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Abstract

This thesis consists of two different parts. Namely a hardware interface to the Precise
Event Based Sampling facilities of the Intel Pentium 4 processor and the corresponding
libraries to propagate these samples into the Jikes Research Virtual Machine by IBM.

This interface makes it possible to sample events like cache or tlb misses and get the
exact location in the bytecode of the corresponding method inside of the VM with all
corresponding information like declaring class, references and so on. These samples may
later be used for different optimizations.

The second part is a memory reordering technique at garbage collection time that uses
the earlier collected samples to guide its decisions. All objects are separated into a hot
and a cold space and every type gets a hotness assigned. Depending on its hotness the
object is allocated in the hot or in the cold space.

The hot space then uses a copying garbage collector that orders the objects depending

on the reference hotness.
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Chapter 1

Introduction

Compilers are currently using two types of information for optimizing, profiles and low
level information. Profiles are platform independent and very popular. A lot of research
has already been done in this field. The other source of information comes from the low
level hardware. This kind of data is relatively new and is still to be explored and used in
compilers and virtual machines.

Most modern processors offer the possibility to sample or count performance related
events. These monitors offer many different events like first or second level cache misses,
DTLB misses, pipeline stalls and so on. Depending on the hardware implementation some
events can be counted in parallel.

In a virtual machine these captured samples can the be used to optimize the running
code and to focus these optimizations to the real hot spots. It is also possible to differ
between events and optimize parts of the code for cache misses and other parts for pipeline
stalls. The virtual machine can then directly benefit from these optimizations.

Because the Pentium 4 sampling mechanism is mostly implemented in hardware it is
relatively cheap. The complete sample handling mechanism is done in microcode on the
processor itself.

One of the tasks for this master thesis was to develop a library that transfers these
samples into the IBM Jikes RVM (research virtual machine). The most important chal-
langes were that the samples should be very precise and come with a low overhead. Using
the hardware sampling mechanism it is possible to achieve very accurate samples. The
precise location (IP) where the event happened is found.

The second task of this master thesis was to implement an optimization that uses the

gathered profiles. Most of the gathered samples were from cache misses and showed that

1



Chapter 1. Introduction 2

bad object locality was a very big problem. The proposed new garbage collector separates
the objects into hot objects and cold objects. Depending on the number of samples a type
gets, it is either hot or cold. If objects are hot and are newly allocated, they will be copied
into the hot space. This hot space is then handled by a copying garbage collector that
reorders the objects depending on their locality and tries to bring often accessed objects
and fields into the same cache line.

The next two chapters will show the preliminaries and related work like other perfor-
mance monitoring tools and related papers. The concept chapter will focus on the general
layout and concept of the PEBSI library and the sample handling inside the VM. Design
criteria and special coding details are discussed in the implementation chapter.

The last chapter will focus on the discussion of this thesis, present some benchmarks

and show possible further work.
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Chapter 2

Preliminaries

This chapter presents all preliminary information that is needed throughout this thesis.
There is information about the event based sampling in general and the Pentium 4’s
implementation in special.

Another important section is about the Java language. It has information about the
source to byte-code compilers and about the virtual machines and their optimization
potential. The virtual machine of choice for this thesis is the IBM Jikes RVM and it also
is presented here.

The last section tries to give some details about garbage collection and the different

used algorithms.

2.1 Intel Pentium 4 and event based sampling

Almost all modern processors have a interface to sample different events happening at the
hardware level. The usual implementation is a counter that is incremented on every event
and that may trigger an interrupt on overflow. Not every event is sampled because the
data flow would be way too high. So one can specify a number n and set the counter to
-n (Ox{HIHT - n). Then the counter is increased on every event and will trigger an overflow
interrupt when it reaches the top (Oxffffffff + 1 = 0).

When this overflow happens, the operating system executes a special interrupt handler
that saves all needed data like processor registers and IP into an array of samples.

Depending on the application it is also often enough to just count the number of events.
Therefore it is possible to read the number of events after a program has terminated.

The Pentium 4 also offers these hardware performance monitors and is able to count
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many different events. So event based sampling by software would be possible on the
P4 but there are two problems. Software and interrupt based sampling would be very
inaccurate because the P4 has a very long instruction pipeline (from 20 to 31 stages) and
depending on when the interrupt was triggered and delivered one could miss the exact
location by a pipeline’s length. The second problem is the speed of a software sampling
solution. Some time is needed to save all needed data (and other stalls and misses may
occur) and the interrupt must be handled by the operating system and the interrupt
handler.

Thats why the Intel engineers developed a different solution. They included microcode
based precise event based sampling on the CPU itself. So additionally to the existing HPM
features it is possible to specify a memory region and to setup the processor to sample the
events by itself.

Every time when the counter overflows the P4 will then execute a special microcode
that saves all registers into the specified memory region. Another feature is to collect all
sampled branch records in a special buffer. Please see [1] for a detailed description of the
PEBS facilities.

These samples can then be read by the operating system and may be transferred to
user-space where they can be used by normal programs.

The samples are often used for monitoring events like cache or TLB misses and to
discover hotspots that are executed often. Using this information one is able to opti-
mize the code (recompilation using a specific optimization, reordering the code and many
others) and make the program faster. Another usage is for statistical calculations and

benchmarking

2.2 Sun Java Environment [4]

Java really consists of two components. The programming language and the compiler that

translates source-code into byte-code and the virtual machine that runs this byte-code.

2.2.1 Programming Language

Java is a strongly typed object oriented language, developed by Sun Microsystems in the
early nineties. The biggest difference between Java and C or C++ is that Java is compiled

to byte-code rather than machine code. This primitive byte-code is then run on a virtual
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2.3. IBM Jikes RVM [5] 5

machine.

One advantage of the Java language is that memory management is completely handled
by the virtual machine. The programmer just instantiates objects and uses them. As soon
as they are no longer referenced the garbage collector will free them without any user

interaction.

Compiler

There are many different compilers for the Java language that transfer the source-code to
byte-code. The most prominent ones are the Sun Java Compiler which is included in the
Sun Java Software Development Kit (Sun JSDK), the blackdown repackage for Linux and
the IBM Jikes Java compiler.

Java compilers are a fairly easy task compared to C/C++ compilers because most of
the optimization is done at runtime in the virtual machine. The compilers simply translate

the source into the stack based byte-code without too many sophisticated optimizations.

2.2.2 Virtual Machine

The virtual machine executes Java byte-code. The basic principle of the byte-code is a
stack based machine. Most virtual machines include profiling and different optimization
levels. Depending on the sampled frequency different optimizations and recompilations of
byte-code methods are applied.

The JVM also verifies the byte-code during the loading phase. This technique makes
it possible to control the allowed instruction sequences in programs.

The VM forbids all access to raw memory or uncontrolled jumps by the executed
byte-code.

Memory management is also handled completely by the virtual machine. It keeps track
of active objects and collects no longer used ones during the garbage collection phase.

For a detailed overview and implementation details of JVMs have a look at [3].

2.3 IBM Jikes RVM [5]

The IBM Jikes Virtual Machine is a complete open source Java virtual machine that
derived from an internal research project. This VM consists of a fast pattern matching

baseline compiler that translates new byte-code into machine-code. When a method is
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sampled often enough it is recompiled by the optimizing compiler. The optimizing compiler
then goes through different stages and does an increasing amount of optimizations at every
stage.

The memory management in the Jikes RVM is very flexible and detached from the rest
of the VM. There are many different garbage collectors available. Starting from a simple
copy-space collector up to a generational garbage collector with a nursery and a mark and
sweep mature space.

This interface is extendable and can be changed easily. The memory interface has

access to some VM internals through special classes and interfaces [6].

2.4 Garbage Collectors

Garbage collectors are needed for object oriented languages without explicit memory man-
agement. The runtime system takes care of memory allocation and deallocation. Objects
are considered garbage and can therefore be collected if there are no references to them
from live objects.

There are many different algorithms for garbage collection. All have their specific
strengths and weaknesses. The most prominent and important ones are shortly presented

here.

2.4.1 Reference Counting

Following the “No GC” collector this is the simplest possible garbage collector. Every
object keeps track of how many objects it is referenced. If the reference count reaches zero
then the object can be freed. The disadvantage is a big overhead as the runtime system
has to check and change the counter at every reference assignment. Depending on the

implementation this algorithm can also have problems with circular references.

2.4.2 copy-space

This algorithm divides the available memory into two different spaces. All new objects
are allocated in one space. At collection time all life objects are copied to the other space.
This is done using a tree traversal starting from a root set. All remaining objects after the
copy process are garbage and can therefore be collected. Depending on the tree traversal

algorithm this collector can increase data locality. The disadvantage is that all references
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need to be updated as the addresses change.

2.4.3 Mark & Sweep

Mark and sweep is a tracing garbage collection algorithm. At garbage collection time all
objects are considered white. Now all objects that are in the root set (accessible from a
stack, machine registers, program counter and global objects) are marked as grey. As long
as there are grey objects pick one from this list and mark it black, then mark all direct
accessible objects from the target as grey.

Now all white objects can be collected and all black objects are alive. Using this
algorithm we traverse all objects in the object space and check all references and test if
the objects are alive. All garbage objects will be marked as white and can be collected in
the next step.

This algorithm does not copy the objects so there is no need to update references, but

the heap can be fragmented over time.

2.4.4 Generational

Generational garbage collectors are currently used in all important virtual machines. The
heap is divided into different regions, starting with a nursery for very young objects and
other spaces for aging objects. This algorithm uses the fact that most allocated objects
die young. So there is no need to scan the complete heap for garbage. It is sufficient to
scan the nursery. Live objects get older and are then propagated into the next space.

