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Abstract—Transactional memory (TM) is an attractive plat-
form for parallel programs, and several software transactional
memory (STM) designs have been presented. We explore
and analyze several optimization opportunities to adapt STM
parameters to a running program.

This paper uses adaptSTM, a flexible STM library with a
non-adaptive baseline common to current fast STM libraries
to evaluate different performance options. The baseline is
extended by an online evaluation system that enables the
measurement of key runtime parameters like read- and write-
locations, or commit- and abort-rate. The performance data
is used by a thread-local adaptation system to tune the
STM configuration. The system adapts different important
parameters like write-set hash-size, hash-function, and write
strategy based on runtime statistics on a per-thread basis.

We discuss different self-adapting parameters, especially
their performance implications and the resulting trade-offs.
Measurements show that local per-thread adaptation out-
performs global system-wide adaptation. We position local
adaptivity as an extension to existing systems.

Using the STAMP benchmarks, we compare adaptSTM
to two other STM libraries, TL2 and tinySTM. Comparing
adaptSTM and the adaptation system to TL2 results in an
average speedup of 43% for 8 threads and 137% for 16
threads. adaptSTM offers performance that is competitive with
tinySTM for low-contention benchmarks; for high-contention
benchmarks adaptSTM outperforms tinySTM.

Thread-local adaptation alone increases performance on
average by 4.3% for 16 threads, and up to 10% for individual
benchmarks, compared to adaptSTM without active adapta-
tion.

I. INTRODUCTION

Transactional memory offers an attractive alternative to
locks by executing critical sections in a transactional manner.
The programmer specifies atomic sections and transactional
memory accesses. The runtime system ensures mutual ex-
clusion of the atomic sections. Transactional memory can
be implemented in software (STM), in hardware (HTM) or
as a hybrid approach (HyTM).

Many current transactional memory systems are imple-
mented in software. The advantage of STM systems is
that different algorithms and parameters can be evaluated
without hardware development costs. With careful design
the overhead of STM systems can be as low as about
40 instructions per transactional read or write on average
(and could be even lower in a low-level assembly language
implementation).

Current STM systems are the result of many engineering
decisions. There is no single decision that is responsible
for good performance. Only a careful selection of different
parameters results in a competitive STM system.

This paper uses adaptSTM, a flexible and neutral STM
library that implements a non-adaptive baseline common
to many fast STM libraries. This non-adaptive baseline is
extended by a novel online sampling system that collects
different performance data. The performance data is then
used in a thread-local adaptation system that tunes important
STM parameters for each program phase to the workload of
each individual thread.

The contributions of this paper are:
• A fine-grained, thread-local, low overhead adaptation

mechanism that adapts STM parameters according to
detected phase changes and different thread workloads.

• A detailed analysis of the presented thread-local self-
adapting parameters and the trade-offs between collect-
ing performance data and available adaptivity.

The reminder of the paper is organized as follows. Sec-
tion II presents design decisions for a non-adaptive and com-
petitive STM baseline. Section III extends the non-adaptive
baseline STM library by an adaptive optimization system
and explains different thread-local optimization strategies.
Section IV evaluates different STM alternatives, the different
adaptive parameters, explains trade-offs between different
optimization systems, offers insights into efficient optimiza-
tion systems, and justifies the advantages of local adaptivity
compared to global adaptivity. Section V lists related work,
explains the background of modern STM systems, and high-
lights design decisions for efficient transactional memory.
Section VI concludes the paper.

II. EFFICIENT STM BASELINE

Every transaction needs local data structures to keep track
of transactional reads and writes, see Figure 1: (i) the read-
set saves tuples of version and read addresses that have been
read but not yet written; (ii) the write-set contains tuples of
addresses and old/new values that have been written during
the current transaction; and (iii) the lock-set contains tuples
of version and lock addresses that have been taken during
this transaction.

Most STM systems use arrays that are expanded if the
capacity is reached and combine lock-set and write-set. This
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Figure 1. Transaction-local data, including read-set, lock-set and write-set.

simple approach has limited scalability. An alternative to
arrays are hash-tables. Entries in the read-set and write-set
can be hashed into different hash-tables for fast lookups.

