
Online Optimizations Driven by Hardware Performance
Monitoring

Florian T. Schneider
Department of Computer Science

ETH Zürich
Zurich, Switzerland

Mathias Payer
Department of Computer Science

ETH Zürich
Zurich, Switzerland

Thomas R. Gross
Department of Computer Science

ETH Zürich
Zurich, Switzerland

Abstract
Hardware performance monitors provide detailed direct feedback
about application behavior and are an additional source of infor-
mation that a compiler may use for optimization. A JIT compiler
is in a good position to make use of such information because it
is running on the same platform as the user applications. As hard-
ware platforms become more and more complex, it becomes more
and more difficult to model their behavior. Profile information that
captures general program properties (like execution frequency of
methods or basic blocks) may be useful, but does not capture suffi-
cient information about the execution platform. Machine-level per-
formance data obtained from a hardware performance monitor can
not only direct the compiler to those parts of the program that de-
serve its attention but also determine if an optimization step actu-
ally improved the performance of the application.

This paper presents an infrastructure based on a dynamic com-
piler+runtime environment for Java that incorporates machine-level
information as an additional kind of feedback for the compiler and
runtime environment. The low-overhead monitoring system pro-
vides fine-grained performance data that can be tracked back to
individual Java bytecode instructions. As an example, the paper
presents results for object co-allocation in a generational garbage
collector that optimizes spatial locality of objects on-line using
measurements about cache misses. In the best case, the execution
time is reduced by 14% and L1 cache misses by 28%.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Optimization, Runtime Environments, Memory Management

General Terms Measurement, Performance

Keywords Java, Just-in-time Compilation, Dynamic Optimiza-
tion, Hardware Performance Monitors

This research was supported, in part, by the NCCR “Mobile Information
and Communication Systems”, a research program of the Swiss National
Science Foundation, and by a gift from the Microprocessor Research Lab
(MRL) of Intel Corporation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

1. Introduction
Object-oriented programming languages like Java or C# allow
changes to an executing program at runtime, e.g., through the use
of a dynamic class loader. At the same time, modern processor
architectures are difficult compiler targets if the compiler aims to
optimize a program for speed of execution; features like prefetch-
ing and prediction are (sometimes) difficult to model in a compiler.
So a code generator is faced with two difficulties: the dynamic
nature of the target program complicates analysis of program prop-
erties (e.g., it is difficult to determine pointer aliasing or to analyze
the memory referencing patterns) and important performance as-
pects (e.g., number and location of cache misses) are only evident
at runtime.

Fortunately, programs written in such an object-oriented lan-
guage are usually executed in a virtual machine that includes a JIT
(dynamic) compiler. The dynamic compiler has the opportunity to
immediately make use of information obtained at runtime. We dis-
tinguish between two kinds of information about an application that
can be obtained at runtime:

• information that is independent of the execution platform like
the execution frequency of methods, basic blocks or instruc-
tions; often the term profiles is used for this kind.

• machine-level information, i.e. performance data about the
“lower levels” of the execution platform (OS, hardware). Exam-
ples for this type of information are cache misses, TLB misses,
or branch prediction failures.

Profiles are a useful input to the code generator (not only in
a JIT compiler but also in an ahead-of-time compiler). However,
many previous optimizations (static and dynamic) focus only on the
platform-independent information and did not include direct feed-
back from the hardware level [23, 20]. Yet most modern CPUs (like
the Pentium 4, Itanium, PowerPC) have a performance measure-
ment unit to obtain performance-related information and therefore
could provide input to a dynamic code generator that optimizes a
program for a specific hardware platform.

To be useful for an optimizing JIT compiler and associated
runtime system1 the collected performance information must be
accurate enough and cheap to obtain at run-time. There are a
couple of requirements for a module that makes information from
the hardware performance monitors available in such an execution
environment:

• The interface between the VM and the performance monitoring
hardware should hide machine-specific details where possible.

1 We consider the JIT compiler, the virtual machine (VM), and the runtime
system as one unit since all components must cooperate to perform most
interesting optimizations.

It should be flexible to allow obtaining different execution met-
rics.

• The overhead to collect the data should be as low as possible,
and the system should not perturb executed applications too
much.

• The information must be accurate enough to be useful for online
optimization. Often the granularity of a method or even a basic
block is too coarse to infer which operation is responsible for
some event (e.g. cache misses).

• The platform should work for off-the-shelf VMs, with only
small or no changes to the core VM code. Otherwise the effort
to port the infrastructure to another VM or to a new release
would be prohibitively large.

In this paper we show how a Java system can benefit from using
machine-level performance data, but the approach and results are
not tied to the Java programming language. Of course, any com-
piler that uses platform-specific information may also use profile
information, e.g., to decide where and when to exploit the results
obtained from the performance measurement unit, but this aspect
is not discussed further in this paper. We describe and evaluate a
module to feed data from the hardware performance measurement
unit of a modern processor into the Java system. Our infrastructure
is built on top of the Jikes RVM, a freely available open-source
research VM implemented in Java. In our system we exploit spe-
cial features of the P4 processor that allow to correlate measured
events to single instructions and to the source program (in our case
Java bytecode). The overhead of the runtime hardware sampling is
reasonably low (<1% avg).

