Generating Low-Overhead Dynamic Binary
Translators

Mathias Payer and Thomas R. Gross
Department of Computer Science
ETH Zurich

Motivation

= Binary Translation (BT) well known technique for “late”
transformations
Extend or add features on the fly

= Flexibility of dynamic software BT incurs runtime overhead

= Complexity of transformations can be a challenge

Offer a high-level interface at compile time, compile into effective
translation tables

Outline

Introduction

Design and Implementation
Table generation
Translator

Optimization
Conclusion

| |
Binary Translation in a Nutshell

Original program Instrumented program
0 \ translation 0 \‘
/v 1 /v 1’
- ' —
2 What about: 2

* Self modifying code?
* Shared libraries?
* Obfuscated Code? 5

i P
i I

Binary Translation in a Nutshell

Original program Instrumented program

E ﬁ Dynamic j> \‘
0 translation 0'
\‘ \‘
/V 1 [' 1"
- - -
2 Features: 2' <4— 3
)-j * Translates all executed)-j J
- code = =

 Captures all indirect
control flow transfers

* Just in time translation

hﬂ_w

Binary Translation in a Nutshell

Original program Translator Code cache

1 s
3 Table generator K; o

supplies generated

\ Gen. \‘
) opcode) 1"
0 table f

opcode tables

4 at compile time

Binary Translation in a Nutshell

Original program Translator Code cache

— === 3

1 [‘ —— 3
k‘ __| Trampoline to 4/

translate 4
3l -

/ Mapping

/ 3 3
4 -4 1 71
2 | 2

fastBT

= Prototype for a dynamic BT system

= Machine-independent, OS-independent
Focus of this talk: IA32, Linux

Table Generation

= [ranslation tables describe individual instructions and are
used to select the correct adapter functions

= Manual table construction is hard & cumbersome
Many instructions, write machine-code tables by hand

= Use automation and high level description!

Information about opcodes, possible encodings, and properties
Specify default translation actions

. Table generator

Intel 1A32 . . Optimized
* High level interface
opcode : translator
* Adapter functions
tables table

Table Generation

= Use table generator to offer high-level interface
Transforming opcode tables into runtime translation tables

Add analysis functions to control the table generation
Memory access?
What are src, dst, aux parameters?
FPU usage?
What kind of opcode?
What opcode class (load, store, arithmetic, control flow, ...)?
Immediate value as pointer?
etc.

| |
Translator implementation

= T[ranslator uses an iterator based approach and per-
Instruction actions

= Fundamentals to master low overhead:
Code cache
Inlining
Master (indirect) control transfers

Optimization

= Indirect control flow transfers are expensive
Runtime lookup and patching required
Indirect control transfer replaced by software trap

= Optimizations in fastBT-:
Local branch prediction
Inlining a fast lookup into the code cache
Building on-the-fly shadow jump tables

Optimization: Branch prediction

= Cache the last one or two targets

= |f there is a cache hit
No lookup is needed
Results in 3 to 5 instructions
= |f there is a cache miss

Lookup the target and cache it for future use
Updating the cache costs additional instructions

Optimization: Fast lookup

= Emit an inlined fast lookup into the code cache
Uses the mapping table to translate the target
Optimized for direct hit in the mapping table
Results in 13 or 14 instructions

Optimization: Shadow jump table

= Build a shadow jump table, iff the original indirect control
transfer uses a jump table
Initialize all entries with catch-all function
Lazy lookup and write-back in catch-all
Results in 5 instructions if the target is translated

Optimization: Problem

= Each optimization is only effective for some program
locations and a specific program behavior
Low number of targets, few changes
Use a cache
High number of targets, many changes
Use fast lookup

Location has many different targets, all close to each other
Use a shadow jump-table

= An adaptive runtime optimization can select the best
optimization for each indirect control transfer

Adaptive Optimization

= fastBT offers an adaptive optimization for indirect control
transfers
Start with a prediction for 1 or 2 locations, count misses
Recover to a fast lookup, if count exceeds threshold

Construct a shadow jump-table, if the control transfer uses a jump
table

= Adaptive optimizations bring competitive performance!

Benchmarks: Setup

= Used null-transformation to show translation overhead

= Used SPEC CPU2006 benchmarks to evaluate
performance

We use the Test dataset for short running programs and the Ref
dataset for long running programs

= Machine: E6850 Intel Core2Duo @ 3.00GHz

Related work

= HDTrans

S. Sridhar et al. HDTrans: a low-overhead dynamic translator.
SIGARCH'07

Table based dynamic BT, no high level interface

= DynamoRIO

D. Bruening et al. Design and implementation of a dynamic
optimization framework for windows. In ACM Workshop Feedback-
directed Dyn. Opt. (FDDO-4) (2001).