A platform to evaluate adaptivity in STM systems must
build on a fast, competitive, and non-adaptive baseline
implementation. The implementation of the non-adaptive
adaptSTM baseline makes the following design decisions:

Global versions: adaptSTM uses a single static global
array for versions and locks. Experiments with the
STAMP [2] benchmarks show that a good average size
for the locking table is 222∗sizeof(word), and a
shift by 5 bits ((addr>>5) & (HASH_PATTERN))
offers a good tradeoff between fine-grained locking and
additional overhead for handling too many locks.

Locking strategy: adaptSTM implements both eager lock-
ing and lazy locking for write locations, but prefers
eager locking to enable an adaptive selection between
write-back and write-through write strategies.

Cache locality: transactions use separate arrays for read-
sets, lock-sets, and write-sets. If the number of locations
exceeds a specific threshold a hash-table is built on-
the-fly to enable faster lookup. Our experiments with
the STAMP benchmarks show that a hash-table is not
beneficial for read-sets and lock-sets. For write-sets a
hash-table for 32 entries is best on average, but the
optimal size varies greatly between benchmarks.

Read-set revalidation: if a transaction reads or writes a
location, or tries to commit, the version of an allotted
lock can be larger than the transaction’s version. A
naive approach would abort whenever such a higher
version is encountered. To reduce the amount of retried
transactions adaptSTM tries to update the version of the
transaction to the current global time. Versions of all
untaken locks of the current transaction are validated
(for eager locking the locks corresponding to all read
locations are validated, for lazy locking all write locks
are validated as well). If no location has been written
by another transaction since the start of the current

transaction (e.g., no old value that is no longer existent
was read in the current transaction), then the version is
updated to the current global time and the transaction
continues.

Contention management: for contended transactions
adaptSTM implements a wait and retry strategy. The
current transaction is yielded a configurable number
of times. The yield operations give the other threads
the opportunity to release the lock before the current
transaction has to abort itself.

III. ADAPTIVITY IN STM

Current STM systems are optimized for the average case.
They cannot adapt to different workloads or phase changes.
The advantage of an adaptive STM design is that the
adaptation mechanism tailors the STM parameters to current
phases and workloads at runtime.

The adaptation system uses the information provided by
the online sampling system to justify a deliberate decision.
Adaptation can be global (for all threads), or thread-local,
whereas both forms of adaptation have their advantages.

Important sampled metrics include the transaction fre-
quency, the number of unique read and write locations, the
number of hash-table collisions per hash-table (e.g., for the
global lock, read-set, and write-set), the number of aborts
compared to the number of successful commits, and the
quality of hash functions. These thread-local counters are
measured using a moving window implementation in the
transaction library.

Our adaptation system uses the runtime data to select
between different write strategies, to adapt the local write-
set hash-function, and to tune the locality of the write-set’s
hash-table.

A. Adaptivity in current systems

Adaptivity is a challenging property for dynamic systems.
It enables an STM system to adapt to different workloads
as well as to phases during the runtime of a program.
Adaptivity faces two challenges: (1) it must find a good
configuration that outperforms the non-adaptive baseline and
(2) it must find that configuration fast and with low overhead.

Different forms of adaptivity already exist in current
systems. Marathe et al. developed ASTM [17], an object-
based STM algorithm that extends DSTM [13] and adapts (i)
lazy and eager lock acquire strategies, and (ii) two forms of
meta-data for transactional objects. TinySTM [8, 9] showed
that an eager acquire strategy is better for lock-based STMs
because of the earlier conflict detection. TinySTM [9] is the
first lock-based STM that uses global optimizations to adapt
the size and the hash function of the global locking table.

Yoo and Lee present a TM system that uses an adaptive
transaction scheduler [29]. The scheduler detects high con-
tention and throttles the number of concurrent transactions.



adaptSTM [20] on the other hand uses eager-locking,
sampling, and local adaptivity to adapt different thread
local parameters (e.g., hash-table size for write-sets, locality
tuning for thread-local hash-tables, selecting between write-
back and write-through strategies, and adaptive contention
management). adaptSTM takes the idea from other adaptive
STM systems and extends adaptivity to thread-local param-
eters using a wide selection of different adaption options.