This technique is very efficient as only parts of the heap are collected and not all
objects need to be scanned. A complete heap collection is only done if the available free
memory in the mature space runs out.

The IBM Jikes RVM currently uses a two phased generational garbage collector with

a mark and sweep mature space as default configuration for the production system.
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Chapter 3

Related work

This chapter is about related work that inspired this thesis or was helpful in one way
or another. There are different ways a virtual machine can gather information for the
adaptive optimizations. Profiling is platform independent and already covered in the
literature. Hardware performance counters are a relatively new field and bring direct
hardware feedback into virtual machines.

The first part of this chapter presents different hardware sampling facilities and inter-
faces. This type of information is then used in a new type of virtual machine that does
not only support profiling.

The last section will present garbage collectors that use this locality information to

reduce the number of misses.

3.1 Performance counters for (P-)EBS

Currently multiple interfaces for hardware performance monitors exist as patches for the
Linux kernel. All of them can be used for event counting and some may be used for precise
event based sampling. It also depends on the implementation if they allow both global
context sampling and virtual process sampling. Global sampling measures all running
processes and the complete kernel time, whereas virtual process sampling includes virtual
per-process counters. These per-process counters are set and read at every context switch.

So only a process or process group with attached counters is sampled.
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Brink and Abyss [7]

Brink and Abyss were one of the first performance measuring tools that supported the
hardware performance monitors of the Pentium 4 processor. It was developed at the
College of Engineering in Bucknell. Brink is the configuration parser that compiles a
XML configuration into the specific settings for the hardware registers. Abyss then uses
these data to setup the kernel module.

The software package comes with patches for the (antique) version 2.4.26 of the Linux
kernel. This patch is then applied to the kernel source and adds the functionality for system
wide sampling by adding a user-space interface to the HPM registers and by providing a
PEBS overflow interrupt.

In the default implementation it is not possible to sample a single process. The exten-
sion by Flavio Pellanda supports virtualization and per process accounting. To implement
these features the kernel saves all HPM information at every task switch and restores them
when the process is resumed.

The drawbacks of this implementation were that the samples had to be parsed by a
special user-space program and then copied sample per sample into the Jikes RVM. This
is a very slow process and leads to many context switches.

Another problem is that the patches are no longer actively maintained. There has
been no change since July 2004 and the traffic on the mailing list is very low. Brink and
Abyss rely on a version of the Linux kernel that is no longer usable because a lot of newer

hardware is not supported.

Perfctr [8]

Perfctr is a low level library that allows access to the hardware counters and events of
many different processors, including the Pentium 4. But Perfctr itself has no built in
support for PEBS. Additionally there is only very little documentation about the API, so
one has to use the sources.

The basic structures for PEBS seem to be available, so it would be possible to extend
Perfctr to include PEBS. The most dominant problem is, that Perfmon2 will supersede

Perfctr as announced on the mailing list.
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PAPI [9]

This is a user-space library that uses Perfctr for the low level hardware access. PAPI hides
the hardware quirks from the user and tries to offer a constant interface on all platforms,
if a similar event is supported.

Event based sampling is also supported, but only via software and is therefore imprecise

and very expensive. PEBS itself is not supported for the Pentium 4.

Hardmeter [10]

Hardmeter is an extension of an old version of Perfctr that supports PEBS somehow.
Unfortunately there is nearly no english documentation available and the project is no
longer maintained.

PEBS is supported through a user level interface and multiple header files that provide
the correct values for the performance registers.

This original version only supports a limited number of samples and will then shut

down and stop collecting.

Hardmeter for recent kernels

To overcome the problems of the original Hardmeter version we ported Hardmeter to a
more recent Perfctr version that could be used with a recent 2.4 kernel. A problem was
that Hardmeter was very much out of date and could not be ported to a 2.6 kernel easily.

This version was also patched with a ring buffer that made it possible to use continuous
sampling. But the old sources had some timer and thread synchronization issues that
caused the sampling to stop after a limited amount of time. The problem was that an
interrupt was not delivered and then the sampling stopped because the buffer was filled

and the CPU entered an exception state.

A runtime interface for hardware performance monitors in a dynamic

compilation environment [12], [13]

This is the preceding master thesis by Pellanda Flavio. He used an adaption of Brink and
Abyss to copy the samples into the user-space. First of all Abyss reads the samples from
the kernel interface and transfers the samples into user-space and will then copy them into
a shared buffer. This buffer is then read by the Jikes JNI library that is used to transfer

the samples one by one into the virtual machine.
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Unfortunately this is a very slow process and imposes a large overhead on the runtime
system. But the process was very reliable and if there were not too many samples the

overhead was acceptable.

Perfmon2 [11]

HP and Intel are developing a library for hardware performance events and the corre-
sponding kernel modules. The user-space library eases the usage of event counting over
different hardware platforms. But it is also possible to use the kernel module by itself and
attach to the system calls.

The kernel interface supports PEBS and the complete structure is very modular and
extendable. The buffer format for the different sampling types is pluggable and can easily
be exchanged.

This project is also very active and a new version is released about every month. The
update cycle is normally quite easy as only small APT changes take place. A drawback of
this interface is that only very few documentation exists, but there are sample programs
and together with the Intel documentation it is possible to program all different events.

The mailing list of this project is very responsive and it is possible to get a fast reply to
a question. A problem with this interface may be the early stage of development, because
there can still be changes to the system calls and to the whole interface.

Currently the project is being integrated into the developer version of the Linux kernel.
This means that it is no longer needed to patch the kernel in the future because the
Perfmon2 interface would already be included in every running kernel, provided that the

kernel modules are activated and loaded.

3.2 Profiling for Virtual Machines

Profiling is an important feature of modern virtual machines. It is used to monitor and
trace events that occur during run time. These events can then be tracked. The assembled
costs are fed into the compiler and the run-time system. The adaptive optimization system
then decides where it focusses.

The VM can generally profile every bytecode instruction, account the number, code
and memory location of the event. Profiling for new instructions can be used to locate

places with high memory usage. The profiler will also use timers to keep track of hot spots
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in the code that use the most processor time. This execution frequency is then used to
specify which methods need to be recompiled at a higher optimization level.
A profiler can work completely in the virtual machine and is therefore operating system

independent.

3.3 Garbage Collectors

The garbage collector is a part of every virtual machine that traverses all available objects
and marks them as alive or collects them. This traversal process can be used to optimize
the object distribution in memory.

Many different garbage collectors have been proposed and offer an advantage for spe-
cific situations. The following two garbage collectors focus on memory and cache locality.
They try to compact objects that are used after another, thereby minimizing the number

of cache misses.

The Garbage Collection Advantage: Improving Program Locality [14]

This paper tries to improve cache and program locality using special forms of garbage
collection. They differ between hot and cold objects. Whereas hot objects are optimized
and placed close to each other during garbage collection.

In the paper they use software monitoring with an overhead between 0.6% and 3%. If
an object type caused enough field accesses it is marked as hot and will then be optimized.
Otherwise if the object has no hits for a longer period of time the object type can also
cool down again and is no longer optimized. Using this technique the algorithm is able to
detect phases where different types of objects are hot and need to be placed close to each
other.

They also discuss that languages without strong type interface like C have a hidden
performance cost. The memory management cannot move regions to improve cache local-
ity because not all pointers are known. So systems like Java VMs may be able to improve

their performance by reordering objects depending on the locality of the data.

February 21, 2006



3.3. Garbage Collectors 13

Creating and Preserving Locality of Java Applications at Allocation and

Garbage Collection Times [15]

This paper tries to improve the locality of Java applications by object colocation and a
locality based traversal of live objects.

They use a special allocator that places often referenced objects next to the newly
allocated object by already allocating extra memory for future objects. Analysis for ref-
erenced objects is done on a per class basis. The garbage collector then assures that all
relevant objects are moved in the right order to improve cache locality.

A drawback of this method is that they use a special profiling run to gather data. So

without the profiles they are unable to detect the correct class layouts.
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Chapter 4

Concept

It is necessary to define a clear design before something is implemented. In this master
thesis there were two different aspects that needed to be defined. First of all a library is
needed that can control the hardware performance monitors and is able to transfer the
obtained samples into the virtual machine.

The second part is the “hot-and-cold” garbage collector that uses the additional infor-
mation from these monitors.

The first part of this chapter will present the design decisions for the HPM library,
the corresponding kernel interfaces and the user-space handling. Later the concept of the

separating garbage collector is shown.

4.1 Interface for hardware performance monitors

As much as possible should be handled by the hardware itself to limit the overhead for
collecting samples. Special care is taken that only samples of the selected process are
collected because the hardware will not differ between different running tasks. Then the
samples are handled by a special user-space library, that communicates with both the
kernel module and the virtual machine. The samples are copied into the virtual machine
process by JNI calls and are then handled by the PEBSI thread.

From this point on the samples can be used for optimization and to gather more
information, like declaring class, the method which caused the sample or field and method

references.

14



4.1. Interface for hardware performance monitors 15

PEBS control-flow: PEBS data-flow:

1.The CPU copies autonomiously I

1. Jikes polls libpebsi

1. Jikes loads & inits
libpebsi which polls perfmon2
2. libpebsi inits perfmon2 2. Samples are copied

3. perfmon2 inits buffer from kernel space into

and hardware

libpebsi

3. libpebsi copies the

samples into Jikes

Figure 4.1: PEBS control- and data-flow.

4.1.1 Kernel interface

The kernel interface offers the possibility to set up and access the hardware performance
monitors from the user and kernel-space. This service is available by a kernel module that
plugs into a current developer kernel.