As an example application of our infrastructure we present a
garbage collector that is guided by online hardware feedback and
report the results for a selection of standard Java benchmarks. The
garbage collector improves data locality of Java programs automat-
ically by co-allocating heap objects using information about data
cache misses. The principal idea is to identify those objects and
references that “produce” the largest number of cache misses. The
garbage collector uses these hints to adapt its behavior for better
data locality. Our systems is, however, not aimed just at data lo-
cality optimizations in the GC. Instead machine-level performance
data should be thought of an additional feedback for the whole run-
time environment. We chose this optimization to demonstrate that
the overhead of the approach is low in practice to allow a code gen-
erator/runtime system to deal with memory performance – one of
the difficult areas for a compiler for object-oriented programs.

The next section discusses prior work in the area. Section 3
shortly presents the hardware and software platform we used. We
present an adaptive runtime monitoring system in more detail in
Section 4. Section 5 describes an example application of our system
on data locality optimization during GC. Finally, we discuss the
overhead and the impact on performance in Section 6. The key
contribution of this paper is that it is actually possible to collect
detailed data from the hardware during runtime that can be directly
applied for optimization by the runtime environment.

2. Related work
There are two areas of prior work that we discuss in this paper:
data gathering techniques using profiles or hardware performance
monitors (HPMs) and data locality optimizations. For data gather-
ing techniques we focus on approaches for dynamic compilation
and optimization. There exists a fair bit of prior work about pro-
filing and profile-guided optimization in ahead-of-time compilers
(see, e.g., [21, 12]) that is however not central to the topic of this
paper.

Hardware performance counters are frequently used for off-line
performance analysis and characterization of workloads. Hauswirth
et al. [16] study the interaction between the VM and the lower lev-
els of the execution platform (OS, libraries, hardware). They mea-
sure how these layers influence each other by introducing “software
performance counters” which capture performance metrics of the
software subsystems and correlate them to the information gath-
ered by the hardware performance counters.

To correlate data from the hardware with Java methods Georges
et al [15] instrument method entries and exits with reads of the
hardware performance counters. Their approach reduces the num-
ber of instrumentations significantly by first identifying execution
phases and then only instrumenting the start and the end of these
phases. This way the high overhead of instrumenting every method
can be avoided.

Several high performance JVMs use adaptive optimization
based on run-time profiling [4, 14, 27]. The Jikes RVM [7] uses
timer-based sampling of the call stack to find frequently executed
methods. The frequency profiles are used to determine where to
spend the most effort for optimization: The more often a method is
invoked, the more expensive optimizations are applied to it. A static
cost/benefit model for the different optimizations is used to evalu-
ate whether a method should be recompiled. It also has the ability
to use continuous profiling feedback to improve performance of
long-running applications [8].

Several studies show that data locality optimizations can im-
prove the performance of programs with irregular memory access
patterns. Field reordering [19, 22] is a technique that targets ob-
jects that do not fit into one cache line. It places fields with high
temporal affinity together to improve cache utilization. Class split-
ting [13] achieves a similar effect by splitting data structures into
two: a hot (frequently accessed) and a cold part. The hot parts are
allocated together to avoid infrequently used data to use up cache
memory. Usually these techniques rely on profiling information to
approximate a good data layout because it is generally hard to stat-
ically optimize data locality in object-oriented programs.

Adl-Tabatabai et al. [3] present a dynamic optimization to elim-
inate long-latency cache misses. They insert prefetch instructions
after dynamically monitoring cache misses using hardware perfor-
mance monitors of the Itanium processor. The approach exploits
the fact that objects that are linked through a reference often have a
constant delta between their starting addresses. Software prefetch-
ing must be used consciously because fetching the wrong data into
the cache may have a negative performance impact. By using hard-
ware performance monitors to guide the prefetching they achieve a
speedup of 14% for the SPEC JBB2000 benchmark. In our appli-
cation we do not target prefetching, but instead we reorder object
instances to reduce the number of cache misses.

Online object reordering [17] is a different dynamic locality
optimization for Java. It reorders objects at garbage collection time
using a copying GC. The heuristic for reordering is determined by
profiling the field access operation with a light-weight profiling
mechanism. Objects with “hot” fields (frequently accessed) are
placed adjacent to their referent objects to increase spatial locality
by visiting those references first during the copying process in the
GC. and reduce the number of cache misses. The approach requires
a copying garbage collector (which is present in many modern
VMs). Our work takes a similar approach, but we do not rely on
execution frequencies as a metric for locality. Instead we use direct
feedback from the memory hierarchy about cache misses to guide
compiler and GC decisions.

Similar ideas have been used to improve code locality. Dynamic
code management [18] is a code reordering algorithm to improve
code locality and reduced ITLB stalls. The system builds up a call
graph at runtime and uses a light-weight reordering heuristic to

determine the optimized code layout which results in a speedup
of up to 6%.

Shuf et al [24] also use the memory management system to im-
prove data locality and present an object allocation scheme that at-
tempts to place frequently instantiated types that are connected via
references close together in memory. They also show that a locality-
based heap traversal algorithm can improve GC performance.

Lau et al [20] show how to use direct measures of performance
(cycle counts) to guide inlining decisions in a dynamic compiler.
The JIT generates two version of each method: one with aggressive
inlining and one with the default (more conservative) heuristic. By
executing each of the two versions randomly during the measure-
ment phase the compiler collects timing information about each
version. After filtering out outliers it can use those timings to de-
cide which version of the method to use in future. Our approach
also uses real machine metrics as feedback, but gathers more fine-
grained information about the program’s interaction with the exe-
cution platform (like cache or TLB misses).