B. Local vs. global adaptivity

There are two approaches to adaptivity. One is global
adaptivity, which changes the parameters for all running
transactions. The other is local adaptivity, which changes
the parameters on a per-thread basis.

The advantage of local adaptivity over global adaptivity is
that every thread has its local settings, e.g., a reader-thread
optimizes the transactional parameters for best read perfor-
mance and a writer-thread optimizes for write throughput.
Global adaptivity is a bottleneck for scalability as it requires
global synchronization and barriers for all threads that make
frequent changes of the adaptive parameters expensive. Each
thread on the other hand can change the local transactional
settings without synchronization overhead every time a
transaction is started or restarted.

The disadvantage of local adaptivity is that some changes
are not covered in this scheme, e.g., the global lock hash-
function or the size of the global lock table cannot be
changed at runtime without synchronization, but must be
preset to a reasonable value. Some global changes like
adaptation of the contention manager can be done without
synchronization if designed carefully.

Even a switch between eager and lazy locking can be im-
plemented without synchronization. Both locking schemes
can be used in parallel transactions, although fairness is not
guaranteed as the probability for a conflict is higher in a
lazy locking scheme.

C. Write-back vs. write-through

Any STM library must buffer transactional writes to
ensure correctness. A transaction either buffers the written
locations locally and writes the data back as soon as the
transaction is in the commit phase (write-back or lazy-
update). Alternatively the transaction writes the data directly
to memory and caches the original value locally (write-
through or eager-update).

A write-back strategy offers cheap abort possibilities, but
the commit phase takes longer as all data is written to
memory. With a write-through strategy the commit phase
is cheap, but an abort is more expensive.

In a contended environment with a high abort rate it
is beneficial to use write-back instead of write-through to
commit write changes to memory.

adaptSTM samples the abort rate and decides to switch
between write-back and write-through, if the abort rate

reaches a threshold. The adaptation system uses the average
of the last 64 transactions to calculate the abort rate.

D. Adapting the size of hash-tables
The size of the write-set hash-table is crucial for good

performance. If the hash-table is too large, then the overhead
of resetting the table every time a transaction starts is high.
On the other hand, if the table is too small, then the lookup
will be slow due to many hash collisions. In the current
implementation of adaptSTM hash collisions are queued in
a linked list in the same hash-table slot.
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Figure 2. Summary of the hash-table adaptation mechanism, depending
on the number of hash collisions and the load in the hash-table.

The adaptation system samples the moving average of
unique write locations per transaction. If the load of the
hash-table is more than 33% then the size of the table is
doubled. On the other hand, if the load is below 10% then
the size of the table is halved. Details about the adaptation
policy are illustrated in Figure 2. The data are obtained using
the STAMP benchmarks and offer a good tradeoff between
hash-table size and hash-table collisions.

E. Locality tuning for thread-local hash-tables
One criterion for low-level hash-functions is speed. They

should not use more than a couple of instructions, otherwise
the cost of the hash-function is higher than the potential
benefit from a better distribution. Simple hash-functions are
not able to cover all data access patterns. The adaptation
system switches between different simple hash-functions for
the thread-local write-set and selects the hash-function with
a low number of hash collisions. The list of hash-functions
is:

• (addr<<X) & SIZE, whereas X is 2, 4, 5, 6, or 8.
• ((addr<<16)&SIZE)ˆ((addr<<5)&SIZE)
• ((addr<<12)&SIZE)ˆ((addr<<2)&SIZE)
The choice of the hash-function is a trade-off between

quality and speed. These seven hash-functions cover a wide
range of different data-access patterns and the number is
still low enough to provide a quick turn-around between the
different hash-functions if the number of hash collisions is
high.



F. Adaptive contention management

An extension of the basic contention management is to
scale the number of yield operations according to the overall
contention in the system. The current transaction is yielded
an amount of times relative to the number of retries for this
transaction.

This adaptive contention strategy implements a backoff
strategy that retries immediately if the contention is low, or
yields an increasing amount of times in contended situations.

G. Adaptive statistics and overhead

An adaptive system needs to collect statistics about the
program and running transactions. Collecting performance
numbers and additional flexibility to adapt individual pa-
rameters incur some overhead, e.g., additional counters and
if-statements to select the correct setting.