The kernel interface is then programmable to sample specific events. After allocation
of a kernel buffer to store the samples, the PEBS hardware of the Pentium 4 is initialized.
During the initialization special parameters like buffer size and the initial counter can be
specified. Tt is generally not possible to collect every sample because the CPU would then
be completely occupied with sample collection. So a special counter is initialized that
increases at every event. Only when the counter overflows an interrupt is generated and
a sample is taken. Then the counter is reset to the original value.

The performance monitor is suspended if the buffer is full and there is no more space
available. This is possible if the user-space program is not collecting the samples fast
enough. As soon as the buffer reaches the low mark the monitor is reactivated.

Samples are stored in a special format. The hardware supports two different sampling
formats. EIP, where only the instruction pointers of the samples are saved and the ALL

sampling format which takes a snapshot of the most important registers.

EFLAGS | EIP | EAX | EBX | ECX | EDX | ESI | EDI | EBP | ESP
0 4 8 12 16 20 24 130 32 36

Table 4.1: PEBS - ALL Sampling Format.
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Another feature is counter fuzzying. A possible problem that can occur when handling
loops is that all the samples are taken at the same position, because the loop causes
exactly as many misses as the counter reset value. To avoid this problem the last bits of
the counter size are randomized at every interrupt. The value will be in the same region
but not exactly the same. This avoids misleading statistics.

As we are capturing events using a hardware interface, special care must be taken
for multi tasking operating systems. Without special adjustments the hardware monitors
would sample all running processes, including all kernel operations. Per process virtual-
ization is introduced to limit the sampling only to desired processes. The kernel reads
and saves all counter information before a context switch and restores them if the process
starts again. This information is saved in an additional structure in the kernels process

table.

4.1.2 User-space library (libpebsi)

PEBSI, the Precise Event Based Sampling Interface is a special user-space library that di-
rectly calls the exported Perfmon2 system calls without the use of the user-space Perfmon2
library.

All available PEBS events of the Pentium 4 are supported and are usable by a simple
to handle interface. The developer can select the sampling interval, the size of the buffer
in the kernel and the sampled event.

It initializes all the kernel structures and sets the values of the MSR registers. The
offered functions are easy to use, only select the desired event, buffer size and counter.
The setup routine will then issue the corresponding system calls and communicate with
the kernel module.

The samples can then be read by another function call. This call copies the samples
from kernel-space to user-space and saves them in a local buffer. To limit the number of
slow transitions between the kernel context and user context as many samples as possible

are copied and then relayed to the user program.

4.1.3 JNI Bindings

Another part of the PEBSI library are the JNI bindings. These definitions are needed
to close the gap between the virtual machine and the libpebsi native code. Using these

bindings the PEBSI library is pluggable into all available VMs that support JNI. The
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virtual machine can load the shared library and use the defined functions to setup PEBS
and start collecting samples.

These samples can then be used in a special evaluation thread. If bindings to the
memory management and to internal structures are available the runtime system can also
be instructed to start specific optimizations. A special collector thread for the Jikes RVM

is implemented and uses the samples from the libpebsi library.

4.1.4 Sample handling

Samples are handled in a special system thread inside the virtual machine. This thread
configures the desired PEBS event by JNI calls to the libpebsi library. The samples are
then read and processed in a loop.

Samples are read into a buffer inside the VM. The thread then resolves the byte-code
instruction that caused the sample and tries to gather more information. Some basic
statistics and type information are also updated.

The PEBSI thread then collects other interesting information like field and method
references. These information are then relayed to the memory management and to the

optimizing compiler where they can be used.

4.2 Hot cold garbage collector

One of the biggest causes for the speed gap between object oriented languages and proce-
dural languages is the added indirection for objects. Java programs have many references
to other objects. When these references are followed a lot of cache misses occur. These
misses take a lot of time to resolve.

If these cache misses could be reduced then the overall speed of the program would
increase. This is possible if objects that are often accessed after each other reside in the
same cache line. So only the first miss needs to be resolved and later objects are then
already loaded in the same cache line. To achieve this locality the objects must be placed
next to each other in main memory.

One possible way to do this is to separate hot and cold objects from each other. If all
hot and often accessed objects are allocated in a special space, then the possibility that
two objects are placed in the same cache line or on the same page and used after another

are higher as if all objects are distributed randomly in the address space.
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Additional information is needed to know if an object is hot or not. This information
is gathered during the processing of the samples in the PEBSI thread. The heat of every
declaring class is increased for every sample. The needed heat for a hot type is adjusted
as more and more types get hot.

If a specific type did not trigger any samples during some time then it can get cold

again and will then again be allocated in the cold space.

4.2.1 Mark and sweep space

This generational garbage collector allocates all objects in a nursery. If the objects survive
the first collection they are either placed in the hot space or in the cold space. This is
depended by the heat of the type and the current hotness limit.
As soon as an object is in one of these spaces, it is no longer moved. It will stay at the
same memory position until it dies and is then deallocated by the garbage collector.
This collector uses the idea of a special allocator for hot types as presented in the

paper The Garbage Collection Advantage: Improving Program Locality [14].

4.2.2 copy-space

This collector extends the idea from the mark and sweep space and also uses the garbage
collector to relocate the hot objects depending on the heat of the field references presented
in Creating and Preserving Locality of Java Applications at Allocation and Garbage Col-
lection Times [15]. Objects are first allocated in the nursery and then separated to the
cold mark and sweep space or the hot copy-space.

During a garbage collection of the hot space objects are copied depending on the hot-
ness of their fields. If an object is copied, then normally all fields are copied as they appear.
This collector orders the fields depending on the number of sampled field references. So
that the hottest field is copied first. This ensures that the hottest field of this object is

close to the object itself and will lower the number of cache misses.
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Chapter 5

Implementation

This chapter will focus on implementation details of the PEBSI environment for the Jikes
RVM and the garbage collectors that use the samples. This environment consists of four
layers.

The first layer is the kernel interface that handles interrupts and hardware details. A
user-space library then uses the kernel system calls to offer an easy to use interface to the
complicated hardware details. The next layer is a JNI interface that wraps the library calls
and samples into Java-compatible methods and objects. The last layer is the sampling
thread inside the VM that uses the JNI interface to sample data. This information is then
used in the runtime system for optimization.

The second part of this chapter will describe the implementation of the two additional

generational garbage collectors that implement an additional mature space for hot objects.

5.1 Interface for hardware performance monitors

This section will show how the different parts of the PEBSI system are implemented. The
part about the kernel interface will highlight the different approaches that were taken to
communicate with the hardware. Then the implementation of the user-space library is
discussed, especially the mapping and coding of the different events. The mapping from
C code and direct memory access to Java and objects are discussed in the JNI section.
At last the section about sample handling tells how the samples are interpreted and used

inside the VM.

19



5.1. Interface for hardware performance monitors 20

5.1.1 Kernel interface

The final version of the kernel hardware interface uses the Perfmon2 kernel patch to access
the hardware counters. This patch is actively maintained and extended. It also implements
all needed functionality.

Two other tools were also evaluated, namely “Brink and Abyss” that was used in the
preceding master thesis and Hardmeter, another PEBS tool that was developed at an
university in Japan. Unfortunately both tools had their drawbacks and were therefore

replaced by Perfmon?2.

Hardmeter plus extension

Hardmeter is an extension of the Perfctr kernel patches. Perfctr implements access to
hardware performance monitors of many different processors. It is actively maintained
but only supports counting of events and no sampling.

The Hardmeter extension implements an overflow interrupt and is able to use the PEBS
sampling feature of the Pentium 4. This patch was first released in 2003. Problems of this
extensions are that only an old version of Perfctr is extended and that the development
stopped in 2003. The basic version is therefore only available for an old Linux kernel.
Additionally Hardmeter is only able to capture a fixed amount of samples and stops
afterwards. The intended use was for sampling an attached thread and not for adaptive
optimization.

The most actual version was taken as a basis for a port and extension of the Hardmeter
code. First of all Hardmeter was ported against an actual version of Perfctr for the latest
2.4 kernel version. Because of many changes in the kernel structures it would not have been
possible to port the code to a 2.6 kernel version short of reimplementing the extension.

Another extension to the original code is a ringbuffer that makes continuous sampling
possible. If the buffer is full, then sampling is stopped until the level drops under a
specified threshold.

But due to continuing performance and runtime problems this path was abandoned.
The implementation had some synchronization and locking problems that caused the hard-

ware to stop sampling or raise a hardware exception.
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Perfmon2

Perfmon is a software project that consists of kernel modules for different HPM archi-
tectures and the corresponding user-space libraries. It is maintained by HP. The kernel
modules export low-level access to the monitors. The library then uses these exported
monitors to implement platform independent monitoring.

The P4 kernel module also supports PEBS. It implements the overflow interrupt that
is triggered every time the local sample buffer in the kernel is full.

This project is actively extended and maintained and will soon be included in the
mainstream kernel. No kernel patch will be needed to use the perfmon features in the
future.

The implementation is very reliable and is extendable by the direct access to the
performance monitors. A library can directly use the kernel system calls to set up sample
collecting for a specific process if the process owners match. Self monitoring is also possible.
The samples are then read by other system calls.

The following system calls are available and used in the libpebsi library:
e pfm_create_context, pfm_load_context, pfm_unload_context

o pfm_write_pmes, pfm_write_pmds, pfm_read_pmds

o pfm_start, pfm_stop, pfm_restart

o pfm_create_evtsets, pfm_getinfo_evtsets, pfm_delete_evtsets

A lot of features are already implemented and can be used in programs and libraries.
An example is sample-counter randomization that changes the counter value at every

interrupt by a random number the size of a specified bitmask.