IR based optimizing BT, does not export a translation interface

= PIN

C.-K. Luk et al. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI'05

High overhead, offers high level interface

Benchmarks: Ref dataset

100%
90%
80%
70%
60%

50%

Overhead

40%
30%
20%
10%

0%

126%

400.perlbench 445.gobmk 483.xalancbmk 447.dealll

B

Average

B fastBT

B HDTrans

1 PIN

B dynamoRIO

Benchmarks: Ref dataset

400.perlbench | 25'814 8.1% 21'930 93.7% 6.3% 3'903 7.4%
445.gobmk 18'001 1.3% 93 1.0% 99.0% J§185 4.1%
483.xalancbmk | 28'888 10.6% | 2'627 27.0% 63.6% J9'161 96.1%
447 .dealll 52'"756 54.5% | 21147 1.7% 98.3% | 540 98.4%

) All numbers are *108

Benchmarks: Test dataset

\o
(3 o\° N o\
N QO O O
NG oy A
140%
120%
100%
2 s0% M fastBT
2 M HDTrans
g 60%] PIN
O B dynamoRIO
40%

20% I
0%

400.perlbench 445.gobmk 483.xalancbmk 447.dealll Average

Benchmarks: Ref vs. Test Dataset

Benchmark no BT [s] fastBT no BT[s] fastBT
‘400.perlbench 486 56% 4 29% ‘
445.gobmk 611 18% 21 18%
483.xalancbmk 371 24% <1 56%

447 .dealll 552 44% 25 36%
Average 839 6% 38 10%

|
Benchmarks: Summary

= High overhead:

Many indirect control transfers
Function calls incur high overhead, even with optimizations
Indirect control transfers without caches or jump tables add overhead

High collision rate in mapping table
Expensive recoveries, try different rescheduling strategies

= Low overhead:

Few indirect control transfers
Cost of indirect control transfers is reduced through optimizations

Conclusion

= fastBT shows that it is possible to combine ease of use
with efficient binary translation

= Adaptive optimizations select best optimization for
individual locations

= Adaptive optimizations are necessary for low overhead in
table based binary translators

Thanks for your attention!

?

= fastBT project page: http://nebelwelt.net/fastBT
= Contact: mathias.payer@int.ethz.ch

= Kudos to:

Marcel Wirth, Peter Suter, Stephan Classen, and Antonio Barresi for
code contributions

My colleagues for endless comments and reviews

http://nebelwelt.net/fastBT
mailto:mathias.payer@inf.ethz.ch

Table Generation: Analysis Function

bool isMemOp (const unsigned char* opcode,
const instr& disInf, std::string& action)

{

bool res;
/* check for memory access in instr. */

res = mayOpAccessMem(disInf.dstFlags);
res |= mayOpAccessMem(disinf.srcFlags);
res |= mayOpAccessMem(disinf.auxFlags);

/* change the default action */
if (res) { action = "handleMemOp"; }

return res;

// in main function:
addAnalysFunction(isMemOp);

Optimization: Efficient Code

« Staticind. call: call * (fixed location)

I pushl src addr I I pushl src_ addr (1)

I jmp *xx(ind target) I cmpl $cached target, *xx(i trgt) (2)

je Strans target

pushl *xx(ind target) (3)

pushl S$tld

pushl $addr of cached_target

call fix ind call predict

1. Push original src IP
2. Compare actual target w/ cached target & branch if prediction ok

3. Recover if there is a misprediction

Optimization: Efficient Code
= Dynamicind. call: call * (reg)

I pushl src_addr

pushl src_addr, *(reg), %ebx, %ecx

I jmp *(req)

movl 12(%esp), %ebx # load target

movl %ebx, %ecx # duplicate ip

andl HASH PATTERN, %ebx # hash fct

cmpl hashtlb(0, %ebx, 8), %ecx # check

jne nohit

movl hashtlb+4(0, %ebx, 8), %ebx # load trgt

movl %ebx, (tld->ind jmp targt)

popl %ecx, %ebx # epilogue

leal 4(%esp), %esp # readjust stack

jmp *(tld->ind jmp targt) # Jjmp to trans.trgt

nohit: use ind jump to recover

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