Our non-adaptive baseline collects information about the
number of unique write locations, as well as the overall
number of write and read locations. The overhead to add
additional counters for the number of started transactions,
committed transactions, and aborted transactions is reason-
able, as these events are relatively rare. More frequent events
like lock collisions and hash collisions are more expensive
to count, but do not incur a significant overhead.

IV. BENCHMARKS AND EVALUATION

This section presents an evaluation of different optimiza-
tions, adaptive parameters, and performance compared to
other STM systems based on the STAMP [2] benchmark
suite version 0.9.10.

All benchmarks were measured on two Intel 4-core Xeon
E5520 CPUs resulting in a total of 8 cores with 2.27GHz and
12GB main memory. The system uses Ubuntu version 9.04
for 64bit systems, glibc version 2.9.1, and gcc version 4.3.3-
5. Average speedups are calculated by comparing overall
execution time for all programs for different configurations.
adaptSTM supports both 32bit and 64bit mode. The mea-
surements presented here use the 64bit version.

The analysis shows measurements for 1, 2, 4, 8, and
16 threads. The measurements for 16 threads represent a
contended situation where always two threads share one
core. The results for 16 threads show how well a system
handles contention.

The next sections present an analysis of different STAMP
characteristics, an evaluation of non-adaptive optimizations
like the read-set extension, implications of adaptive param-
eters, and evaluate performance compared to tinySTM and
TL2 to provide a reference to other published systems.

A. STAMP characteristics

The STAMP benchmarks cover a wide range of transac-
tional programs. The workload configuration for the bench-
marks in this paper is available in Table I.

Benchmark Parameters
Bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
Genome -g16384 -s64 -n16777216
kmeans -m25 -n15 -t0.00001

-i random-n65536-d32-c16.txt
Labyrinth -i random-x512-y512-z7-n512.txt
Vacation -n4 -q60 -u90 -r1048576 -t4194304
Intruder -a10 -l128 -n262144 -s1
SSCA2 -s20 -i1.0 -u1.0 -l3 -p3
YADA -a15 -i ttimeu1000000.2

Table I
WORKLOAD CONFIGURATIONS FOR THE INDIVIDUAL STAMP
BENCHMARKS. THE PARAMETERS ARE IDENTICAL TO THE ++

PARAMETER SET IN THE STAMP EVALUATION [2] EXCEPT FOR KMEANS
WHERE WE REPLACED -m15 BY -m25 TO INCREASE THE WORKLOAD.

Table II shows that the STAMP benchmarks are chal-
lenging for STM systems. The total number of transactions
ranges from about 1,546 for Bayes to up to 23,428,126
for Intruder and the average transactional footprint varies
as well. There are benchmarks with a high number of
transactional reads and writes (Vacation, Labyrinth, and
YADA) and there are benchmarks with a low number of
transactional reads, and writes (SSCA2, kmeans, and Bayes).

Bench. commits locks reads writes
avg. min. max. avg. min. max.

Bayesa 33 1 11 1 26 1 1 2
1,513 2 23 1 423 2 0 20

Genome 2,489,218 0 36 1 4,154 0 0 24
Intruder 23,428,126 1 23 3 875 1 0 47
kmeansb 87,382 24 24 1 33 24 1 33
Labyrinth 1,026 177 180 3 844 177 0 844
SSCA2 22,362,279 1 1 1 1 1 1 2
Vacation 4,194,304 7 394 14 1,807 7 0 79
YADA 2,415,298 13 58 0 1,320 16 0 331

aBayes executes two different sequential STM runs.
bkmeans has 720 equal sequential runs.

Table II
STAMP CHARACTERISTICS SHOWING COMMITS, LOCKS, AVG.,

MIN/MAX READS, AND AVG., MIN/MAX WRITES.

The varying load poses two challenges to the adapta-
tion system. First, the adaptation system must find a good
configuration. Second, the adaptation system must find the
configuration fast and with tolerable overhead.

B. Evaluation of the read-set extension

Another factor that is important for competitive per-
formance is the read-set extension optimization discussed
in Section II. Contention and read version failures rise
with the number of concurrently running transactions. As
contention increases other threads will increase versions
of locks, creating conflicts with the current transaction. It
is important to reduce the amount of unnecessary retries.