5.1.2 User-space library (libpebsi)

This shared library is basically an independent software package. The software is written
in C and comes with Makefile, README and INSTALL files. The main function is to
hide the complexity of the hardware registers. It offers an easy to use, fast and dynamic
way to setup an event type and to gather samples.

The usage pattern of the library can be split up into the following steps:
1. Loading the library

February 21, 2006



5.1. Interface for hardware performance monitors 22

2. Initialization and event selection
3. Start of the collection phase

4. Main phase with an undefined number of calls to pause or resume collecting and to

get available samples from the kernel module
5. End of the collection phase

6. Removal of the kernel structures and shutdown of the libpebsi library.

Initialization and event selection

Event sampling can be initialized by calling the exported method setupCollecting. The
pointer event must lead to a string representation of the event. Supported events are listed

in the appendix.

/%%

* Prepare the kernel interface and select the event

x event — string representation of the event to sample
* interval — every n—th sample is collected
* buffersize — size of kernel buffer

* debug — debug level (0 low — 9 max)
*/
int setupCollecting(const charx event, int interval,

int buffersize , int debug);

This call programs all hardware monitors to sample the specified event. The allocated
sample buffer is then mapped into user-space and everything is prepared to start sampling.
An additional buffer is allocated only in user-space to keep samples. Using this additional
buffer the hardware can collect more samples even if the user was not yet able to collect

the last samples.

Start of collection phase

With the call int startCollecting(void); the processor monitors will start collecting samples.

These samples are then written into the previously allocated buffer.
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Main phase

The two functions int pauseCollecting(void); and int resumeCollecting(void); can be used
to pause and resume the hardware. They use a system call to enable or disable PEBS, but
this may take some time as write access to the performance monitors costs about 1’000
CPU cycles.

Using the method getSamples it is possible to copy already collected samples into a
given buffer. This method will first check if there are some samples in the user-space buffer
and copy them to the user.

If the specified buffer is larger, then the kernel buffer is polled and checked. These
samples are then copied to the user-space buffer and to the user. The kernel buffer is reset

after copying.

[ %%

* This reads the samples out of the kernel buffer and
* saves them in user space.

* The samples are then accessible via the given

x samplebuffer pointer

*/

int getSamples(int* samplebuffer, int count);

End of collection phase

Using the method int stopCollecting(void); the hardware performance monitors will stop
collecting samples. The remaining samples can still be read because the kernel structures

are not removed yet.

Shutdown and removal of the kernel structures

With a call to int shutdownCollecting(void); it is possible to shutdown the collection and
to remove the internal kernel structures. The process state after this call is the same as
before setupCollecting.

There is an example in ezamples/monitor.c which implements all details and samples

a specific event.
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5.1.3 JNI Bindings

The Java Native Interface bindings wrap the libpebsi functions so they can be used inside
from a JVM. Strings are mapped to char arrays, Java method calls map to C functions,
memory pointers become objects and basic types and arrays are transferred to their Java
equivalents.

Basic methods mapping for initializing, starting and stopping the hardware perfor-
mance monitors are easily mapped and need only minor adaption for exception handling
and conversion of UTF strings into char arrays.

The method to get samples into the JVM lead to some difficulties. The very first
implementation generated a new object for every sample and ordered these objects in an
array and then returned this array to the JVM. This was a very slow process because JNI
functions are handled with special care for memory management and the calls to generate
new objects always had to cross the border into the VM code. Other problems were
constructors and destructors that were called for every object and the additional load on
the garbage collector. All these drawbacks together induced an runtime overhead of about
5% which was not tolerable, although this solution was already faster than delivering only
one object per JNI call.

The next solution was an integer array that was preallocated inside the VM and then
handed to the JNI function. A possible problem was a concurrent garbage collector that
could move the array in memory during the sample copying which would lead to a random
write somewhere in the VM’s memory. So the array was pinned down by a JNI function
and released after copying. The Jikes RVM implements the pinning process by copying the
complete array to another temporary memory location. Upon release the array is copied
back to the old location and overwrites the old data. This was a very slow process and
lead to a high load for the garbage collector because the temporary array was deposed
after use. This solution induced an overhead of about 3% which was still not tolerable.

As a final solution the pinning process is omitted and the samples are written directly
to the jint array in VM space. This is only possible because the JNI function does not
allocate any memory and will therefore not trigger the garbage collector. Although this
violates the JNI specification, it works for the Jikes RVM and should also work for other
virtual machines. The specification states that a JNI call may not run concurrently to
system threads like the garbage collector. Therefore the array will not be changed during

the write process.
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The statement System.loadLibrary(”pebsi”); must be called to load the shared library
libpebsi.so from the root directory of the Jikes RVM. The following methods are available

in the Java virtual machine:

native void pebsiSetup(String event, int interval,
int maxSamplesPerRound, int debug)

native void pebsiStartCollecting();

native void pebsiStopCollecting();

native void pebsiPauseCollecting ();

native void pebsiResumeCollecting();

native int pebsiGetSamples(int addr, int len);

native void pebsiShutdown();

5.1.4 Sample handling

All the samples are collected and handled in a special system thread. This thread is
started if the parameters for PEBSI sampling are set and an event is selected.

The main function of the PEBSI thread is to get samples, resolve the declaring method
and gather information about the miss like field references, method references and statis-

tics.

Fast method search

All compiled methods that are accessible in the VM are referenced in an unsorted array.
The only information we get from our sample is the instruction pointer. The IP must
now be mapped to a VM_CodeArray, but the Jikes implementation of this mapping does
a linear scan through all available methods and checks if the IP is between beginning and
end of the current method’s VM _CodeArray.

This kind of lookup is very slow, especially if it is done for every sample. So part of this
work was to find a structure that holds information about all methods that is extendable
for new methods. The structure must also be aware of memory constraints.

Two different proposals were debated, a hash table and a tree like structure. It shortly
became clear that the hash table was not the best solution. Some of the most important

drawbacks were:

1. Generation of hashcodes for all method objects is too expensive. The calculation
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inside the GNU Classpath is fairly complicated.

2. Rehashing if the table was not large enough and the collision detection are very CPU
intensive. There are many insertions and deletions in the data-structure due to the

optimization system and method recompilation.

3. The size of the large hash table needs a lot of memory. In a standard configuration

there are over 18’000 methods for the spec JBB benchmark.

4. A complicated lookup process because the IP is somewhere inside the method and
hash tables map to only one value. A hash table offers direct lookup of a key. This

structure needs to return the method if the address is in the given address range.

So the hash table would need a lot of memory, updating and maintaining the data structure
would be expensive and due to the hashing function in Jikes the lookup would not be very
fast.

A better solution is a three-levelled tree structure with lazy allocation. This tree
structure covers the complete 32 bit memory address space. The first level is an array
with 256 entries. So methods are separated by their first 8 bits into different subtables.
These subtables then each contain 4096 entries (12 bit). Every entry in a subtable then
covers a page. About 2-3 methods will then be in such a page, as methods are on average
about 2kb long. These methods are organized in an array. If a method covers multiple
pages then it is inserted in every page it touches.

A lookup in this structure is very fast, because the address of the IP can directly be used
to access the bytecode method. During a method lookup the address of the IP is shifted to
access the first and second table. At last a linear scan in the page’s methods brings back
the correct method. Because there are many insertions an deletions the method table is
unsorted. Therefore a binary search is not possible. The overhead for sorting would not

be compensated by the benefit of the binary search.

VM_CompiledMethod searchFastMethod (int address)

{
/* highest 8 bit %/

int firstLevel = address >>> 24;
/* middle 12 bit x/

int secondLevel = (address << 8) >>> 20;
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VM_Codepage cp = codepageMapper|firstLevel].
getCodepage (secondLevel );
return cp.findMethod(address);

}

This process is very fast because it is possible to directly access the correct page. An
additional linear search in an array with very few elements is also not very expensive.

New methods can also be added easily. The lookup process is nearly the same. A
second level object or a page is allocated if it does not yet exist. Not many second level

objects are needed, as most code arrays are close together.

Bytecode resolving

The next step after resolving the method is to resolve the bytecode instruction. The byte-
code map that was added during compilation can now be used to find the corresponding
bytecode instruction. Normally only special garbage collection points and GCSpy meth-
ods have these mapping tables, but they are added for every method so that it is possible
to resolve instruction pointers to bytecode instructions.

The declaring class of the method is resolved if it was possible to find the bytecode
instruction. Depending on the bytecode different informations are gathered and inserted

into the optimization system.

Field reference accounting

If the resolved bytecode needs a field reference the basic type of the reference and its
hotness are resolved. As soon as the type is hot enough each of the type’s field is analyzed.
The fields are then reordered depending on their heat.

The initial heat threshold is a parameter in the PEBSI thread. This threshold is
adjusted during runtime. If there are many samples and hot types then the value is
increased by a linear factor. Using this increasing threshold types can get cold again and
will no longer be allocated in the hot area if they are no longer sampled. The PEBSI
thread keeps only track about hot types and references, but does not use the collected
data by itself.

Field reordering is handled by the PEBSI thread itself. If the type is above the thresh-
old then the fields heat is increased by 1. The table is then scanned by a bubble sort to
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move the corresponding field to the correct position. A bubble sort is fast enough because
the fields are already ordered and the field reference will not move very far.

The memory management and garbage collector can later use this hotness information
to traverse the object tree using the hotness rather than the linear order of the fields.

Method reference accounting

The sample counter of this reference is incremented if the bytecode instructions leads to
a method reference. As soon as the reference’s heat is high enough the method reference
is added to a list of hot methods.

