
Fast Binary Translation:
Translation Efficiency and Runtime Efficiency

 Mathias Payer and Thomas R. Gross

Department of Computer Science

ETH Zürich

2ETH Zurich / LST / Mathias Payer2009-06-20

Motivation

 Goal: User-Space BT for Software Virtualization
 fastBT as a system to analyze cost of BT
 We are interested in

 Flexibility of code generation

 Efficiency of translation

 Efficiency of generated runtime image

 Limits of dynamic software BT

 Problem:
 Flexibility of dynamic software BT comes at a cost
 Especially indirect control transfers incur high overhead

 What is the lowest possible overhead (w/o HW support)?

3ETH Zurich / LST / Mathias Payer2009-06-20

Outline

 Introduction
 Design and Implementation

 Translator
 Table generation

 Optimization
 How to reduce overhead
 Benchmarks

 Related Work
 Conclusion

4ETH Zurich / LST / Mathias Payer2009-06-20

Introduction

 Design of a fast and flexible dynamic binary translator
 Table driven translation approach
 Master (indirect) control transfers

 Indirect jumps, indirect calls, and function returns

 Use a code cache and inlining
 High level interface to generate translation tables at compile time

 Manual table construction is hard & cumbersome

 Use automation and high level description!

Intel IA32
opcode
tables

● High level interface
● Adapter functions

Optimized
translator

table

Table generator

5ETH Zurich / LST / Mathias Payer2009-06-20

Table Generation

 Use enriched opcode tables
 Information about opcodes, possible encodings, and properties
 Specify default translation actions

 Use table generator to offer high-level interface
 Transforming opcode tables into runtime translation tables
 Add analysis functions to control the table generation

 Memory access?

 What are src, dst, aux parameters?

 FPU usage?

 What kind of opcode?

 Immediate value as pointer?

 ...

6ETH Zurich / LST / Mathias Payer2009-06-20

Design and Implementation

 BT in a nutshell:

Translator

Opcode
table 1'

2'

3'
Trampoline to

translate 4

Trace cache

0

1

2 3

4

Original program

3 3'
1 1'
2 2'

Mapping

7ETH Zurich / LST / Mathias Payer2009-06-20

Optimization

 Various optimizations explored for IA32
 Performance limited by indirect control flow transfers
 Optimize indirect call/jump and function returns

 Require runtime lookup and dispatching

 BT replaces indirect control transfers with software traps
 Calculate target address from original instruction

 Lookup target (translated?)

 Redirect to target

8ETH Zurich / LST / Mathias Payer2009-06-20

Optimization

 Various optimizations explored for IA32
 Performance limited by indirect control flow transfers
 Optimize indirect call/jump and function returns

 Require runtime lookup and dispatching

 BT replaces indirect control transfers with software traps
 Calculate target address from original instruction

 Lookup target (translated?)

 Redirect to target

A naive approach translates one instruction
into ~30 instructions (+function call)

9ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return instructions, naive approach

 Treat a return instruction like an indirect jump
 Use return IP on stack and branch to ind_jump
 ind_jump pseudocode:

 Lookup target
 Call to mapping table lookup function
 Translate target if not in code cache
 Return to translated target

push tld

call ind_jump
ret

10ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return instructions, naive approach

 Treat a return instruction like an indirect jump
 Use return IP on stack and branch to ind_jump
 ind_jump pseudocode:

 Lookup target
 Call to mapping table lookup function
 Translate target if not in code cache
 Return to translated target

 Results in ~30 instructions
 2-3 function calls (ind_jump, lookup, maybe translation)
 No distinction between fast path and slow path

push tld

call ind_jump
ret

11ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

RIP Trans. IP
RIP

Stack:
...

Shadow Stack:
...

12ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack

RIP Trans. IP
RIP

Stack:
...

Shadow Stack:
...

?

13ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

Trans. IP

Stack:
...

Shadow Stack:
...

14ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

Stack:
...

Shadow Stack:
...

15ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Shadow Stack

 Use relationship between call/ret
 CALL

 Push return IP and translated IP on shadow stack

 RET
 Compare return IP on stack with shadow stack
 If it matches, return to translated IP on shadow stack

 Results in ~18 instructions
 1 additional function call, if target is untranslated
 Overhead results from stack synchronization

16ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return Prediction

 Save last target IP and translated IP in inline cache
 Compare inline cache with actual IP branch to translated IP if correct
 Otherwise recover through indirect jump and backpatch cached

entries

cmpl $cached_rip, (%esp)

je hit_ret

pushl tld

call ret_fixup

hit_ret:

addl $4, %esp

jmp $translated_rip

ret

17ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Return Prediction

 Save last target IP and translated IP in inline cache
 Compare inline cache with actual IP branch to translated IP if correct
 Otherwise recover through indirect jump and backpatch cached

entries

 Results in 4/43 (hit/miss) instructions
 1 additional function call, if target is untranslated

 Only possible for misses

 Optimistic approach that speculates on a high hit-rate
 Recovery is more expensive than even the naive approach

18ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Inlined Fast Return

 Inline a fast mapping table lookup into the code cache
 Branch to target if already translated
 Otherwise branch to ind_jump

pushl %ebx & %ecx

movl 8(%esp), %ebx #load rip

movl %ebx, %ecx

andl HASH_PATTERN, %ebx

subl MAPTLB_START(0,%ebx,4), %ecx

jecxz hit

popl %ecx & %ebx

pushl tld

call ind_jump

hit:

movl MAPTLB_START+4(0,%ebx,4),%ebx

movl %ebx, 8(%esp) # overwrite rip

popbl %ecx & %ebx

ret

ret

Fast lookup

Recover from failed lookup

Fix RIP and return

19ETH Zurich / LST / Mathias Payer2009-06-20

Optimization: Inlined Fast Return

 Inline a fast mapping table lookup into the code cache
 Branch to target if already translated
 Otherwise branch to ind_jump

 Results in 12 instructions
 1 additional function call, if target is untranslated

 Only possible for misses

 Faster than shadow stack and naive approach
 For most benchmarks faster than the return prediction

20ETH Zurich / LST / Mathias Payer2009-06-20

Optimization summary

 Optimize different forms of indirect control transfers
 Indirect jumps, indirect calls, and function returns

 fastBT uses:
 Inlined fast return and inlining to reduce the cost of function returns
 Indirect call prediction

 Hit: 4, miss: 43 instructions

 Inlined fast indirect jumps

21ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 Used SPEC CPU2006 benchmarks to evaluate different
optimizations

 Compared against three dynamic BT systems
 HDTrans version 0.4.1 (current version)
 DynamoRIO version 0.9.4 (current version)
 PIN version 2.4, revision 19012

 Used “null”-translation
 Machine: Intel Core2 Duo @ 3GHz, 2GB Memory

22ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

400.perlbench 458.sjeng 464.h264ref
0

0.5

1

1.5

2

2.5

fastBT
dynamoRIO
HDTrans
PIN

Slowdown, relative
to untranslated code

23ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

456.hmmer 435.gromacs 444.namd
0

0.2

0.4

0.6

0.8

1

1.2

fastBT
dynamoRIO
HDTrans
PIN

Slowdown, relative
to untranslated code

24ETH Zurich / LST / Mathias Payer2009-06-20

 High overhead for SW BT:

 Low overhead for SW BT:

Map. Misses (%miss) Function calls Ind. Jumps Ind. Calls (%miss)
456.hmmer 15 (0.00%) 219*10 6̂ (26.78%) 163*10 6̂ 1*10 6̂ (0.01%)
435.gromacs 2 (0.00%) 3510*10^6 (75.48%) 27*10 6̂ 3*10 6̂ (0.86%)
444.namd 2 (0.00%) 34*10 6̂ (20.47%) 15*10 6̂ 2*10 6̂ (0.00%)

(%inl.)

Benchmarks

Map. Misses (%miss) Function calls (%inl.) Ind. Jumps Ind. Calls (%miss)
400.perlbench 246667 (0.00%) 21909*10^6 (9.50%) 21930*10^6 3902*10^6 (89.14%)
458.sjeng 1 (0.00%) 21940*10^6 (1.25%) 109930*10^6 5070*10^6 (64.05%)
464.h264ref 11340*10^6 (42.64%) 9148*10 6̂ (30.36%) 2317*10 6̂ 28445*10 6̂ (1.20%)

25ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 High overhead:
 Many indirect control transfers

 Combined w/ high number of mispredictions, or a low number of inlined methods

 Overhead inherited from HW design, hard to reduce further with SW

 High collision rate in mapping table
 Leads to expensive recoveries

 Could be fixed through an adaptive SW system

 Low overhead:
 Few indirect control transfers
 Cost of indirect control transfers is reduced by optimizations