Bench. 2 threads 4 threads 8 threads 16 threads
Bayes 17 23 27 27

47% 57% 41% 52%
Genome 1,346 3,350 8,945 10,611

17% 53% 52% 38%
Intruder 536,451 1,436,177 8,527,748 6,656,061

96% 84% 75% 80%
kmeans 175,525 569,984 1,682,853 1,535,232

100% 100% 100% 100%
Labyrinth 19 46 110 237

100% 100% 100% 100%
SSCA2 33 106 57 149

100% 100% 100% 100%
Vacation 1,997 4,685 8,962 6,923

92% 90% 89% 82%
YADA 138,791 280,942 417,134 408,544

95% 94% 91% 79%

Table III
NUMBER OF READ-SET VALIDATIONS PER BENCHMARK FOR A SPECIFIC
NUMBER OF THREADS AND PERCENTAGE OF SUCCESSFUL VALIDATIONS

AND READ-SET EXTENSIONS.

Bench. 2 threads 4 threads 8 threads 16 threads
Bayes 1,476 1,392 1,415 1,323

1% 1% 1% 2%
Genome 2,489,218 2,489,220 2,489,220 2,489,228

0% 0% 0% 2%
Intruder 23,428,127 23,428,129 23,428,133 23,428,141

1% 5% 24% 18%
kmeans 3,844,852 3,844,940 3,932,505 3,932,865

1% 3% 10% 9%
Labyrinth 1,028 1,032 1,040 1,056

2% 4% 10% 20%
SSCA2 22,362,283 22,362,287 22,362,295 22,362,315

0% 0% 0% 0%
Vacation 4,194,304 4,194,304 4,194,304 4,194,304

0% 0% 0% 0%
YADA 2,495,029 2,544,550 2,581,206 2,574,275

8% 12% 21% 383%

Table IV
NUMBER OF COMMITS PER BENCHMARK FOR A SPECIFIC NUMBER OF

THREADS AND RELATIVE PERCENTAGE OF RETRIES.

Instead of aborting, adaptSTM tries to extend the read-set
by (re-)validating all previous reads.

Table III shows that most benchmarks exhibit a high
success rate for read-set validation and extension. This opti-
mization reduces contention between threads and increases
the commit rate. The benchmarks show that re-validation
and read-set extension is successful in the majority of the
cases.

C. Commit and retry rates

An important performance parameter to measure con-
tention is the retry rate as a function of the number of suc-
cessful commits. Contention will increase with the number
of threads and result in more retries.

As shown in Table IV, this assumption holds for the In-
truder, kmeans, Labyrinth, and YADA benchmarks. Genome,
and Vacation exhibit the same behavior, but the number
of retries is very low. However the Bayes and SSCA2
benchmarks do not follow this pattern. The number of retries
is almost constant. An analysis using Valgrind [19] and the
callgrind tool shows for the Bayes benchmark that malloc
and free consume more than 40% of the time.

An external limitation is the memory allocation system.
The glibc memory allocator uses locks to ensure mutual
exclusion. As the number of threads increases the calls to
the memory allocator lead to an unwanted synchronization
and linearization. This limitation is removed if a lock-free
allocator or an STM-aware memory allocator is used [25].

D. Design decisions for the global locking table

Two parameters can be changed for the global locking
table: (i) the size of the table, and (ii) the hash-function. It
is important that these parameters are selected carefully as
they are crucial for good performance.

The most important factor for the size of the locking table
is that the table must be large enough to support enough
locks for all concurrent transactions. But one must keep in
mind that the size of the locking table is mainly responsible
for the initialization cost during the STM startup.

The hash-function represents an important tradeoff be-
tween data locality and over-locking. If shifting hash-
functions of the form (addr<<X) & HASH_SIZE are
used then 2X bytes are mapped to a single lock. The stride
covered by the hash-function should be large enough to
cover the data structure and small enough so that it does
not hinder concurrent access between data structures that
are next to another. Table V shows the different interaction
patterns. Our experiments indicate that more complex hash-
functions with more instructions result in too much overhead
for which the better hash distribution does not compensate.

The expected result for different configurations of the
locking table size and the numbers of shift bits is that the
performance will vary greatly depending on the data locality
and data parallelism of individual benchmarks.