Statistics

Additional statistical data about the distribution of the bytecode instructions is collected
if the compiler lag RVM_WITH_PEBSI_ STATISTICS is set.

These statistics include information about the following measurements:

e Number of baseline compiled instructions

e Number of resolved baseline compiled instructions (that could be mapped to meth-

ods)
e Number of optimized compiled instructions
e Number of resolved optimized compiled instructions
e Number of static and dynamic field references

e Number of field references that are primitives (basic types like int, boolean and so

on)
e Number of method references
e Number of static, special and virtual method invokes
e Number of loads and stores from and to the stack

e Number of heap array number (4 byte), heap array char (1 byte) and heap array

reference loads and stores
e Number of object header acesses

e Number of unmatched bytecode instructions
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5.2 Hot cold garbage collector

The main idea of this additional garbage collector is to separate often used and referenced
object types from lesser used ones. One of the assumptions for this separation is that the
often used types reference each other and are therefore all in the hot space. Upon pointer
dereference these types can profit from their locality.

The memory management toolkit that is used in the Jikes RVM already offers many
different garbage collectors. Basic collectors like a reference counting, a copy-space and
a mark and sweep collector are implemented. Some more sophisticated collectors like a
generational garbage collector with a nursery and a mature space are used in the default
configuration. Whereas the mature space is either a copy-space or a mark and sweep
space.

A new generational garbage collector is presented in this thesis. Both implementations
extend the standard generational garbage collector already present in the MMTk. This
toolkit offers an extendable collector system based on inheritance. There are many software
parts that can be used in multiple collectors, there is a chain of collectors that extend
each other. The most basic part is org.mmitk.plan. Plan which defines basic constants for
all following collectors. One extension of Plan is org.mmik.plan.StopThe World which is
an abstract class that defines the core functionality of stop the world collectors. These
collectors stop the complete runtime system during a collection and run uninterrupted in
contrast to incrementing collectors which can be interrupted.

The collector org.mmitk.plan.generational. Gen is an implementation of a stop the world
garbage collector. It defines basic properties including all methods and data structures
of a nursery for generational collectors. This collector is extended by either the collec-
tor org.mmtk.plan.generational.copying. GenCopy that implements a copying mature space
or by org.mmik.plan.generational.marksweep. GenMS that implements a mark and sweep
mature space.

The problem of this design is that our proposed garbage collector could not be im-
plemented as an extension of Gen or GenMS because there are changes in the nursery
and in the mature space. Both presented collectors use the code base of the implemented
generational collector as basis and extend this code.

An additional allocator ALLOC_HOT is defined in the nursery. This allocator is then

used in the sub classes to transfer hot objects into the hot mature space.
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5.2.1 Mark and sweep space

This collector uses two mark and sweep mature spaces to keep older objects. The second
(hot) space is implemented alongside the already existing space. Every place where the
mature space is referenced is extended to include both mature spaces.

The following code shows the declaration of the two mature spaces and their corre-

sponding descriptors. Both spaces need a trace for the marking phase during a collection.

MarkSweepSpace msSpace = new MarkSweepSpace (" ms” ,
DEFAULT POLLFREQUENCY, MATUREFRACTION*0.7);

MarkSweepSpace msSpaceHot = new MarkSweepSpace (” msh” ,
DEFAULT POLLFREQUENCY, MATUREFRACTION%*0.3);

int MS = msSpace. getDescriptor ();
int MSHOT=msSpaceHot . getDescriptor ();

Trace matureTrace = new Trace(metaDataSpace);

Trace matureTraceHot = new Trace(metaDataSpace);

5.2.2 copy-space

A mark and sweep space for cold types and a copy-space for hot objects are used in this
collector. Both spaces are implemented alongside each other in the code. As the copy-
space has different needs than the mark and sweep collector there are some other changes
and extensions as well.

The different scanning and collection methods are extended to include both functional-
ity for the mark and sweep space and for the copy-space. The code shows the definition of
the two spaces. In this implementation the cold space takes 70% of the available memory

and the hot space gets 30%.

MarkSweepSpace msSpace = new MarkSweepSpace (" ms”,
DEFAULT POLLFREQUENCY, MATUREFRACTION*0.7);

CopySpace matureSpaceHot0 = new CopySpace(” csh0”,
DEFAULT POLL FREQUENCY, MATUREFRACTION=*0.15, false);

CopySpace matureSpaceHotl = new CopySpace(” cshl”,
DEFAULT POLL FREQUENCY, MATUREFRACTION%0.15, true);
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int MS = msSpace. getDescriptor ();
int MSHOTO = matureSpaceHot0.getDescriptor ();
int MSHOTI = matureSpaceHotl.getDescriptor ();

Trace matureTrace = new Trace(metaDataSpace );

Trace matureTraceHot = new Trace(metaDataSpace );

5.2.3 Changes in the scanning algorithm

In the mark and sweep hot cold collector objects will stay in the hot space at the same
position and will not be moved. The objects are only relocated once and may not be close
together due to fragmentation. The mark and sweep space is not compacted and if objects
die other objects can use their memory. This means that objects that are copied after
each other may not be close to each other.

The copy-space allocates objects after another and if it is collected all reachable objects
are copied into the second copy-space. This copying phase can be used to reorder the
objects depending on the internal field reference’s heat.

This functionality is implemented in the scanning engine of the MMTk and uses the
available information of the PEBSI sample engine.

If PEBSI is enabled then all hot object types have a special ordered array with re-

ordered references. These references are updated in the collector thread.

void scanObject (TraceLocal trace, ObjectReference object)
{
MMType type = ObjectModel . getObjectType (object );
int references = type.getReferences (object );
if (type.isHot()) { /* hot types x/
for (int i = 0; i < references; i++) {
Address slot = type.getSlot(object ,
type.pebsiFieldOrder [i]);
trace.traceObjectLocation (slot);

}

} else { /+ cold types x/
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for (int i = 0; i < references; i++) {
Address slot = type.getSlot(object, i);

trace.traceObjectLocation (slot);

}

Using this adaption of the scanning algorithm it is possible to enqueue and copy objects
depending on their references. Fields that are referenced often are copied directly behind

the parent object. This should lead to a reduction of cache misses.
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Chapter 6

Discussion and results

This chapter provides a discussion of the concept and implementation and tries to reason
the design decisions. The results of the benchmark runs are also presented. There are
benchmarks of the PEBSI overhead and tables about the additional information that can
be gathered with this interface. Another section covers the optimization in the memory
management and provides tables about the changes of the execution time and number of

cache misses.

6.1 Interface for hardware performance monitors

The overhead of the complete sampling interface is very small and it is easy to gather
additional information. An easy to extend interface is offered and many different events
can be sampled. The framework is also able to gather precise event statistics and knows
exactly where the sample was taken. Because the hardware itself takes the samples the
exact assembler instruction can be resolved and there is no imprecision from an interrupt
handler or kernel interaction.

Only the collector thread inside the VM and the information resolving mechanism must
be implemented to use the library in a different VM. In closed source virtual machines it
is still possible to load the library in a user thread. But implementing optimizations will

be difficult without access to the VM internals.

Randomization

For events that occur very frequently it is important to use randomization of the counter

value. Using prime numbers is not always enough, randomization is a much better solution
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to solve this problem. Upon every overflow the counter value is modified by a random 8
bit mask. Otherwise the program can get in lockstep with the execution. This can lead
to biased and unusable samples.

As the Jikes RVM is a fairly large software package with many non-deterministic
parameter like GC timer, AOS and so on, randomization is not that important. But it is

a necessary extension for smaller code bases like C or C++ programs.

Distribution of event to bytecode type

This part shows the results of the benchmarks with additional statistics. Statistics about
the method type (baseline or optimized compiled), number and type of references, number
of the different load and invoke instructions and object header accesses are shown in the
tables below.

General statistics about number of misses per benchmark and method and field refer-
ences are always collected.

Figure 6.1 shows the bytecode distribution of different benchmarks. It can be seen
that the benchmarks have very different access patterns and the cache misses happen at
different locations. Depending on this information it should be possible to use specific

optimizations to minimize these cache misses.
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[ other BC
["] obj.hdr. acc.
W heap array
[ stack
[interf MR
[ virtual MR
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[ static MR
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Figure 6.1: Bytecode distribution of different benchmarks for 12 cache misses.

All benchmarks could profit from optimization of virtual calls as all benchmarks have
from 20% to 81% of their misses when a virtual call takes place. Using the PEBS infras-

tructure presented in this paper it is possible to get the corresponding methods and types
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where the cache miss happened.

Most of the benchmarks can potentially profit from object reordering. On average
18% of the cache misses happen when a field reference is resolved. Some benchmarks like
Jython use nearly no field references (or the references are not sampled because there are no
cache misses) while others like FOP have more optimization potential. If an optimization
is to use this information then it must limit itself on promising benchmarks. This can be
decided at runtime using the statistical data from PEBS.

Some benchmarks like MTRT have only limited optimization potential because there
are not many cache misses at all. Additionally a big part of the samples are from primitive

fields like basic types.

Overhead for PEBSI sampling

The overhead for PEBSI sampling depends on the number of samples that are taken
per second. But it is generally possible to sample enough information with a very small

overhead.