26ETH Zurich / LST / Mathias Payer2009-06-20

Benchmarks

 High overhead:
 Many indirect control transfers

 Combined w/ high number of mispredictions, or a low number of inlined methods

 Overhead inherited from HW design, hard to reduce further with SW

 High collision rate in mapping table
 Leads to expensive recoveries

 Could be fixed through an adaptive SW system

 Low overhead:
 Few indirect control transfers
 Cost of indirect control transfers is reduced by optimizations

 Competitive performance compared to other translation
frameworks
 Additional optimization opportunities might require more HW support

27ETH Zurich / LST / Mathias Payer2009-06-20

Related work

 HDTrans
 S. Sridhar et al. HDTrans: A Low-Overhead Dynamic Translator.

SIGARCH'07
 Table based dynamic BT, no high level interface

 DynamoRIO
 D. Bruening et al. Design and Implementation of a Dynamic

Optimization Framework for Windows. In ACM Workshop Feedback-
directed Dyn. Opt. (FDDO-4) (2001).

 IR based optimizing BT, targets binary optimization

 PIN
 C.-K. Luk et al. PIN: Building Customized Program Analysis Tools

with Dynamic Instrumentation. In PLDI'05
 IR based, offers high level interface

28ETH Zurich / LST / Mathias Payer2009-06-20

Conclusion

 fastBT as a low-overhead BT
 Fast translation, resulting in an efficient program
 Table based, but offers high-level interface at compile time
 Overhead introduced by fastBT is tolerable
 Used to investigate limits of BT performance

 Indirect control transfers limit performance of SW solutions
 Cannot be overcome with software smartness alone

29ETH Zurich / LST / Mathias Payer2009-06-20

Thanks for your attention!

?

30ETH Zurich / LST / Mathias Payer2009-06-20

Future / current work

 Reduce collisions in mapping table
 Only visible for some benchmarks
 Reorder entries in mapping table
 Reset hash function and adapt to program

 Reduce the cost of indirect jumps and indirect calls
 Not all indirect jumps / indirect calls are the same
 Different optimizations for different kinds of control transfers

 Analyze during translation phase

 Pick best strategy

31ETH Zurich / LST / Mathias Payer2009-06-20

fastBT basics

 Table generator code size: 3937 lines total
 2373 lines opcode definition tables

 Runtime code size: 8702 lines total
 4580 lines of code, comments, definitions

 1200 lines for default translation actions

 4122 lines automatically generated opcode tables
 Library compiled to 88kB

 Machine code based translation tables constructed at
compile time, no additional overhead at runtime

 Constant time needed to translate one instruction

32ETH Zurich / LST / Mathias Payer2009-06-20

Table Generator: Analysis function

bool isMemOp (const unsigned char* opcode,

 const instr& disInf, std::string& action)

{

 bool res;

 /* check for memory access in instruction */

 res = mayOperAccessMemory(disInf.dstFlags);

 res |= mayOperAccessMemory(disInf.srcFlags);

 res |= mayOperAccessMemory(disInf.auxFlags);

 /* change the default action */

 if (res) { action = "handleMemOp"; }

 return res;

}

// in main function:

addAnalysFunction(isMemOp);

33ETH Zurich / LST / Mathias Payer2009-06-20

Translator: Action function (copy)

finalize_tu_t action_copy(translate_struct_t *ts) {

 unsigned char *addr = ts->cur_instr;

 unsigned char* transl_addr = ts->transl_instr;

 int length = ts->next_instr - ts->cur_instr;

 /* copy instruction verbatim to translated version */

 memcpy(transl_addr, addr, length);

 ts->transl_instr += length;

 return tu_neutral;

}

34ETH Zurich / LST / Mathias Payer2009-06-20

Translator: Action function (RET)

finalize_tu_t action_ret(translate_struct_t *ts) {

 unsigned char *addr = ts->cur_instr;

 unsigned char *first_byte_after_opcode = ts->first_byte_after_opcode;

 unsigned char* transl_addr = ts->transl_instr;

 int32_t jmp_target = (int32_t)&ind_jump;

 if(*addr == 0xC2) { /* this ret wants to pop some bytes of the stack */

PUSHL_IMM32(transl_addr, *((int16_t*)first_byte_after_opcode));

jmp_target = (int32_t)&ind_jump_remove;

 }

 PUSHL_IMM32(transl_addr, (int32_t)ts->tld);

 CALL_REL32(transl_addr, jmp_target);

 ts->transl_instr = transl_addr;

 return tu_close;

}