In our experiments we use STAMP and adaptSTM in the
default configuration without adaptation to evaluate different
combinations of number of shift bits and the table size to

# Shift bits Data locality Result
low low Good mapping between lock

distribution and locality
low high Missed potential for lock

optimization
high low Possible contention for

concurrent threads
high high Good mapping between lock

distribution and locality

Table V
DIFFERENT CONFIGURATIONS FOR HASH-FUNCTIONS
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Figure 3. Execution time for different locking table sizes and shifting hash-functions, first 4 STAMP benchmarks, 4 threads.

reason about the variance in these parameters. Figure 3
compares locking table sizes from 216 to 226 entries and
from 0 to 10 shift bits and shows averages for 4 threads of 5
runs for Bayes, Genome, Vacation, and kmeans. The results
for the remaining STAMP benchmarks are similar and not
shown here because of space limitations. The standard
deviation was low for most runs, except some corner cases
with a large number of shifts.

Except for the Genome benchmark, the size of the locking
table has no influence on the runtime of the benchmark.
Only for tiny tables and a low number of shifts (0, or 2)
the table size has a noticeable effect because of the larger
amount of locks a transaction must hold. Larger locking
tables lead to better performance in the Genome benchmark
with diminishing returns after 220 entries. The results show
that any table size of 220 to 224 entries is reasonable, and

there is no need to adapt the size of the locking table at
runtime. The number of shifts must also be smaller than 8,
otherwise benchmarks like Genome, kmeans, Intruder, and
YADA will experience overlocking.

Reasonable choices of the locking table size and a rea-
sonable number of shift bits result in low changes of the
program behavior. Runtime differences are not dominant and
global adaptivity is not needed for locking table sizes and
number of shifts. Adaptivity is not beneficial in all cases,
therefore adaptSTM uses a fixed locking table size of 222

entries and a fixed number of 5 hash bits.

E. Breakdown of the adaptive parameters’ effectiveness

Depending on the workload of the program different adap-
tive parameters result in optimal throughput. This section
analyzes the different thread-local adaptive parameters and
their contribution to the overall result.



1 2 4 8 16

0

0.2

0.4

0.6

0.8

1

1.2

Intruder

naWB
aWBT
aWWH
aWHH
aALL

Threads

R
e

la
tiv

e
 r

u
n

tim
e

1 2 4 8 16

0

0.2

0.4

0.6

0.8

1

1.2

YADA

naWB
aWBT
aWWH
aWHH
aALL

Threads

R
e

la
tiv

e
 p

e
rf

o
rm

a
n

ce

Figure 4. Effects of different STM parameters showing different adaptive configurations, runtime is relative to the non-adaptive case (lower is faster).

The adaptation process and online optimization is stable
and converges to optimal results quickly, leading to a low
runtime standard deviation. Figure 4 shows the following
adaptSTM configurations using the average of 5 runs (stan-
dard deviation is low for all benchmarks):
naWB: Baseline configuration with write-back methodol-

ogy and without adaptation.
aWBT: Configuration with activated thread-local adapta-

tion, offering dynamic configuration of the write strat-
egy (write-back or write-through), and an exponential
drop-off in the waiting time for contended transactions.

aWWH: Adds automatic configuration of the size of the
write hash array for fast lookup of write entries to
aWBT.

aWHH: Extends aWWH with different hash lookup func-
tions to tune locality in the write hash array.

aALL: Uses all adaptive parameters. The aWHH config-
uration is extended by a selective Bloom filter [1] to
speedup the lookup of write entries.

Figure 4 shows that fine-grained thread-local adaptive
tuning increases performance of a STM library by 4.3% on
average for 16 concurrent threads, 3.4% for 8, and 3.8% for
4 concurrent threads over the non-adaptive configuration.
Individual benchmarks show performance improvements of
up to 10% compared to the non-adaptive baseline.

The adaptive configuration starts with the best mean con-
figuration for the STAMP benchmarks and tries to improve
from there. The thread-local fine-grained adaptation system
checks and adapts the parameters every 64 times a new
transaction is started, or a conflicting transaction is retried.

Thread-local adaptation enables an STM system to adapt
to changing situations like higher contention through con-

current threads, program phases, or different workloads. The
parameters are adapted as soon as the changed workload is
detected. Thread-local adaptation relies on an exact online
sampling system to offer a broad optimization spectrum and
to enable better performance for STM libraries.