Interval | DaCapoMTRT DaCapoJACK | DaCapoANTLR DaCapoFOP
Ovhd. | Smpl./s | Ovhd. | Smpl./s | Ovhd. | Smpl./s | Ovhd. | Smpl./s
5000 | 1.39% | 180.62 | 0.38% | 136.72 | 1.23% | 222.85 | 2.15% | 528.61
10000 | 0.55% | 103.06 | 0.39% 82.05 | -0.22% | 132.96 | 2.24% | 305.19
15000 | 1.12% | 113.13 | 0.32% 51.46 | 0.00% 84.98 | 1.61% | 211.44
25000 | 0.76% 37.14 | 0.43% 33.58 | 0.04% 52.05 | 1.54% | 136.96
50000 | 0.79% 20.01 | 0.17% 15.84 | 0.02% 25.91 | 1.70% 66.96
100000 | 0.62% 10.31 | 0.23% 7.82 | -0.44% 13.49 | 0.77% 33.09

Table 6.1: Overhead and samples per second for 2nd level cache misses (1/2).

As can be seen in the overhead tables 6.1 and 6.2 the overhead is between 2.8% and
0.2%. The tables show the overhead in percent to the production version of Jikes with
a GenMS collector and no PEBS thread. The second column per benchmark shows the
number of taken samples per second. The overhead for sufficient samples is at about
1%, but depends on the benchmark and the optimization. Both benchmarks ANTLR
and HSQLDB are an exception. ANTLR has a very low overhead, this is most likely
due to optimization of the Pentium 4 hardware itself. The overhead for HSQLDB is
very unstable, most likely due to many parallel running threads. These threads are then
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Interval DC HSQLDB DC JYTHON DaCapoPS$S pseudo JBB
Ovhd. | Smpl./s | Ovhd. | Smpl./s | Ovhd. | Smpl./s | Ovhd. | Smpl./s
5000 | 7.02% 268.37 | 1.03% 152.35 | 2.01% 664.18 | 2.85% 844.24
10000 | 6.89% 139.31 | 0.87% 83.21 | 1.55% | 361.54 | 1.59% | 451.74
15000 | 16.05% 108.93 | 0.66% 71.38 | 1.67% | 250.06 | 1.40% 311.36
25000 | 6.81% 78.43 | 0.81% 47.58 | 1.88% 151.82 | 0.54% 201.6
50000 | 1.18% 36.51 | 0.87% 31.77 | 1.83% 77.64 | 0.73% 95.63
100000 | 13.02% 16.08 | 0.59% 10.77 | 1.82% 38.61 | 0.62% 48.96

Table 6.2: Overhead and samples per second for 2nd level cache misses (2/2).

scheduled non-deterministicly. The tables show the runtime overhead in percent against
the original version without the PEBS thread. Every interval was measured eight times
(after a warmup cycle) and averaged. These benchmarks only show the overhead, no
optimization took place.

The benchmark pseudo spec JBB is a very good example because it runs for a long
time and the results do not vary much over different runs. It shows that the overhead is
linear dependent on the number of processed samples per second.

Unfortunately not all taken samples can be used. Table 6.3 shows the number of
overall samples, resolved methods and resolved bytecode instructions. External methods,

libraries and kernel calls are not resolvable, these samples are discarded.

# Samples | Method resolved | BC instr. resolved

spec MTRT 2’481 1°884 (75.94%) 1°003 (64.49%)

spec JACK 2’704 1975 (73.04%) 920 (60.98%)
DaCapo ANTLR 2775 1’689 (60.86%) 1252 (74.16%)
DaCapo FOP 23’067 187225 (79.01%) 14’928 (81.91%)
DaCapo HSQLDB 257670 20’115 (78.36%) 17536 (87.18%)
DaCapo JYTHON 8’449 67702 (79.32%) 5751 (85.81%)
DaCapo PS 7720 6’460 (83.68%) 1°920 (29.72%)
pseudo specJBB 221’558 154’204 (69.60%) 127111 (82.43%)

Table 6.3: Number of samples and resolved percentiles for L.2 misses.

The second data column of 6.3 shows the number of samples where a method was found.
Some of the remaining samples are discarded if the corresponding bytecode instruction can
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not be found. This is possible if the event happened in the method pro- or epilogue. The
last data column of 6.3 shows the number of samples where both method and bytecode
could be resolved. The percentage is relative to the number of resolved methods, because
the bytecode instruction can only be resolved if the method is already determined.

On average 75% of the methods can be mapped from IP to the original method using
the fast method lookup. The minimum of 61% is caused by the ANTLR benchmark that
prints a lot of information to the console. These calls are all to libraries outside of the
VM.

The bytecode instruction can be resolved of 71% of the remaining samples. The mini-

mum of 29.72% is caused by the PS benchmark.

6.2 Hot cold garbage collector

As an application of the extended hardware profiling two new garbage collectors were
implemented. These collectors use the available PEBS information to decide if an object
is hot or not.

The first collector uses a mark and sweep space for the hot objects. This space is faster
but has disadvantages regarding locality. Therefore the second collector uses a copy-space

for hot objects and a special copy-order for the fields of hot objects to increase object

locality.
Best interval
spec MTRT 15’000
spec JACK 25’000
DaCapo ANTLR 10’000
DaCapo FOP 5000
DaCapo HSQLDB 50’000
DaCapo JYTHON 15’000
DaCapo PS 25’000
pseudo specJBB 15’000

Table 6.4: Best intervals for specific benchmarks.

The standard generational garbage collector of the MMTk was taken as a basis. This

basis was then extended to include the additional spaces. This might be the problem
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that there is no real speed up. Due to limitations in the MMTk both spaces are collected
simultaneously. If the hot and cold space could be collected separately then the collectors
should do better. The new collectors each introduce a new space. This means that the
available memory is shared by more spaces. If one of the mature spaces runs out of
available memory then a full heap scan is started. This full heap scan then collects all
spaces, including the two mature spaces.

The table 6.4 shows the intervals where the extended garbage collectors worked best.

These intervals were used in the figures below that show the runtime benefit and the

second level cache miss reduction.

Runtime benefit & std. deviation (HCMS)

0.25%

0.00%
-0.25%
-0.50%
-0.75%
-1.00%
-1.25%
-1.50%
-1.75%

-2.00%
2.25%

2.50% : : :

T T T
DaCapo  DaCapo
HSQLDB JYTHON PS
(13.68%) (0.49%)  (0.40%)

spec
MTRT
(0.31%)

spec
JACK
(0.15%)

DaCapo
FOP
(0.33%)

DaCapo
ANTLR
(0.36%)

DaCapo  pseudo

specJBB
(0.18%)

22.50%
20.00%
17.50%
15.00%
12.50%
10.00%
7.50%
5.00%
2.50%
0.00%
-2.50%
-5.00%
-7.50%

L2 miss reduction (HCMS)

spec
MTRT
(6.29%)

T T T T T T T
spec DaCapo DaCapo DaCapo DaCapo  DaCapo
JACK FoP ANTLR  HSQLDB JYTHON PS
(5.47%)  (7.70%)  (4.15%) (15.64%) (11.36%) (4.21%)

pseudo
specJBB
(10.05%)

Figure 6.2: Runtime benefit and 12 cache miss reduction for hot/cold mark and sweep

collector.
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Figure 6.3: Runtime benefit and 12 cache miss reduction for hot/cold copy and mark and

sweep collector.

The figure 6.2 shows the runtime benefit and 12 miss reduction of the hot/cold collector
with two mature mark and sweep spaces. The figures show the reduction in percent against

the production version from Jikes. The percentage beneath the name of the benchmark
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shows the standard deviation. The maximum improvement can be seen at the MTRT
benchmark which gives virtually no speedup with 0.02%. The worst degradation is caused
by the JYTHON benchmark with 2.42%. The PS benchmark offers maximum benefit
with a reduction of 21.53% of L2 misses and JYTHON performs worst with an increase
of 6.68%. This collector gives a small average L2 cache miss reduction of 5.0%. But the
additional overhead for sampling and the second mature space leads to an average runtime
overhead of 1.0%.

Figure 6.3 shows the runtime benefit and 12 miss reduction of the hot/cold collector
with a mature mark and sweep space and a mature copy-space. The figures show the
reduction in percent against the production version from Jikes. The percentage beneath
the name of the benchmark shows the standard deviation. Four benchmarks show an
improvement in execution time. The average improvement is 1.0% with a maximum of
3.24% for HSQLDB and a degradation of 2.63% for MTRT. The overall number of misses
can be reduced by 5.3% .

The tables 6.5 and 6.6 show the optimization potential for first level cache misses using
the generational hot/cold garbage collector with a mark and sweep mature space for cold

objects and a copy-space for hot objects.

Interval | DaCapoMTRT | DaCapoJACK | DaCapoANTLR | DaCapoFOP
25000 3.72% 1.51% 2.01% 2.96%
50000 2.21% 0.82% 1.23% 1.46%

100000 1.06% 0.66% 0.83% 1.57%

Table 6.5: Relative execution time for 1st level cache misses and hot/cold copy collector

(1/2).

Interval | DC HSQLDB | DC JYTHON | DaCapoPS | pseudo JBB

25000 -3.51% 1.09% 4.98% 2.90%
50000 6.72% 0.62% 3.22% 1.99%
100000 0.77% 1.02% 2.01% 1.83%

Table 6.6: Relative execution time for 1st level cache misses and hot/cold copy collector

(2/2).

It can be seen in the tables 6.5 and 6.6 that the overhead generally increases. This

means that the hot/cold garbage collector and field reordering are not usable in this
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implementation to reduce the first level cache misses. The overhead depends linearly on
the interval, but the garbage collector is not able to reduce the cache misses because the

objects are most likely too large.

6.3 Further work

This thesis offers a very good framework for hardware based performance monitoring and
precise event based sampling. It is possible to use many different events with varying
sampling interval and buffer.