3. Background
3.1 P4 hardware performance monitors

The P4 offers a large variety of performance events for counting
[2, 26]. Two modes of operation are supported:

• Normal counting: The performance counters are configured to
count events detected by the CPU’s event detectors. A tool can
read those counter values after program execution and reports
the total number of events. This mode can be used to obtain
numbers like cache miss rate, total execution cycles, etc.) More
fine-grained information (e.g., on a method level) can be ob-
tained by instrumenting the program for reading counter values.
An application of this mode would be to evaluate the precise ef-
fect of program transformations.

• Sampling-based counting: Whenever a certain number of events
has occurred, the CPU samples its register contents. This way
it is possible to locate the source of an event. The P4 supports
precise event-based sampling (PEBS), i.e., it reports the exact
instruction where the sampled event happened and the register
contents at that point although the design is heavily pipelined.
Previous CPUs could only measure an approximate location
for sampled events because of a super-scalar design and out-
of-order execution.

To reduce the overhead of sampling, the CPU has a special
microcode routine that saves the CPU state to a buffer supplied
by the OS whenever the interval counter triggers the sampling
of an event. Setting the interval counter to n means that every
nth event will be sampled.

3.2 Jikes RVM

Our implementation is done with the IBM Jikes RVM (version
2.4.2) [5, 4], a high performance Java virtual machine written
mostly in Java. It includes an adaptive optimization system (AOS)
[7]: First, every method is compiled with a simple and quick base-
line compiler. To estimate the execution frequency for methods
it samples the call stack in regular intervals and records which
methods are on top of the stack. Methods that are executed fre-
quently enough are recompiled and optimized further. The VM uses
a static cost model to decide which optimization level to apply for
a method.

4. Infrastructure
4.1 Event sampling

We use the precise event-based sampling (PEBS) feature of the
P4 processor [2] to measure cache misses. This mechanism has
two advantages that make it useful for monitoring applications
during runtime: First, the CPU collects event samples on its own
using a microcode routine and stores them into a buffer supplied
by the OS kernel module. An interrupt is generated only when
this buffer is filled to a specified mark. The second advantage is
that PEBS reports the exact instruction (program counter plus all
register contents) for the sampled events. This allows the compiler
to recover higher-level information about the collected events, e.g.,
method, bytecode instruction, or field variable accessed. The P4
has a number of events that can be selected for PEBS (e.g. L1, L2
cache misses and DTLB misses), but it allows only one event to be
measured at a time.

The system consists of three parts, see [23] for an overview and
general description:

1. Perfmon loadable kernel module [1]2: This kernel module is
part of the Perfmon infrastructure and is developed at HP. It
offers the functions to access the performance counter hardware
for a variety of hardware platforms. The kernel module hides
the platform-specific details from the JVM. It also provides the
interrupt handler that is called by the sampling hardware when
the CPU buffer for the samples is full.

2. Native shared library (C): Since we cannot call device drivers
directly from Java or from the Jikes RVM we developed a native
library to provide an interface to the kernel functions and access
it via the Java Native Interface (JNI). The library allows to read
samples from the kernel module. The challenge here is to make
the data exchange between Java and the kernel as efficient as
possible. We provide a pre-allocated array to the native code.
The library function then copies all collected samples into this
array directly without any JNI calls. We only need to make sure
that the GC does not interfere during this transfer. This can be
done by disabling the GC for the short period of time while the
samples are copied from the native library. Since no allocation
happens in the native code that is responsible for copying, we
can make sure that the GC is not triggered while samples are
copied from the kernel space.

3. Collector thread (Java): We use a separate Java thread that polls
the kernel device driver via the JNI interface whether there are
any new samples. The polling interval is adaptively set between
10ms and 1000ms depending on the size of the sample buffer
and the sampling rate. This makes sure that no samples will be
dropped due to a full sample buffer.

The copying of samples into user-space is necessary to allow the
use of a different hardware platform with very few changes to the
user-space library. The library is not limited to Java and can also
be used from other runtime environments and languages. Basically
the system can also be integrated with other Java VMs that support
JNI.

4.2 Mapping HPM data to Java bytecode

One sample on the P4 platform has a size of 40 bytes. It contains
the program counter (EIP) where the sampled event occurred and
the values of all registers at that time. At the moment we do not
monitor the data register contents and only analyze the EIP register.
To actually use the raw data for optimization, we need to obtain
higher-level information about each sample:

2 available for download at http://www.hpl.hp.com/research/linux/perfmon/

First the collector thread extracts the samples that are of impor-
tance for the VM. Addresses outside the VM address space (e.g.,
from kernel space or native libraries) are dropped immediately
since we are only interested in events that occur in the machine
code generated by the JIT compiler. The next step is to find the Java
method where the event happened. For this lookup we keep a sorted
table of all methods with their start and end address. Whenever a
method is compiled the first time or recompiled by the optimiz-
ing compiler we update its entry accordingly. For simplicity, code
for compiled methods is allocated in the immortal object space of
the VM which is not garbage-collected. This way the copying GC
does not move compiled code which would require an update of the
lookup table after every GC run (up to 18K method objects in our
benchmarks). The resulting space overhead due to stale method ob-
jects is however reasonably small because in our setup only a small
fraction of methods are re-compiled and replaced by the optimizing
compiler.

Finally the system determines the exact bytecode instruction for
each sample. For this purpose we need to extend the instruction
mapping information that the compiler keeps for each method: Ba-
sically, we need to store a machine code mapping like a source-
level debugger (from machine code addresses to Java bytecode in
this case). This is already performed for methods that are compiled
with the baseline compiler. For opt-compiled methods however the
compiler only stores this information for the GC points. We ex-
tended the optimizing compiler so that it generates the bytecode
index mapping for each machine code instruction, not only for GC
points. From that point on we are able to count events for each IR
(intermediate representation) instruction. Those event counts are
updated by the sample collector thread periodically. This step is
required to keep the IR data structures in memory after compila-
tion. We found that the additional space overhead does not affect
application performance significantly.