The adaptation system adds some overhead to the total
processing time. It is not surprising that the runtime for
a single thread can be higher than for a system without
adaptation. But as soon as the environment gets less stable
(e.g., the number of threads increases or there is some
background activity due to concurrent tasks), the adaptation
system increases performance by tuning the correct param-
eters.

F. Comparison with other STM libraries

This section compares the performance of adaptSTM with
adaptivity against two fast STM systems: TL2 [5] version
0.9.6, and tinySTM [9] version 0.7.3 and 0.9.9. Two versions
of tinySTM were used, because the newer version is slower
than tinySTM 0.7.3 for some STAMP benchmarks.

Table VI and Figure 5 show the competitive performance
of the adaptSTM system using the average of 5 runs.
Standard deviation is low for all benchmarks. TL2 did not
complete for some contended runs with 8 and 16 threads
of the YADA benchmark and was unable to run the Bayes
benchmark.

Combining Table VI with contention information from
Table IV shows that adaptSTM outperforms the other STM
libraries for the Intruder, YADA, and Vacation benchmarks
if contention is high. The adaptation system switches from
a write-through to a write-back strategy, and the contention
manager increases the time a transaction spins for a taken
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Figure 5. Comparison of adaptSTM with TL2, tinySTM version 0.7.3 (tstm), and tinySTM version 0.9.9 (tstm099). Runtime relative to adaptSTM baseline
(lower is faster).

lock before it aborts.
In Table VI adaptSTM outperforms TL2 for all bench-

marks except SSCA2. This suggests that the default write-
through approach combined with eager-locking is faster than
the lazy-locking write-back approach of TL2. Comparing
adaptSTM to TL2 results in an average speedup of 43% for
8 threads and 137% for 16 threads.

adaptSTM shows better performance for both versions
of tinySTM for most of the benchmarks. Especially in
highly contended environments adaptSTM adapts to the
given situation. adaptSTM outperforms tinySTM 0.9.9 by
390% on average for 16 threads, or if we exclude the YADA
benchmark by 123% for 16 threads.

An interesting result is the runtime for 16 threads. These
numbers show the case with higher contention through
concurrent programs. adaptSTM copes with the additional
contention and still delivers good performance. The In-
truder, kmeans, Vacation, and YADA benchmarks show how
adaptSTM handles higher contention compared to TL2 and
tinySTM.

In a heavily contended environment other factors influence
the result of STM benchmarks. We attribute the performance
edge of an adaptive system in contended situations to a large
extent to the design decision to use an (adaptive) backoff
strategy instead of retrying immediately and to the dynamic
switch from a write-through to a write-back strategy for
transactional writes.

V. RELATED WORK

The book Transactional Memory [16] by Larus and Ra-
jwar gives an overview about the history of many TM
systems. It shows different STM designs and includes im-
plementation details.

Early STM systems [10, 11, 13, 18, 26] evolved out
of limited hardware TM systems [14]. STM systems are
either word-based or object-based and work on word or
object granularity. Most of the current word-based STM
implementations agree on general design decisions: they use
a global locking/versioning table [4, 6, 7, 12, 22, 25, 27]
and a hash-function to distribute the available locks over the



Bench. STM 1 thr. 2 thr. 4 thr. 8 thr. 16 thr.
Bayes astm 27 27 21 21 20

tl2
tstm 27 26 21 20 20
t099 32 24 22 22 23

Genome astm 12 6.2 3.0 1.8 2.2
tl2 13 7.3 3.8 2.4 2.9
tstm 12 6.4 3.2 1.9 3.0
t099 12 6.2 3.0 2.0 2.9

Vacation astm 43 25 13 6.8 11
tl2 87 47 24 12 22
tstm 41 25 13 7.0 31
t099 41 26 13 7.3 50

kmeans astm 124 90 51 35 32
tl2 197 129 68 43 114
tstm 97 70 39 27 42
t099 109 78 44 33 88

Labyrin. astm 83 43 24 14 16
tl2 83 46 29 19 25
tstm 83 43 23 16 19
t099 83 43 27 20 18