Further work is needed for additional optimizations that use more of the available infor-
mation. Information about the sampled methods is still unused and could be fed back into
the adaptive optimization system to recompile these methods with specific optimizations.

Other additional options include garbage collectors that compact and reorder these
elements depending on a more sophisticated algorithm. The presented garbage collector
uses at most the available field reference information and nothing else.

Another idea is a change in the AOS of Jikes. The PEBSI thread could gather extensive
statistics. The AOS then could use this statistics on a per type or per method basis to
select the best possible optimizations depending on the type statistics.

The information about the different load and store types could also be used for more
optimizations. Maybe in combination with the method information to guide the adaptive
optimization system. Currently methods are recompiled at different levels with a fixed
increasing number of optimizations per level. Using these information it could be possible
to only select optimizations that are promising. Other optimizations without potential

would not be applied, saving compilation time.

February 21, 2006



Bibliography

[1]

IA-32 Intel Architecture Software Developer’s Manual, Volume 3B: Sys-
tem Programming Guide (document #253669 / January 2006).

http://developer.intel.com/design/pentium4/manuals/index_new.htm

TA-32 Intel Architecture Optimization Reference Manual
(document #248966 / January 2006).

http://developer.intel.com/design/pentium4 /manuals/index_new.htm

Tim Lindholm, Frank Yellin: The JavaTM Virtual Machine Specification,
September 1996 / 1999.
http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

Sun Microsystems Java Environment

http://java.sun.com

The JikesTM Research Virtual Machine’s Homepage

http://jikes.sourceforge.net/

The JikesTM Research Virtual Machine User’s Guide (2.4.2)
November 21, 2005
http://jikesrvm.sourceforge.net /userguide/HTML /userguide.html

Brink and Abyss: Pentium 4 Performance Counter Tools For Linux
Kernel driver and user-space program for Pentium 4 hardware performance monitors.

http://www.eg.bucknell.edu/ bsprunt/emon/brink_abyss/brink_abyss.shtm

Perfctr: Linux Performance Counters Driver
Low level kernel driver for hardware performance monitors of multiple architectures.

http://sourceforge.net/projects/perfctr/
41



Bibliography 42

[9]

[11]

[12]

[13]

[14]

[15]

PAPI: Performance Application Programming Interface
High level user-space library for performance counters, uses Perfctr.

http://icl.cs.utk.edu/papi/

Hardmeter: Memory profiling tool
Hardmeter is an extension of an old Perfctr version that implements PEBS for
Pentium 4 processors.

http://sourceforge.jp/projects/hardmeter

Perfmon2 kernel interface

Perfmon tries to offer HPM facilities for multiple platforms, including PEBS for
Pentium 4 processors. It consists of a kernel driver and a user-space library, but the
kernel driver can also be used stand alone.
http://sourceforge.net/projects/perfmon2/

http://www.hpl.hp.com /research/linux/perfmon/perfmon.php4

Quick overview: http://lwn.net/Articles/164807/

Using Platform-Specific Performance Counters for Dynamic Compilation

by Florian Schneider and Thomas Gross, October 2005.

A run-time interface for hardware performance monitors in a dynamic
compilation environment by Pellanda Flavio, supervisors: Prof. Thomas Gross,

Florian Schneider, March 2005.

Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss,
Zhenlin Wang, Perry Cheng. The Garbage Collection Advantage: Improving
Program Locality.

http://cs.anu.edu.au/ Steve.Blackburn/pubs/papers/oor-oopsla-2004.pdf

Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, Jaswinder Pal Singh.
Creating and Preserving Locality of Java Applications at Allocation and
Garbage Collection Times.

http://www.research.ibm.com/people/g/gupta/oopsla02.pdf

DaCapo Benchmark Suite
http://osl-www.cs.umass.edu/DaCapo/gcbm.html

February 21, 2006



Appendix A

Used benchmarks

Multiple benchmarks are used to test changes in the virtual machine. Most of the bench-
marks are from two of the bigger benchmarks suits. Some tests are from the DaCapo
benchmarks that build upon popular open source software. Others come from the spec
jvm 98 benchmarks that widely known.

Jikes uses an adaptive optimization system (AOS) to recompile methods that are
executed often. This AOS is non deterministic and can lead to different results. This
system is disabled and a predefind compilation plan is used for all benchmarks of a given
type. So every run of a specific benchmark uses the same parameters for the AOS.

All benchmarks were calculated on an Intel Pentium 4 “Northwood” with 2.66 GHz
and 512KB second level cache. The available memory was 1024MB and the VM used a
maximum of 256MB, without a specific initial heap size.

The adaptive system needs some warmup time until the VM can profit from the opti-
mizations. Some adaptions were made to cover these limitations. These changes are listed

below.

A.1 DaCapo Benchmarks

This benchmark suite [16] consists of a set of open source applications that are used in
production systems. All of these applications have a non-trivial memory load and profit
from optimizations in the memory management system.

In this thesis the benchmarks with the version number beta051009 are used. Due to
restrictions of the Jikes RVM not all benchmarks could be run. The AWT and XML

libraries are missing or only partly implemented in Jikes.
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DaCapo ANTLR

Parses some grammar files and generates a parser and lexical analyzer for each input. This

benchmark is used unchanged with the large set of input data.

DaCapo FOP

This benchmark takes an XSL-FO file and parses and formats it. Then it generates a PDF
file using these XSL transformations. The benchmark is unchanged and the large set of

input data is used.

DaCapo HSQLDB

Builds a JDBC-like in-memory database and executes a number of transactions. A model
of a banking application is used. The source is unchanged and the large set of input data

is used.

DaCapo JYTHON

Offers a python interpreter and runs a series of programs against it. The benchmark runs

as-is with the large set of input data.

DaCapo PS

Reads a PostScript file and interprets the stack based language. The large input data is

used in the unchanged benchmark.

A.2 SPEC JVM98 Benchmarks

This benchmark from the Standard Performance Evaluation Corporation benchmarks the
performance of Java Virtual Machines. The available benchmarks cover a wide area of

optimization potential.

jvm98 227 mtrt

Is a raytrace benchmark running in two concurrent threads. It renders the file input/test-

test.model with a resolution of 600 by 400.
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jvm98 228 jack

This benchmark is a Java parser generator with a lexical analyzer. It runs 4 times with
default parameters.

jvm98 pseudo jbb

Pseudo jbb is a variation of the spec jbb benchmark. In contrast to the original benchmarks
which runs for a given time and returns the number of processed transactions, the pseudo
jbb benchmark runs a given number of transactions. This makes it easier to measure time

differences. No changes have been made to the source-code of this benchmark.

A.3 Other Benchmarks

One of the artificial test benchmarks of this thesis is MatrixMultiplication which multiplies

two matrices A and B and saves the result in C.
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Changed files

This chapter will present an overview over all changed files for the PEBS extension. Us-
ing this chapter it should be possible to adapt the current version to another sampling

mechanism or a newer version.

B.1 Changes inside the Jikes RVM

The following list provides a description of all changes inside the Jikes RVM. All changes
inside the RVM can be removed if the switch RVM_WITH_PEBSI is unset.
All files that are marked with (*) were newly added to Jikes. All other files were

expanded.

e bin/jconfigure
This file now includes the three switches RVM_WITH_PEBSI, if PEBSI is to
be compiled and the PEBSI thread should be activated and started during the
boot-phase, RVM_WITH_PEBSI_DEBUG, if PEBSI should include debug in-
formation and RVM_WITH PEBSI STATISTICS, if generous statistics should
be collected.

o config/i686-pc-linuz-gnu.payerm
This file handles the defaults for the Jikes build process like local paths for binaries
and the like.

o config/build/BaseAdaptive Gen HCMS
Defines a Virtual Machine with the adaptive optimization system, where the boot
image is baseline compiled and the special Hot-Cold mark and sweep generational
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garbage collector is used. This configuration can be prepared by the command

’jconfigure BaseAdaptiveGenHCMS'.

config/build/Base Adaptive GenHC CopyMS
Same setup as above, but the hot space uses a copy collector rather than a second
mark and sweep collector. This configuration can be prepared by the command

’jconfigure BaseAdaptiveGenHCCopyMS’.

config/build/FastAdaptiveGen HCMS
Same configuration as BaseAdaptiveGenHCMS, but the boot image is compiled with
the optimizing compiler at the highest optimization level. Execute ’jconfigure

Fast AdaptiveGenHCMS’ to use this setup.

config/build/FastAdaptiveGenHC CopyMS
Defines the same configuration as FastAdaptiveGenHCMS, but the hot space uses
a copy collector rather than a second mark and sweep collector. Use ’jconfigure

Fast AdaptiveGenHCCopyMS’ to configure this environment.

config/build/gc/GenHCMS
This file sets which class is used as the generational hot and cold collector with
two mature mark and sweep spaces. The collector is defined in the package named

org.mmitk.plan.hcgenerational.hemarksweep. Gen HCMS.

config/build/gc/GenHC CopyMS
Defines the class which is used for the garbage collector with a cold mark and
sweep space and a hot copy-space. The collector is declared in the class file named

org.mmitk.plan.hcgenerational. hecopymarksweep. Gen HCCopyMS.

sre/vm/VM.java
Some hooks to the boot process are added so that the method tables are synced for

fast method lookup. The PEBSI thread is also started in this file.

src/vm/compilers/compiledCode/VM_CompiledMethod.java
A sample counter and the corresponding methods are added. This counter is in-

creased for every sample this method caused.

sre/vm/compilers/compiledCode/VM_CompiledMethods.java
In this file all the compiled methods are handled. A special lookup table was added
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that implements a nearly O(c) lookup of an IP to method. Methods are organized
in a three level lookup table that uses codepage mappers and codepages to map in

between.

sre/vm/compilers/compiledCode/VM_Codepage.java (*)
This file implements a memory page and holds all methods inside a memory page.

