B

Adaptive Optimization using Hardware Performance Monitors

Master Thesis by Mathias Payer

Supervising Professor: Thomas Gross
Supervising Assistant: Florian Schneider

Adaptive Optimization using HPM 1/21

o Tasks: - Interface for HPM

- Optimization of MM using HPM information

e Challenges: - Fast sampling & processing

- Precise sampling
- Runtime benefit

e Method: - Used kernel perfmon2 kernel patch
- User-space library libpebsi

- Collector-Thread in Jikes

- Changes in Memory-Management

Adaptive Optimization using HPM /

2/21

1. Summary / Introduction

2. Preliminaries:
* Profiling vs. HW Sampling
* Pentium 4 Sampling (PEBS)
* Perfmon2 & Jikes RVM
3. Extensions
* libpebsi
 Jikes RVM & Collector

4. Evaluation & Benchmarks

5. Application for HW profiling (Hot/Cold GC)

3/21

Adaptive Optimization using HPM /

2. Profiling vs. Sg

» Modern compilers/VVMs (may) use two types of information:

o Profiling: - Monitor & trace runtime events

- Platform independent (written in Java)
- Data is used by AOS (OptCompiler)
« HW-Sampling: - Uses low-level hardware information

- Direct HW feedback

- Can be used for (new) optimizations

- Relatively new field

Adaptive Optimization using HPM 4/21

2. Pentium 4 Profilir

e Pentium 4 offers many (new) Hardware Performance Monitors

» Supports Precise Event Based Sampling (PEBS)

o HW takes & saves sample in memory, int generated on overflow
» Programmable over special register, runs in global context

« Many events can be sampled:

» Cache misses (L1 & L2), DTLB misses, memory accesses,

arithmetic instructions, ...

Adaptive Optimization using HPM / 5/21

o Fast, precise sampling is needed for effective optimizations.

« Many different kernel extensions exist, most are obsolete no longer
maintained or outdated.

 Perfmon2 is a low level kernel interface and a high level user library.

 Supports virtualization, access restrictions, PEBS & randomization.

6/21

Adaptive Optimization using HPM

 The Jikes Research Virtual Machine is a complete OO Java VM.

 Used for implementations of new ideas, GCs and optimizations.

 The Adaptive Optimization System uses profiling to decide which
methods need recompilation at a higher opt. level.

e HPMs are not yet used for additional information.

A Pebsi thread runs inside Jikes to collect and process samples.

7/21

Adaptive Optimization using HPM

e libpebsi directly accesses the PMU (read/write to PMC & PMD)
o Offers a simple interfaec to PEBS (event, interval, buffer)
« Bindings for C, C++ and JNI available

 Written as redistributable library, independent from Jikes

e Language independent

Adaptive Optimization using HPM 8/21

Buff

Linux Kernel

&
Perfmon2 Module

1. Jikes loads & inits libpebsi
2. libpebsi inits perfmon2

3. perfmon2 inits buffer & hw
libpebsi

Jikes RVM
(including PEBS Thread)

9/21

Adaptive Optimization using HPM

3. PEBS Data-Flow

CPU

Buff
Linux Kernel .

&

1.The CPU copies autonomiously I Perfmon2 Module

1. Jikes polls libpebsi which

polls perfmon2
2. Samples are copied from libpebsi

kernel space into libpebsi Tikes RVM
3. libpebsi copies the (including PEBS Thread)

samples into Jikes

Adaptive Optimization using HPM 10/21

3. Jikes Collector

e Polls libpebsi for new samples
o EFLAGS, EIP, EAX, EBX, ECX, EDX, ESI, EDI, EBP & ESP

e Maps the IP to the corresponding compiled method
 Analyzes the bytecode instruction & gathers information
 Saves additional statistics if selected

