ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fast Binary Translation:
Translation Efficiency and Runtime Efficiency

Mathias Payer and Thomas R. Gross

Department of Computer Science
ETH Zlrich

Motivation

= Goal: User-Space BT for Software Virtualization
fastBT as a system to analyze cost of BT
We are interested in
Flexibility of code generation
Efficiency of translation
Efficiency of generated runtime image
Limits of dynamic software BT

"= Problem:
Flexibility of dynamic software BT comes at a cost
Especially indirect control transfers incur high overhead

= What is the lowest possible overhead (w/o HW support)?

2009-06-20 ETH Zurich / LST / Mathias Payer

Outline

= |ntroduction

= Design and Implementation
Translator
Table generation

= QOptimization
How to reduce overhead
Benchmarks

Related Work
= Conclusion

2009-06-20 ETH Zurich / LST / Mathias Payer

Introduction

= Design of a fast and flexible dynamic binary translator
Table driven translation approach
Master (indirect) control transfers
Indirect jumps, indirect calls, and function returns
Use a code cache and inlining

High level interface to generate translation tables at compile time
Manual table construction is hard & cumbersome
Use automation and high level description!

H Table generator H

Intel IA32 « High level interface Optimized
opcode . translator
* Adapter functions
tables table

| r |

2009-06-20 ETH Zurich / LST / Mathias Payer

Table Generation

= Use enriched opcode tables
Information about opcodes, possible encodings, and properties
Specify default translation actions

= Use table generator to offer high-level interface
Transforming opcode tables into runtime translation tables
Add analysis functions to control the table generation
Memory access?
What are src, dst, aux parameters?
FPU usage?
What kind of opcode?
Immediate value as pointer?

2009-06-20 ETH Zurich / LST / Mathias Payer

Design and Implementation

= BT in a nutshell:

Original program Translator Trace cache

Y i -
0 \‘1 ﬁ [‘ ﬁ v/ 1
(N e 3\‘

translate 4

2!

y 3 3
A 1 1'

2 | 2

3
% / Mapping
4

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization

= Various optimizations explored for |IA32
Performance limited by indirect control flow transfers
Optimize indirect call/jump and function returns
Require runtime lookup and dispatching
BT replaces indirect control transfers with software traps
Calculate target address from original instruction
Lookup target (translated?)
Redirect to target

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization

= Various optimizations explored for |IA32
Performance limited by indirect control flow transfers
Optimize indirect call/jump and function returns
Require runtime lookup and dispatching
BT replaces indirect control transfers with software traps
Calculate target address from original instruction
Lookup target (translated?)
Redirect to target

A naive approach translates one instruction
into ~30 instructions (+function call)

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Return instructions, naive approach

= Treat a return instruction like an indirect jump
= Use return IP on stack and branch to ind_ jump

" ind_jump pseudocode:
Lookup target
Call to mapping table lookup function =
Translate target if not in code cache call ind_Jjump
Return to translated target

push tld

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Return instructions, naive approach

= Treat a return instruction like an indirect jump
= Use return IP on stack and branch to ind_ jump

" ind_jump pseudocode:
Lookup target
Call to mapping table lookup function =
Translate target if not in code cache call ind_Jjump
Return to translated target

push tld

= Results in ~30 instructions
2-3 function calls (ind_ jump, lookup, maybe translation)
No distinction between fast path and slow path

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Shadow Stack

= Use relationship between call/ret
= CALL

Push return IP and translated IP on shadow stack

Stack: Shadow Stack:

RIP

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Shadow Stack

= Use relationship between call/ret
= CALL

Push return IP and translated IP on shadow stack

= RET

Compare return IP on stack with shadow stack

Stack: Shadow Stack:

RIP ?

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Shadow Stack

= Use relationship between call/ret
= CALL

Push return IP and translated IP on shadow stack

= RET

Compare return IP on stack with shadow stack
If it matches, return to translated IP on shadow stack

Stack: Shadow Stack:

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Shadow Stack

= Use relationship between call/ret
= CALL

Push return IP and translated IP on shadow stack

= RET

Compare return IP on stack with shadow stack
If it matches, return to translated IP on shadow stack

Stack: Shadow Stack:

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Shadow Stack

= Use relationship between call/ret
= CALL

Push return IP and translated IP on shadow stack

= RET

Compare return IP on stack with shadow stack
If it matches, return to translated IP on shadow stack

= Results in ~18 instructions
1 additional function call, if target is untranslated
Overhead results from stack synchronization