5. Approach
In this section we show an example optimization for data locality
that applies the gathered performance data in a modified genera-
tional garbage collector [30].

5.1 HPM-guided co-allocation in the GC

Our system uses a generational mark-and-sweep garbage collector.
It does bump-pointer allocation for young objects and copies ma-
tured objects into a mark-and-sweep collected heap. Tenured ob-
jects are managed using a free-list allocator that allocates objects
into 40 different size classes up to 4 KBytes (=VM default setting)
to minimize heap fragmentation. Larger objects are handled in a
separate portion of the heap.

This collector offers better space efficiency than a pure copying
GC (no copy reserve needed). On the other hand a copying GC is
known to generally enhance data locality [9]. The goal of our co-
allocation is to combine those two advantages, i.e. having a space-
efficient GC that provides good data locality automatically by using
feedback from the hardware: The online optimization consists of
three parts:

1. Filtering of instructions of interest at method compilation time

2. Monitoring cache misses for individual classes and references

3. Nursery tracing algorithm that support co-allocation

The first part is performed for each method compiled by the opt-
compiler. As a consequence the monitoring system does not con-
sider instructions in non-optimized methods. However, this is not
a major limitation since those methods are rarely executed (other-
wise they would be selected for re-compilation by the JIT). Part
two is done concurrently to the execution of the application. The

class A { void foo() {
A x;
A y; ... = p.y.i;
int i;

} }

I1: aload_2 // Local var p
I2: getfield y; // Load field y
I3: getfield i; // Load field i

Figure 1. Example bytecode for expression p.y.i.

sample collector thread periodically invokes the monitoring mod-
ule that performs the bookkeeping and translates the raw data. The
third part is implemented in the garbage collector where the cache
miss data about field references are used to guide co-allocation.

5.2 Finding source instructions

For each method that is compiled with the opt-compiler (as selected
by the AOS) the sample collector thread performs an additional
pass to filter out instructions that must be monitored for cache
misses in the HPM module: we are interested in reads/writes to
objects that are referenced from another heap object. Initially, the
compiler creates a mapping of instruction pairs: For each heap
access instruction S it checks if the target address is loaded from
a field variable f (also located on the heap). If yes, it saves a
tuple (S, f). The motivation is that co-allocating the parent object
with the child object increases the chance that both objects lie
in the same cache line. This way the child object is implicitly
prefetched when accessing the parent object. The opt-compiler
computes this mapping by walking the use-def edges upwards from
heap access instructions (field/array access, virtual calls and object-
header access).

Figure 1 shows an example access path expression with its Java
bytecode. Our analysis would create a mapping with instruction
and field y (I3, A::y). For illustration we show the bytecode here -
internally we actually use the actual high-level IR instructions that
correspond to the bytecode. If we encounter a miss on I3 (load
of field i), we increase the event count for associated reference
field (A::y). We keep a per-reference event count which tells the
runtime system how many misses occurred when dereferencing the
corresponding access path expressions.

5.3 Online monitoring

Samples from the HPM unit are buffered and processed in batches
inside the VM: a sample is attributed to a reference field f if the
source instruction S is among the instructions of interest (i.e. a
mapping (S, f) exists). Currently we set the system up to monitor
events in the application classes only and exclude events occurring
inside VM code. This is not a limitation of the monitoring system
itself, but just because the optimization deals with objects allocated
in the user code.

The rate of events for each reference field is measured through-
out the execution and this allows detecting phase changes in the
execution or checking whether an optimization decision by the JIT
or the GC had a positive or a negative impact. On many platforms,
the effect of a data locality optimization is difficult to predict in
general. A system that includes feedback based on a performance
reporting unit allows an assessment of the effectiveness of an op-
timization step. If the transformation improved performance, the
system can proceed normally. If the transformation reduced per-
formance, either a different optimization step can be performed or
it is possible to revert to the old code. This system is a step into

an performance-aware runtime environment that can judge which
optimizations actually bring benefits and which do not.

5.4 Nursery tracing with co-allocation

When the GC hits an object that contains a reference fields during
performing a nursery space collection it checks if it is possible
to co-allocate the most frequently missed child object: we have
to check if both objects together do not exceed the size limit for
the free-list allocator. Object larger than this limit are allocated in a
separate large object space. The VM keeps a list the reference fields
for each class type sorted by number of associated cache misses.

When deciding to co-allocate two objects the GC just requests
enough space to fit both objects. They will be assigned to the
appropriate size class by the free-list allocator that manages the
mature space. Without co-allocation the objects may - depending
on their size - end up in different size classes. This would reduce
spatial locality in the mature space.

Note that this approach may increase internal fragmentation
because there is only a limited number of size classes (40 in our
allocator) that do not cover each size exactly. The actual results
depend on how co-allocated objects fit into their assigned size
classes.

We chose the GenMS collector because we want to combine
space-efficiency and good locality. None of the existing collectors
provides this combination. Of course an optimized static copying
strategy could achieve a similar benefit in many scenarios [25],
but adapting to an individual application’s memory access pattern
proved to be important [17], and it has been shown that data locality
optimizations often help in some cases and hurt in others. Detecting
those cases at run-time is a strong argument for using performance
counters for guidance.