 Analyzes field references

 Analyzes method references

Adaptive Optimization using HPM 11/21

4. Benchm

« Typical benchmarks with high memory and gc activity are used:

e spec MTRT Concurrent raytracer with two threads

o spec JACK Java parser generator & lexical analyzer

e DaCapo ANT Parser and lexer for grammer files

» DaCapo FOP XML to PDF transformation using XSL-FO
« DCHSQLDB JDBC in memory DB with transactions

e DCJYTHON Python interpreter in Java

e DaCapo PS PostScript interpreter

* pseudo JBB spec pseudo JBB transactional DB

12/21

Adaptive Optimization using HPM /

4. Overhead Be

 Overhead (I2 cache miss) & # processed Samples per Second I

Interval pseudo spec JBB Benchmark Overhead Samples/Sec
10000 . spec JACK 0.39% 82.05
1.59% 451.74 DaCapo ANTLR -0.22% 132.96
15000 140% 311.36 DaCapo FOP 2.24% 305.19
50000 . DC JYTHON 0.87% 83.21
0.73% 9563 DaCapo PS -0.05% 67.01

1000000 (@20 48.96

* In detail for pseudo spec JBB and all other benchmarks at interval 10000 I

Adaptive Optimization using HPM / 13/21

4. Benchmark stat /
« Bytecode distribution of second level cache misses: I

100.00%
90.00%
80.00% .
|] other BC
0/, |
70.00% || obj.hdr. acc.
60.00% - B heap array
|| stack
50.00% - |]interf MR
] virtual MR
40.00% - B special MR
B static MR
30.00% - B reference FR
20.00% | B prlrr.ntlve FR
[static FR
10.00% -
0.00% -
spec spec DaCapo DaCapo DaCapo DaCapo DaCapo pseudo
MTRT JACK ANTLR FOP HSQLDB JYTHON PS specJBB

Adaptive Optimization using HPM / 14/21

5. Application for HW §

« The HW information is used in an extended garbage collector
* Objects are handled differently if they are frequently used

o A special memory space is reserved only for hot objects
 Hotness depends on variable threshold

 Adjusted during runtime

o Analyzes field references and reorders hot fields

15/21

Adaptive Optimization using HPM /

5. Hot Cold Garbage Collecie

Standard generational garbage collector:

Hot Cold garbage collector with a hot copy space:

I Copy Space 0

Copy Space 1

b

Adaptive Optimization using HPM 16/21

5. Hot Scanning Algorithr

for (int1 = 0; | < NrReferences(type); i++)

{
Address slot = type.getSlot(object,

type.pebsiFieldOrderl[il);
trace.traceObjectlLocation(slot);

}

class Foo { pebsiFieldOrder:

Bar a,b;

X e;
X f: Heat: 150 60 60 20 10 5

Bar c;

17/21

Adaptive Optimization using HPM

5. HC GC Benchmarks

Runtime benefit & std. deviation (HCcopyMS) L2 miss reduction (HCcopyMS)
3.50% 50.00%
3.00% 45.00% —
2.50%
2.00% 40.00% —
1.50% 35.00% —
0,
1.00% 30.00% |
0.50%
0.00% — 25.00% —
-0.50% — 20.00% —
-1.00% —
0/, —1
-1.50% — 15.00%
-2.00% — 10.00% —
-2.50% — 5.00% —
-3.00% \ \ \ \ \ \ \ ,
spec spec DaCapo DaCapo DaCapo DaCapo DaCapo pseudo 0.00%
MTRT JACK FOP ANTLR HSQLDB JYTHON PS specJBB spec spec DaCapo DaCapo DaCapo DaCapo DaCapo pseudo
(0.34%) (0.08%) (0.49%) (256%) (6.1%) (0.34%) (0.17%) (1.17%) MTRT JACK FOP ANTLR HSQLDB JYTHON PS specJBB

Runtime [s] Total # Samples
spec MTRT 15.9 900.5
spec JACK 21.52 627.25
DaCapo FOP 38.54 11941.75
DaCapo ANTLF 12.24 2675.25
DaCapo HSQLI 79.66 2846.25
DaCapo JYTHC 49.31 2087.75
DaCapo PS 27.04 2520.5
specJBB 200.67 63295

7
Adaptive Optimization using HPM / 18/21

o Extendable interface for low overhead sampling

o Useful for offline performance analysis

o Suited for direct adaptive optimizations (avg. overhead: ~1%)
« Many events and rich statistic available inside Jikes

e Easy portable to other VM/HW-Interface

Adaptive Optimization using HPM 19/21

Questions //

Adaptive Optimization using HPM 20/21