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Return Prediction

= Save last target IP and translated IP in inline cache
Compare inline cache with actual IP branch to translated IP if correct

Otherwise recover through indirect jump and backpatch cached
entries

ret > cmpl $cached_rip, (%esp)

je hit_ret

pushl tld

call ret_fixup
hit ret:

addl $4, %esp

Jmp Stranslated_rip

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Return Prediction

= Save last target IP and translated IP in inline cache
Compare inline cache with actual IP branch to translated IP if correct

Otherwise recover through indirect jump and backpatch cached
entries

= Results in 4/43 (hit/miss) instructions

1 additional function call, if target is untranslated
Only possible for misses

Optimistic approach that speculates on a high hit-rate
Recovery is more expensive than even the naive approach

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization: Inlined Fast Return

= |nline a fast mapping table lookup into the code cache
Branch to target if already translated
Otherwise branch to ind_jump

2009-06-20

ret

—>

hit:

pushl %ebx & %ecx

movl 8 (%esp), %ebx #load rip
movl %ebx, %ecx

andl HASH PATTERN, $%ebx

subl MAPTLB_START (0, %ebx, 4), %ecx
Jjecxz hit

popl %Secx & %ebx

pushl tld

call ind_jump

movl MAPTLB_START+4 (0, %ebx, 4) , $ebx

movl %ebx, 8 (%esp) # overwrite rip
popbl %ecx & %ebx

ret

ETH Zurich / LST / Mathias Payer

Fast lookup

Recover from failed lookup

Fix RIP and return

Optimization: Inlined Fast Return

= |nline a fast mapping table lookup into the code cache
Branch to target if already translated
Otherwise branch to ind_jump

= Results in 12 instructions
1 additional function call, if target is untranslated
Only possible for misses
Faster than shadow stack and naive approach
For most benchmarks faster than the return prediction

2009-06-20 ETH Zurich / LST / Mathias Payer

Optimization summary

= Optimize different forms of indirect control transfers
Indirect jumps, indirect calls, and function returns

= fastBT uses:
Inlined fast return and inlining to reduce the cost of function returns
Indirect call prediction
Hit: 4, miss: 43 instructions
Inlined fast indirect jumps

2009-06-20 ETH Zurich / LST / Mathias Payer

Benchmarks

= Used SPEC CPU2006 benchmarks to evaluate different
optimizations

= Compared against three dynamic BT systems
HDTrans version 0.4.1 (current version)

DynamoRIO version 0.9.4 (current version)
PIN version 2.4, revision 19012

= Used “null”-translation
= Machine: Intel Core2 Duo @ 3GHz, 2GB Memory

2009-06-20 ETH Zurich / LST / Mathias Payer

Benchmarks

Slowdown, relative 2.5
to untranslated code

2
1.5
B fastBT
B dynamoRIO
1 [] HDTrans
B PIN
0.5
0

400.perlbench 458.sjeng 464 .h264ref

2009-06-20 ETH Zurich / LST / Mathias Payer

Benchmarks

Slowdown, relative 1.2
to untranslated code
1
0.8
0.6 B fastBT
B dynamoRIO
[l HDTrans
04 M PIN
0.2
0

456.hmmer 435.gromacs 444 namd

2009-06-20 ETH Zurich / LST / Mathias Payer

Benchmarks

= High overhead for SW BT-:

\ Map. Misses (%miss) Function calls (%inl.) Ind. Jumps Ind. Calls (%miss)
400.perlbench 246667 (0.00%) 219091026 (9.50%) 21930*0”6 3902*1076 (89.14%)
458.sjeng 1 (0.00%) 2194010726 (1.25%) 109930*10”6 5070*1076 (64.05%)
464.h264ref 11340*1076 (42.64%) 9148*10%% (30.36%) 2317*10% 28445*10% (1.20%)

= |ow overhead for SW BT:

\ Map. Misses (%miss) Function calls (%inl.) Ind. Jumps Ind. Calls (%miss)
456.hmmer 15 (0.00%) 219*10"6 (26.78%) 163*1076 1*10"6 (0.01%)
435.gromacs 2 (0.00%) 35101076 (75.48%) 2710”6 31076/ (0.86%)
444 namd 2 (0.00%) 34*10"6 (20.47%) 15*10"6 2*10°6/ (0.00%)

2009-06-20

ETH Zurich / LST / Mathias Payer

Benchmarks

= High overhead:

Many indirect control transfers
Combined w/ high number of mispredictions, or a low number of inlined methods
Overhead inherited from HW design, hard to reduce further with SW
High collision rate in mapping table
Leads to expensive recoveries
Could be fixed through an adaptive SW system