6. Evaluation
6.1 Experimental platform

We carried out our experiments on a 3 GHz Pentium 4 with 1M L2
cache and 1 GB of main memory. The L1 cache for data is 16K.
One cache line contains 128 bytes. The P4 has an out-of-order
execution engine and can issue several instructions in parallel. It
also includes hardware-based prefetching of data streams.

The system runs a Linux 2.6.16 kernel with the Perfmon2
patches and the corresponding libpfm library (version 3.2).

The baseline to which we compare our measurements is Jikes
RVM 2.4.2 with the “FastAdaptiveGenMS” build configuration
which is one of the most efficient configurations (default “pro-
duction” build). It includes the adaptive optimizing JIT compiler
[7] and a generational garbage collector with an Appel-style vari-
able size nursery [6]. The mature space is managed by a mark-and-
sweep collector. This collector is included with MMTk [10] - the
garbage collection framework that comes together with the Jikes
RVM.

We use a pseudo-adaptive configuration for the Jikes JIT com-
piler. Each program runs with a pre-generated compilation plan.
This ensures that the compiler optimizes exactly the same meth-
ods and the variations due to the adaptive optimization system are
minimized.

The different benchmarks are listed in Table 1. All timing results
are averages over 3 program executions using the largest input size
for the SPECjvm98 programs and the “default” input size for the
DaCapo programs3. We also report the standard deviations for the
execution times but found those to be very small in practice.

3 The programs chart, eclipse and xalan were excluded because they are not
compatible with version 2.4.2 of Jikes RVM.

db

Programs from the SPEC JVM98
benchmarks [29] with the largest
workload (s=100) repeated 3 times.

mtrt
compress
jess
javac
mpegaudio
jack
antlr Programs from the DaCapo benchmark

suite (version 10-2006 MR-2) [11].bloat
fop
hsqldb
jython
luindex
lusearch
pmd
pseudojbb This is a version of SPEC JBB2000

[28] with a fixed number of transactions
(n=100000, max 6 warehouses).

Table 1. Benchmark programs.

The chosen sampling intervals are randomized by changing the
lower order bits randomly (8 bits in our configuration). This should
prevent us from measuring biased results by sampling at the same
locations over and over.

6.2 Time and space overhead of runtime monitoring

In this section we show how expensive the runtime monitoring in-
frastructure is in terms of execution time and space overhead. Both
must be reasonable to make optimization using runtime monitoring
possible.

The systems needs to allocate additional memory for gathering
detailed source-level performance data. First, there are buffers for
temporary storage of the samples collected. The user-space library
keeps an 80K byte buffer and the VM data collection thread stores
the raw data in an int[] array of the same size.

In the VM we need additional tables to resolve raw samples to
Java methods and bytecode. The space overhead of the additional
meta-data in the VM is shown in Table 2. The second column
(machine code) shows the size of the machine code generated by
the compiler in KBytes. Column 4 (MC maps) shows the size of
the machine code maps that are needed to resolve raw samples. For
comparison, we show the size of the GC maps alone in Column
3. The last row shows the total size and the map sizes of the Jikes
boot image. The boot image maps are pre-generated at compile-
time and do not contribute to execution time. We can see that the
machine code maps are 4 to 5 times as large as the GC maps, but
the total sizes of the maps for an application are tiny compared to
the maps that are contained in the boot image.

We consider only library and application classes and leave out
VM internal classes at the moment because we do not consider
them for optimization. Including these would just make the boot
image larger but would not influence application performance. Cur-
rently, the whole boot image is about 9MB bigger than the origi-
nal (increase of 20% from 45M to 54M). The maps for application
classes take up to 5x the space needed for the GC maps. However,
in absolute numbers the size of the maps generated is moderate (up
to 1870K bytes for jython). Overall the amount is small compared
to the maximal heap size

There is potential for improving the space efficiency of the
machine code mapping to reduce the size of the boot image. We
reused the existing implementation for GC maps and it would be
possible to custom-tailor the data structure for our needs. But the

program machine code GC maps only MC maps
compress 12 6 28
jess 20 12 43
db 7 4 20
javac 55 30 140
mpegaudio 71 31 168
mtrt 46 26 120
jack 40 22 111
pseudojbb 316 164 948
antlr 38 26 90
bloat 77 46 247
fop 8 4 16
hsqldb 117 67 290
jython 685 422 1870
luindex 119 58 316
lusearch 93 46 239
pmd 64 43 174
boot image 14975 10380 8260

Table 2. Space overhead: Size of machine code maps in KB.

runtime overhead of using the existing data structures is low enough
to use it for our purpose.

Figure 2 shows the execution time compared to the original VM
configuration without runtime event sampling using different sam-
pling intervals from 25K to 100K. In this experiment we configured
the system to monitor L1 cache misses. We measured the execu-
tion time for 3 different sampling intervals to evaluate the relation
between sampling rate and execution time overhead. The “auto”
configuration has a variable sampling interval because it adaptively
changes the sampling interval at runtime. The reported numbers for
execution time are averages over 3 executions of each program, and
they include all overhead from mapping raw sample data.

For most programs the time overhead is proportional to the sam-
pling rate (e.g. db and pseudojbb). A smaller sampling interval
means higher sampling frequency and thus more data to be pro-
cessed by the monitoring module. For others (e.g., mpegaudio) the
constant portion of the overhead dominates. The absolute number
of samples is not very high in these cases. The worst case is an in-
crease of almost 3% for mtrt, compress and hsqldb with the small-
est interval(25K). For the “auto” interval setting and an interval of
100K the average overhead is below 1% – a value that is low com-
pared to software-only profiling techniques. Our experiments with
data locality optimizations indicate that for our set of programs the
largest interval is often sufficient to obtain enough coverage.