Intruder astm 38 23 13 10 10
tl2 57 41 29 26 37
tstm 36 23 13 11 47
t099 36 22 13 9.0 53

SSCA2 astm 26 22 15 19 19
tl2 25 22 16 19 19
tstm 24 20 15 20 20
t099 23 19 15 13 14

YADA astm 16 13 8.8 8.5 10
tl2 37 26 16 13 21
tstm 15 12 8.4 9.1 297
t099 15 12 9.2 9.6 350

Table VI
COMPARISON OF ADAPTSTM (ASTM) WITH TL2, TINYSTM VERSION

0.7.3 (TSTM), AND VERSION 0.9.9 (T099). RUNTIME IN SECONDS,
LOWER IS BETTER. BOLD ENTRIES HIGHLIGHT CONFIGURATIONS

WHERE ADAPTSTM SIGNIFICANTLY OUTPERFORMS OTHER
IMPLEMENTATIONS.

complete memory region. Global locks can be acquired in
different fashions. The main design decision is to use either
eager (encounter-time) locking, or to use lazy (commit-time)
locking. Eager locking signals concurrent transactions that
a specific location is currently locked. This scheme makes
it possible to abort early on conflicts, but might lead to
cascading aborts. Lazy locking uses local book-keeping to
keep track of locks and only acquires the locks at commit-
time. This avoids the problem of cascading aborts, but
conflicts are detected late.

All STM systems keep per transaction information about
accessed locations. Local read-sets and write-sets are used
to verify committability of transactions, and write-sets are
used to undo transactions upon conflicts or aborts.

Another important criterion is the use of a global clock [3,
23, 24, 28]. The global time is sampled at the start of
the transaction and the version of write-locations is set to
the current time in the commit phase. Versioning simplifies
validation of reads and writes as the STM system only
checks if the version (timestamp) of the accessed address

is smaller or equal than the start time of the current trans-
action. Hudson et al. [15] studied the effects of concurrent
transactional memory allocation and proposed an alternative
memory allocator for STM systems.

Two current fast lock-based STM systems with available
source code are TL2 [3, 5] and tinySTM [8, 9]. Both
systems use a combined lock/version-array and a global
clock. TinySTM is based on a single-version, word-based,
eager-locking variant of the lazy snapshot algorithm [23].
TL2 on the other hand uses lazy locking. TinySTM and TL2
are used to compare between different design decisions and
optimizations for adaptSTM.

The performance impact for many different parameters
and optimization strategies was already measured. Most of
the related work favors static optimization and static tuning
of global parameters [4, 5, 7, 12, 21, 30]. Static tuning is
a key for an efficient baseline, but an important property is
to adapt to different workloads. This can only be achieved
with dynamic adaptive tuning [9, 17, 20, 29].

VI. CONCLUDING REMARKS

This paper presents a detailed evaluation of different STM
parameters and how the program behavior and performance
reacts to changes of these parameters. A detailed analysis
describes reasonable parameters and argues for a fixed
locking table size and a fixed number of shift bits in the
hash-function. Reasonable preconfigured values outperform
the global adaptive mechanism in all investigated cases.

The analysis of the data provided by the online adap-
tation system leads to three different thread-local adaptive
optimizations. The hash-function and the size of the write-
set’s thread-local hash-table are changed adaptively, the
write-strategy is adaptively changed from write-through to
write-back, and the contention manager uses an exponential
backoff strategy depending on the current contention.

Coarse-grained adaptation is an interesting and powerful
tool that extends fine-grained adaptation. It is important to
direct the effort to those parameters of the adaptation system
that significantly contribute to overall performance. Adap-
tivity improves performance but the effects of individual
parameters must be measured carefully because adaptivity
does not pay off everywhere.

The presented system can be used for further analysis of
different adaptation parameters. Additionally the generated
statistics can be used for the analysis and characterization
of challenging workloads.

Transactional Memory is an attractive platform for parallel
programs, and Software Transactional Memory has attracted
considerable attention. This paper demonstrates that an STM
system provides numerous opportunities for optimizations
and that adaptivity is an important feature of a high-
performance TM system.

Source code is available at: http://people.inf.ethz.ch/payerm/adaptSTM/

http://people.inf.ethz.ch/payerm/adaptSTM/
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