= |Low overhead:
Few indirect control transfers
Cost of indirect control transfers is reduced by optimizations

2009-06-20 ETH Zurich / LST / Mathias Payer

Benchmarks

= High overhead:

Many indirect control transfers
Combined w/ high number of mispredictions, or a low number of inlined methods
Overhead inherited from HW design, hard to reduce further with SW
High collision rate in mapping table
Leads to expensive recoveries
Could be fixed through an adaptive SW system

= |Low overhead:
Few indirect control transfers
Cost of indirect control transfers is reduced by optimizations

= Competitive performance compared to other translation
frameworks
Additional optimization opportunities might require more HW support

2009-06-20 ETH Zurich / LST / Mathias Payer

Related work

= HDTrans

S. Sridhar et al. HDTrans: A Low-Overhead Dynamic Translator.
SIGARCH'07

Table based dynamic BT, no high level interface

= DynamoRIO

D. Bruening et al. Design and Implementation of a Dynamic
Optimization Framework for Windows. In ACM Workshop Feedback-
directed Dyn. Opt. (FDDO-4) (2001).

IR based optimizing BT, targets binary optimization

= PIN

C.-K. Luk et al. PIN: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In PLDI'05

IR based, offers high level interface

2009-06-20 ETH Zurich / LST / Mathias Payer

Conclusion

= fastBT as a low-overhead BT
Fast translation, resulting in an efficient program
Table based, but offers high-level interface at compile time
Overhead introduced by fastBT is tolerable
Used to investigate limits of BT performance

* |ndirect control transfers limit performance of SW solutions
Cannot be overcome with software smartness alone

2009-06-20 ETH Zurich / LST / Mathias Payer

Thanks for your attention!

2009-06-20 ETH Zurich / LST / Mathias Payer

Future / current work

= Reduce collisions in mapping table
Only visible for some benchmarks
Reorder entries in mapping table
Reset hash function and adapt to program

= Reduce the cost of indirect jumps and indirect calls
Not all indirect jumps / indirect calls are the same
Different optimizations for different kinds of control transfers

Analyze during translation phase
Pick best strategy

2009-06-20 ETH Zurich / LST / Mathias Payer

fastBT basics

= Table generator code size: 3937 lines total
2373 lines opcode definition tables

= Runtime code size: 8702 lines total

4580 lines of code, comments, definitions

1200 lines for default translation actions
4122 lines automatically generated opcode tables
Library compiled to 88kB

= Machine code based translation tables constructed at
compile time, no additional overhead at runtime

= (Constant time needed to translate one instruction

2009-06-20 ETH Zurich / LST / Mathias Payer

Table Generator: Analysis function

bool isMemOp (const unsigned char* opcode,

}

const instré& disInf, std::stringé& action)

bool res;

/* check for memory access in instruction */

res = mayOperAccessMemory (disInf.dstFlags);
res |= mayOperAccessMemory (disInf.srcFlags);
res |= mayOperAccessMemory (disInf.auxFlags) ;

/* change the default action */

if (res) { action = "handleMemOp"; }

return res;

// in main function:

addAnalysFunction (isMemOp) ;

2009-06-20

ETH Zurich / LST / Mathias Payer

Translator: Action function (copy)

finalize_tu_t action_copy (translate_struct_t *ts) {
unsigned char *addr = ts-—>cur_instr;
unsigned char* transl addr = ts->transl_ instr;
int length = ts->next_instr - ts->cur_instr;
/* copy instruction verbatim to translated version */
memcpy (kransl_addr, addr, length);
ts—>transl_instr += length;

return tu_neutral;

2009-06-20 ETH Zurich / LST / Mathias Payer

Translator: Action function (RET)

finalize tu_t action_ret (translate_struct_t *ts) {

unsigned char *addr = ts—->cur_instr;

unsigned char *first_byte_after_opcode = ts->first_byte_after_opcode;

unsigned char* transl_addr = ts->transl_instr;

int32_t jmp_target = (int32_t) &ind_jump;

if (*addr == 0xC2) { /* this ret wants to pop some bytes of the stack */
PUSHL_IMM32 (transl_addr, *((intl6_t*)first_byte after opcode));
Jmp_target = (int32_t) &ind_jump_remove;

}

PUSHL_IMM32 (transl_addr, (int32_t)ts->tld);

CALL REL32 (transl_addr, jmp_target);

ts—->transl_instr = transl_addr;

return tu_close;

2009-06-20 ETH Zurich / LST / Mathias Payer