6.3 Effect of object co-allocation

Now we study the effect of the GC optimization that we performed
using the runtime performance data. We compare the baseline with
our co-allocating GC in different configurations and use L1 cache
misses to guide the optimization. For the execution time we used a
fully autonomous mode that adapts the sampling interval to obtain
a certain number of samples per second. With a sampling approach
the choice of an appropriate sampling interval is critical. The in-
terval should be fine enough to give a statistically representative
picture of the program behavior. But, since we are performing the
sampling during program execution the overhead should also be
reasonably low. The runtime overhead is proportional to the num-
ber of samples collected by the VM.4

4 In automatic mode the only monitoring parameter is “samples/sec” - in
practice we found that a default of 200 samples/sec provides reasonable
accuracy and low overhead for all benchmarks programs.

Figure 3 shows the number of co-allocated object for different
sampling intervals using a logarithmic scale. There are 2 programs
(compress and mpegaudio) where no objects are co-allocated.
They allocate mostly large objects which are placed in the sepa-
rate large-object space by the allocator or only allocate few objects.
Therefore, they have no candidate objects for co-allocation. The
programs with a large number of co-allocated objects (db, pseudo-
jbb, hsqldb, luindex and pmd) are less sensitive to the choice of the
sampling interval: The largest interval is enough to cover most ob-
jects. In the remaining programs the number of co-allocated objects
is several orders of magnitude lower, and co-allocation is more sen-
sitive to the choice of the sampling interval. On the other hand, the
impact on L1 cache performance is also less significant because the
absolute number of objects is much smaller.

Performance impact

Figure 4 shows the number of L1 cache misses with co-allocation
in the GC turned on relative to the baseline using a large heap size.
In Figure 5 we summarize the impact on application performance
using a range of heap sizes (1-4x minimum heap size).

For large heaps, there is a noticeable reduction in L1 cache
misses using HPM-guided co-allocation for several programs (jess,
db, pseudojbb, bloat and pmd). mpegaudio shows varying num-
bers (from -6% to +5%) that are not due to co-allocation (no candi-
date objects), but rather show influences from the event monitoring
and processing. There is little or no effect on the other programs.
From all benchmarks db gets the most benefit: 28% fewer L1 cache
misses. This benefit translates into an execution time reduction of
up to 13.9%.

Figure 6 analyzes the performance of db in more detail. Now
we compare a generational copying (GenCopy) collector versus the
generational mark-and-sweep (GenMS) with object co-allocation.
The GenCopy collector generally improves spatial locality in the
mature space over a non-moving collector - on the other hand it has
a larger GC cost at small heap sizes [9]. This result is confirmed
in our experiment. The maximum speedup versus GenCopy is only
10% vs. 13.9% compared to the baseline GenMS collector without
co-allocation. We also see that GenMS + co-allocation outperforms
GenCopy throughout all heap sizes (from 7% for large heaps to
10% for a small heap). This indicates that the GenMS collector with
object co-allocation combines good locality with space-efficiency.

The reduction on L1 misses for jbb, one of the most memory-
intensive programs from this suite, is only between 2 and 6%. The
resulting speedup is up to 2% for large heaps. Here we observe that
there are many frequently missed objects (2.4 million objects were
co-allocated) and that the majority of those objects are relatively
large (long[] arrays with a size of >128 bytes). As a consequence,
optimizing for reduced cache misses at the cache-line level does not
yield a significant benefit for this program. (Using TLB misses as
driver for the optimization decisions does not improve the results.)

For the majority of the JVM98 benchmarks the number of co-
allocated objects is rather small (in the order of thousands). There
are not many mature objects that cause frequent cache misses:
These programs have relatively small working sets and/or many
young objects that do not benefit from better spatial locality in
the mature space. Overall, three programs (db, pseudojbb, bloat)
show a speedup, and 7 programs are slightly slowed down by using
dynamic co-allocation. The worst case for large heaps is javac
with -2.1% which is similar to the sampling overhead reported in
Figure 2. Note that monitoring is turned on throughout the whole
execution even when no candidate objects are found. The overhead
could be reduced by turning off monitoring for most of the time in
such a scenario.

For small heaps sizes the picture looks different. db is the only
program that still shows a speedup at minimum heap size (9.3%).

Overhead of sampling

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

co
m
pr
es
s

je
ss db

ja
va
c

m
pe
ga
ud
io

m
trt

ja
ck

ps
eu
do
jb
b

an
tlr

bl
oa
t

fo
p

hs
ql
db

jy
th
on

lu
in
de
x

lu
se
ar
ch

pm
d

25K 50K 100K auto

Figure 2. Execution time overhead compared to the baseline configuration with different sampling intervals (heap size = 4x minimum heap
size).

Number of coallocated objects

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

co
m
pr
es
s

je
ss db

ja
va
c

m
pe
ga
ud
io

m
trt

ja
ck

ps
eu
do
jb
b

an
tlr

bl
oa
t

fo
p

hs
ql
db

jy
th
on

lu
in
de
x

lu
se
ar
ch

pm
d

25K 50K 100K

Figure 3. Number of co-allocated objects at different sampling intervals (heap size = 4x min heap size).

Normalized execution time: _209_db

0.8

0.85

0.9

0.95

1

1.05

1x 1.5x 2x 3x 4x

GenMS GenCopy GenMS+coallocation

Figure 6. GenCopy vs GenMS with co-allocation

Generally, co-allocation yields better results at larger heaps. The
larger the allocated chunks the more internal fragmentation exists
due to the limited number of size classes in the free-list allocator.
When running at the minimum heap size this space overhead factor
gets more dominant and almost all programs are either slowed
down or have a smaller speedup (e.g., db) with co-allocation.

