[4] GUYER, S. Z., AND LIN, C. An annotation language for
optimizing software libraries. In DSL (1999), pp. 39–52.

[5] HUDAK, P. Building domain-specific embedded languages.
ACM Comput. Surv. 28 (Dec. 1996).

[6] KOBALICEK, P. asmjit - complete x86/x64 JIT assembler
for c++ language. http://code.google.com/p/asmjit/,
Dec. 2011.

[7] MERNIK, M., HEERING, J., AND SLOANE, A. M. When
and how to develop domain-specific languages. ACM Comput.
Surv. 37 (Dec. 2005), 316–344.

[8] PAYER, M., AND GROSS, T. R. Fine-grained user-space
security through virtualization. In VEE’11: Proc. 7th Int’l
conf. Virtual Execution Environments (2011), pp. 157–168.

[9] PORKOLAB, Z., AND SINKOVICS, A. Domain-specific lan-
guage integration with compile-time parser generator library.
In GPCE ’10: Proc. 9th Conf. on Generative Programming
and Component Engineering (2010), pp. 137–146.

[10] STICHNOTH, J. M., AND GROSS, T. R. Code composition
as an implementation language for compilers. In DSL (1997),
pp. 119–132.

[11] TIMBERMONT, S., ADAMS, B., AND HAUPT, M. Towards
a dsal for object layout in virtual machines. In DSAL’08:
Proc. AOSD workshop on Domain-Specific Aspect Languages
(2008).

The source code of the LLDSAL framework and additional examples can
be downloaded at http://nebelwelt.net/projects/libdetox.

http://www.gnu.org/s/lightning/
http://www.gnu.org/s/lightning/
http://code.google.com/p/asmjit/
http://nebelwelt.net/projects/libdetox

	Introduction
	Design
	Dynamic assembly language
	Data (variable) access
	LLDSAL Macros

	Implementation
	Implementation alternatives
	Inline assembler
	Macro-based approach
	JIT code generation

	Related work
	DSL implementation
	DSL applications

	Conclusion