There are normally not more than 3-8 methods located in a page.

src/vm/compilers/compiledCode/VM_CodepageMapper.java (*)
In the current implementation there are at most 2% codepage mapper which each

will hold 22 codepages.

sre/vm/compilers/optimizing/ir/conversions/mir2mc/
OPT_ConvertMIRtoMC.java

Hooks to generate extended bytecode maps are added.

src/vm/compilers/optimizing/vmlInterface/services/
VM_OptCompiledMethod.java
An additional BC map is added for every bytecode instruction and not only for GC

points. There is also a get method for these BC maps.

src/vm/classLoader/VM_BytecodeStream.java
A special method is added that returns the field reference index inside the bytecode
stream as a number rather than only the reference. This may be used for further

optimization inside the bytecode finder.

src/vm/classLoader/VM_FieldReference.java
An additional sample counter and the corresponding methods per field reference are
added. This class now also implements the “comparable”-interface to sort the most

sampled field references for the additional statistics.

src/vm/classLoader/VM_MethodReference.java
An additional sample counter and the corresponding methods per method reference
are added. This class now also implements the “comparable”-interface to sort the

most sampled method references for the additional statistics.

src/vm/classLoader/VM_Type.java
An additional sample counter and the corresponding methods per type are added.
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This information is needed by the memory management and the Pebsi sampling
thread. Two additional methods (public final short[] getPebsiFieldOrder()
and public final int[] getPebsiFieldCounts()) that get information from the
memory management into the Jikes sampling thread are added. It is also possible
to define a type as hot or cold. These changes are then propagated into the memory

management.

src/vm/memoryManagers/JMTk/vmInterface/MM._Interface.java

A small change so that methods are always allocated in the immortal space is added.
Otherwise the addresses of the methods would change and this would lead to a
resource intensive rescanning of all active methods for the fast lookup table as the

table works with absolute addresses.

src/vm/utility/VM_CommandLineArgs.java
Adds command line switches for PEBSI. These values are evaluated in the class file
VM _Pebsi.java. If the VM is compiled without support for PEBSI and a PEBSI

argument is specified then an error message is printed.

src/vm/pebsi/VM_BytecodeFinder.java (*)
This class locates the bytecode instruction for every sample and tries to resolve
different information for the corresponding bytecode, like method reference, field

reference or load and store statistics.

src/vm/pebsi/VM_OptBCMap.java (*)

Is indirectly used by OPT_Convert MIRtoMC.java and offered directly by the
file VM _OptCompiledMethod.java. These bytecode maps are then used by
VM_BytecodeFinder.java to locate machine-compiled methods to actual byte-

code.

src/vm/pebsi/VM_PebsiEzception.java (*)
Defines a hardware exception that is thrown if there are problems with the libpebsi

native interface.

src/vm/pebsi/VM_Pebsi.java (*)
This class declares the PEBSI-Thread inside the VM. It controls the collection and
distribution of samples and informs the optimization system of hot types and hot

spots.
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B.2 Files for libpebsi userspace library

The libpebsi library is basically an independent software package. The low level library
includes Makefile, README and INSTALL files. These files describes the bindings to the
perfmon library and kernel modules and how to install all components.

Additional to the JNI bindings there are two examples, a self sampling matrix multi-
plication and a program that counts specific events for external programs.

The complete library was written from scratch and can be used either in a Java VM
using the JNI bindings or in any other programming language that can load shared li-

braries.

o src/pebsijni.h
Includes the bindings and definitions for the JNI functions. These functions can

then be used inside the JVM.

o src/pebsijni.c
Implements the JNI functions and uses the library itself. Maps all the Java calls to

the library calls and boxes basic types into objects.

o src/pebsi.h
Defines all PEBSI methods and bindings to perfmon. Some default values like DE-
BUG and DEBUG_LEVEL are also defined in this file.

e src/pebsi.c

Implementation of the low level functions to control the PEBS interface.

e czamples/monitor.c
An example program that implements PEBS self monitoring. The collected samples

are printed to stdout.

o czamples/extmonitorcount.c
Takes an external program as parameter and counts the number of events and prints
this number to stdout after the child exits. This sample only uses counters and no

PEBS.

o czamples/Makefile

Makefile to build and run the examples. Be aware that the monitor example needs
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the LD_LIBRARY _PATH environment variable set. The paths inside this file

must be adjusted to the directory layout.

o [ibpebsi.so
This is the actual shared library that is built from the sources. It can be installed

into the Jikes RVM home directory and can then be loaded into the RVM.

e README

Readme file describing the libpebsi package and the used components.

e INSTALL
This file includes instructions how to download the kernel patch and install the
perfmon2 patches. There is also some information about installation of the shared

library.

o Makefile
General makefile for the libpebsi library. The paths inside this file must be adjusted
to the directory layout.

B.3 Changes inside the Jikes MMTk (Memory Manage-
ment Toolkit)

These changes represent all the additions to the memory management toolkit that Jikes
uses. This toolkit defines different garbage collectors, how they interact and work.

This thesis introduces two new garbage collectors, the hcmarksweep collector and the
hccopymarksweep collector. Both collectors are generational garbage collectors with a
nursery space and two mature spaces. There is a hot and a cold mature space. If an object
is sampled more times than a threshold then the object will be moved into the hot space,

otherwise it will be moved into the cold space.

o src/org/mmitk/plan/hcgenerational /hemarksweep/
GenHCMSMature TraceLocal.java
GenHCMSLocal.java
GenHCMS Constraints.java
GenHCMS. java

These files define the mature space of a generational garbage collector. The mature

February 21, 2006



B.3. Changes inside the Jikes MMTk (Memory Management Toolkit) 52

space consists of two parts, a hot and a cold mature space. Both mature spaces
follow the “mark-and-sweep” principle. These files contain mostly code from the

standard generational collector, but are extended by a second mature space.

o src/org/mmitk/plan/hcgenerational /hecopymarksweep/
GenHCCopyMSMature TraceLocal.java
GenHCCopyMSLocal.java
GenHCCopyMS Constraints.java
GenHCCopyMS.java
Defines another “hot-and-cold” garbage collector. The cold mature space contains
a mark-and-sweep collector and the hot space is handled by a copy-space collector.
These files contain mostly code from the standard generational collector, but are

extended by a second mature space.

e src/org/mmitk/plan/hcgenerational /
GenNurseryTraceLocal.java
GenMatureTraceLocal.java
GenLocal.java
GenConstraints.java
hegenerational/Gen.java
These files are the basis for the two extensions hccopymarksweep and hecmark-
sweep. The nursery and some shared methods are defined in these files. Most of
the code is copied from the nursery of the standard generational garbage collector,

but extended for a two-spaced mature space.

o src/org/mmitk/policy/
CopySpaceHC java
CopyLocalHC java
This package defines a special copy-space that is used in the hccopymarksweep
collector. There is an additional check that tests if the object is still hot. If it gets

cold then it is moved to the cold-mature-space.

o src/org/mmitk/utility/scan/MM Type.java
This class is extended by a field order that is defined by the number of samples and
the hotness of the references. The array is then accessible from the internal VM

context by a get method.
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o src/org/mmik/utility/scan/Scan.java
The objects are scanned and enqueued using the additional information from the

collector thread.
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Appendix C

Command line arguments

The PEBSI extensions support many different command line arguments. Only the manda-
tory option event must be used, all other options are optional.

Multiple options can be concatenated. The event must be first and they must be

The event option supports all events that are exported by the libpebsi library. Cur-
rently the following events are supported (use event=EVENTNAME):

e Precise front-end events:

memory_load | Memory loads

memory_store | Memory stores

memory_move | Memory loads and stores

e Precise execution events:
packed_sp packed single-precision uop retired
packed_dp packed double-precision uop retired
scalar_sp scalar single-precision uop retired
scalar_dp scalar double-precision uop retired
64bit_mmx 64bit SIMD integer uop retired
128bit_mmx 128bit SIMD integer uop retired
x87_fp floating point instruction retired
x87_simd_memory_moves | x87/SIMD store/moves/load uop retired

e Precise replay events:
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11_cache_miss 1nd level cache load miss

12_cache_miss 2nd level cache load miss

dtlb_load_miss | DTLB load miss

dtlb_stor_miss DTLB store miss

dtlb_all_miss DTLB load and store miss

mispred_branch | Tagged misspredicted branch

mob_load_replay | MOB (memory order buffer) causes load replay

split_load replayed events at the load port

split_store replayed events at the store port

There are many other options that can be used to fine-tune the operation of the PEBSI

thread. If the interval should be set explicitly without automatic adpation then the two

options interval=NUMBER:autointr=false must be combined.

interval

Set the capture interval. Only every n-th sample is recorded. This
option depends on autointerval. If autointerval is true, then this value
is only a startingpoint for the adaptive optimization. If interval is 0,

then PEBSI will be disabled!

autointr

Setting for the adaptive optimization of the sampling interval. Default:

true

buffer

Set the number of samples the kernel buffer will store. Default: 1000

status

Displays status information about identified methods when the VM is
shut down. If the additional flag status=verbose is set, then additional
information about methods, methodrefs and fieldrefs will be printed.

Default: not shown

dump

Dumps all collected samples into the file ‘raw_samples.out’ if set to true.

Default: false

dumpfile

If set, then all pebsi output is redirected into the specified file. Default:

” (output to console)

debug

Toggle debug level. Default: 0, max.: 9

Table C.1: Command-line arguments.
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