6.4 Runtime feedback

To actually guide optimization automatically a VM needs accu-
rate feedback. Figure 7 depicts two types of data that we col-
lect for programs, here shown for the db benchmark: Figure 7(a)
shows the cumulative total count of L1 cache misses when deref-
erencing the field String::value. The sharp bend for “dyn-
coalloc” occurs exactly when the co-allocation is switched on.
The stepwise-constant shape of the measurement is caused by our
batch-processing of samples in the monitoring module.

Figure 7(b) shows the L1 cache miss rate over time. It is locally
quite volatile (in part also due to our monitoring infrastructure), but

Reduction of L1 cache misses

0.6

0.7

0.8

0.9

1.0

1.1

co
m
pr
es
s

je
ss db

ja
va
c

m
pe
ga
ud
io

m
trt

ja
ck

ps
eu
do
jb
b

an
tlr

bl
oa
t

fo
p

hs
ql
db

jy
th
on

lu
in
de
x

lu
se
ar
ch

pm
d

re
la

tiv
e

to
 o

rig
in

al

25K 50K 100K

Figure 4. L1 miss reduction with co-allocated objects (heap size = 4x minimum heap size).

Normalized execution time

0.8

0.85

0.9

0.95

1

1.05

co
mp
res
s
jes
s db

jav
ac

mp
eg
au
dio mt

rt
jac
k

ps
eu
do
jbb an

tlr
blo
at fop

hs
qld
b
jyt
ho
n

lui
nd
ex

lus
ea
rch pm

d

1x 1.5x 2x 3x 4x

Figure 5. Execution time relative to the baseline for different heap sizes (sampling interval is auto-selected, heap size from 1-4x min heap
size).

we can see the drop in the miss rate at the same time as in Figure
7(a) when co-allocation becomes active after the “warm-up” phase.
The bold lines show the actual measured values. In addition we
plot the moving average over the last 3 periods for both versions
as thin lines. This metric follows the general trend without heavy
local fluctuations. The precise association of the miss events with
object types and references allows the VM to assess the effect of
individual optimization decisions: in this case the internal char[]
was co-allocated with the String object which resulted in a total
reduction of misses on those objects by around 60%.

For long-running application the VM also needs to detect when
an optimization has a negative effect on overall performance. To il-
lustrate such a situation we show the cache misses over time when
the GC happens to perform a poorly performing optimization in a
controlled setting. Figure 8 shows the cache misses over time for
String objects in db starting out with a good allocation order. We
then instructed the GC manually to place one cache line of empty
space (128 bytes) between the String and the char[] objects -

effectively undoing the originally well performing setting. Moni-
toring the cache miss rate for individual classes allows the system
to discover that this transformation does not improve performance,
and after several measurement periods it triggers a switch back to
the original configuration. Currently, a simple heuristic is used to
determine when to switch, and we are still investigating suitable
settings. Also, mature objects that are already co-allocated remain
in place - only newly promoted objects will follow the new copy-
ing policy. Figure 8 shows the effect on the miss rate after switching
back to the original allocation policy; the miss rate returns to its old
value. We did not see such a situation where undoing co-allocation
was necessary during our experiments with co-allocation – this may
be more important for other optimizations.

7. Conclusions
We presented a system that uses the results of a modern hardware-
based performance monitoring unit. As an example we discussed a

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

to
ta

l n
r

sa
m

pl
es

 (
x

10
0K

)

time in cycles

L1 misses _209_db

no coalloc
dyn-coalloc

 0

 5

 10

 15

 20

 25

 30

to
ta

l n
r

sa
m

pl
es

 (
x

10
0K

)

time in cycles

L1 misses _209_db

no coalloc
dyn-coalloc

MOVING-AVG no coalloc
MOVING-AVG dyn-coalloc

(a) Total number of cache misses: The sharp bend for “dyn-coalloc” indi-
cates the time when co-allocation kicks in

(b) Miss rate over time: after the co-allocation starts the miss rate goes down

Figure 7. Effect of co-allocation: Cache misses sampled for String objects db

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

L1

 c
ac

he
 m

is
se

s

time in cycles

db: events for String objects

Figure 8. Cache misses sampled for String objects db with an
poorly performing locality “optimization”

data locality optimization to show how such performance informa-
tion can be used in a dynamic runtime environment. The overhead
imposed by monitoring is reasonably low (<1% avg), and with ap-
propriate compiler assistance it is possible to map performance-
related events to source-level constructs. Our example optimization
shows that a garbage collector with knowlegde about frequently
missed objects and references can improve data locality and can
detect at run-time if a data-locality optimization has a positive or a
negative impact on performance. With the co-allocation technique
for matured objects that is discussed here, L1 cache misses are re-
duced by up to 28%. The resulting application speedup is up to
14%, though this optimization is effective only for some programs.
A more refined model of the micro-architecture in the compiler
may be able to better exploit the performance data.

The infrastructure is flexible to allow compiler and GC imple-
menters to include such information into their system as an addi-
tional source of runtime feedback. In our system the VM can ac-
tually “observe” the effect of data locality optimization. This is es-
pecially important since modeling the behavior of complex modern

hardware architecture is very hard, and it is often a challenge to pre-
dict the effect of an optimization prior to performing the transfor-
mation. Feedback from the lower layers of the execution platform
can be valuable information to guide such optimizations.

8. Acknowledgments
We thank the referees for their helpful comments.

References
[1] Perfmon project. http://www.hpl.hp.com/research/linux/perfmon/.

[2] IA-32 Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide. 2005.

[3] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subra-
money. Prefetch injection based on hardware monitoring and object
metadata. In Proc. of Conf. on Programming Language Design and
Implementation (PLDI 2004), pages 267–276, New York, NY, USA,
2004. ACM Press.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, T. Ngo, M. F. Mergen, J. C. Shepherd, and S. Smith.
Implementing Jalapeno in Java. In Proc. of the ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPLSA 1999), pages 314–324, 1999.

[5] B. Alpern, D. Attanasio, J. Barton, M. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, T. Ngo, M. Mergen, V. Sarkar, M. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno
virtual machine. IBM Systems Journal, Java Performance Issue,
39(1), 2000.

[6] A. W. Appel. Simple generational garbage collection and fast
allocation. Softw. Pract. Exper., 19(2):171–183, 1989.

[7] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
optimization in the Jalapeno JVM. In Proc. of the Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2000), pages 47–65, New York, 2000. ACM Press.

[8] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed
optimization of Java. In Proc. of the Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2002),
pages 111–129, New York, USA, 2002. ACM Press.

[9] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
the performance impact of garbage collection. In SIGMETRICS

2004/PERFORMANCE 2004: Proc. of the Joint Intl. Conf. on
Measurement and Modeling of Computer Systems, pages 25–36,
New York, NY, USA, 2004. ACM Press.

[10] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water?
high performance garbage collection in Java with mmtk. In Proc. of
the Intl. Conf. on Software Engineering (ICSE ’04), pages 137–146.
IEEE Computer Society, 2004.

[11] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. of the Conf. on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA 2006),
New York, Oct. 2006. ACM Press.

[12] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile
information to assist classic code optimizations. Software Practice
and Experience, 21(12):1301–1321, Dec 1991.

[13] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. In Proc. of the ACM SIGPLAN’99 Conf. on
Programming Language Design and Implementation (PLDI 1999),
pages 13–24, New York, NY, USA, 1999. ACM Press.

[14] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing judo:
Java under dynamic optimizations. In Proc. of the ACM Conf. on
Programming Language Design and Implementation (PLDI 2000),
pages 13–26, New York, NY, USA, 2000. ACM Press.

[15] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosschere.
Method-level phase behavior in Java workloads. In Proc. of the
ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2004), pages 270–287, New
York, NY, USA, 2004. ACM Press.

[16] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Vertical
profiling: understanding the behavior of object-priented applications.
In Proc. of Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2004), pages 251–269, New
York, NY, USA, 2004. ACM Press.

[17] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: improving program
locality. In Proc. of the ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2004), pages 69–80,
New York, NY, USA, 2004. ACM Press.

[18] X. Huang, B. T. Lewis, and K. S. McKinley. Dynamic code
management: Improving whole program code locality in managed
runtimes. In VEE ’06: Proc. of the Intl. Conf. on Virtual Execution
Environments, pages 133–143, New York, USA, 2006. ACM Press.

[19] T. Kistler and M. Franz. Automated data-member layout of heap
objects to improve memory-hierarchy performance. ACM Trans.
Program. Lang. Syst., 22(3):490–505, 2000.

[20] J. Lau, M. Arnold, M. Hind, and B. Calder. Online performance
auditing: Using hot optimizations without getting burned. In
Proc. Conf. on Programming Language Design and Implementation
(PLDI 2006), pages 239–251, New York, USA, 2006. ACM Press.

[21] K. Pettis and R. Hansen. Profile guided code positioning. In
Proc. ACM SIGPLAN’90 Conf. on Prog. Language Design and
Implementation, pages 16–27, White Plains, N.Y., June 1990. ACM.

[22] S. Rubin, R. Bodik, and T. Chilimbi. An efficient Profile-Analysis
framework for data-layout optimizations. In Proc. of the Symp. on
Principles Of Programming Languages (POPL 2002), pages 140–
153, New York, NY, USA, 2002. ACM Press.

[23] F. Schneider and T. Gross. Using platform-specific performance
counters for dynamic compilation. In Proc. of the Intl. Workshop on
Compilers for Parallel Computing (LCPC 2005), Oct. 2005.

[24] Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P. Singh. Creating
and preserving locality of Java applications at allocation and
garbage collection times. In Proc. of the Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2002), pages 13–25, New York, 2002. ACM Press.

[25] D. Siegwart and M. Hirzel. Improving locality with parallel
hierarchical copying GC. In Proceedings of the 2006 Intl. Symposium
on Memory Management (ISMM 2006), pages 52–63, New York,
USA, 2006. ACM Press.

[26] B. Sprunt. Pentium 4 performance monitoring features. In IEEE
Micro, pages 72–82, July–August 2002.

[27] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.
A dynamic optimization framework for a Java just-in-time compiler.
In Proc. of the ACM Conf. on Object Oriented Programming, Systems,
Languages, and Applications (OOPLSA 2001), pages 180–195, New
York, NY, USA, 2001. ACM Press.

[28] The Standard Performance Evaluation Corporation. SPEC JBB2000
Benchmark. http://www.spec.org/jbb2000/.

[29] The Standard Performance Evaluation Corporation. SPEC JVM98
Benchmarks. http://www.spec.org/osg/jvm98, 1996.

[30] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Proc. of the Software Engineering
Symposium on Practical Software Development Environments
(SDE 1), pages 157–167, New York, USA, 1984. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

