Semester Thesis

Building a client /server multimedia-kiosk
system using pxe, root-over-nfs, mozilla and
a CMS

a.k.a Multimedia Kiosk revisited

Mathias Payer

Martin Probst
Adviser
Prof. Dr. Bradley J. Nelson
Institute of Robotics and Intelligent Systems
Swiss Federal Institute of Technology Zurich (ETH)

2005-06

ETH

o0 %%e o220 “leel Eidgendssische Technische Hochschule Ziirich
Institute of Robotics and Intelligent Systems Swiss Federal Institute of Technology Zurich

Abstract

In this semester project we tried to develop a multimedia kiosk system that is easy
to configure, easy to maintain and easy to use. We used a central server and multiple
diskless (“dumb”) clients. These clients load all data from the central server using
techniques like PXE and TFTP to bootstrap the system, NFS to transport data
as well as programs, a HT'TP interface and a browser to display the content to the
users in front of the kiosk.

The content can be changed by a user friendly CMS and the kiosks are con-
figured on the central server by no more than 4 configuration files. Maintainance of
the clients and the server can be done on the central server. In order to reduce the

risk of this single point of failure a backup strategy and tight security is enforced.

Contents

1 Introduction

2 Preliminaries
2.1 DHCP - Dynamic Host Configuration Protocol
2.2 PXE - Preboot Execution Environment
2.3 Syslinux / PXELinux
2.4 TFTP - Trivial File Transfer Protocol
2.5 NFS - Network File System

2.6 Kernel configurationo o0 o oL

5.1 Server side

5.1.1
5.1.2

Services for clients

Serverside filesystem structure

27 Typo3-CMS e
3 Related work

3.1 Rootover NFS

3.2 PXE Boothowto,

3.3 Adapted mozilla for kiosk use

3.4 Other Kiosk systems

3.5 Old multimedia kiosk,
4 Concept

4.1 Hardware concept Lo

4.2 Software concept

4.3 Extensibility to multiple institutes, users and clients
5 Implementation

5.2 Clientside e
5.2.1 DHCP — Get IP and TFTP-Server
5.2.2 PXE Boot —Syslinux 0000
5.2.3 Mount the root filesystem via NFS
5.2.4 Limitation to read-only root filesystem

3

10

11
11
11
11
12
12

13
13
13
14

Contents

5.2.5 Touchscreen configuration
5.2.6 Mozilla Firefox adaption

5.3 Kiosk-CMS e
54 Hardware

6 Discussion

6.1 Implementation problems.
6.1.1 PXE Powerdown/-up problem
6.1.2 DHCP limitations

6.2 Update procedure
6.3 CMS Usage i ittt
6.4 Backups
6.5 Status L

7 Appendix

7.1 Configuration files.o oo
7.1.1 Serverside
7.1.1.1 DHCP-Server configuration (/etc/dhcpd.conf)

7.1.1.2 TFTP configuration

7.1.1.3 NFS configuration (/etc/exports)

7.1.1.4 Boot parameters per client

7.1.1.5 Packagelist

7.1.2 Clientside
7.1.2.1 Mounted filesystems (/etc/fstab)

7.1.2.2 Special boot script (/etc/init.d/config_kiosk.sh) . . .

7.1.2.3 XF86Config (/opt/<IP>/XF86Config-4)

7.1.2.4 Autologin and xinit.o

7.1.2.5 Kernel configuration

7.1.2.6 Packagelist

7.1.3 CMS Configuration

7.2 Used Hardware
7.2.1 Kiosk-Hardware o000
7.2.1.1 Touchscreens

7.2.1.2 Server Hardware
Bibliography oL
Glossary e
Listings L

8 Statutory declaration

21
21
22
22
23
24
24
24

26
26
26

28
28
28
29
32
32
32

39
40
41
43
43
43
45
45
46
49
20

51

Chapter 1
Introduction

The Institute of Robotics and Intelligent Systems (IRIS[1]) is evaluating new tech-
nologies to replace the way information is provided to students. Currently, large
scale printouts are distributed to different locations all over the ETH campus. These
printouts will be replaced by “Multimedia Kiosks”|2].

All these kiosks will share the same (unix) [11| operating system and perform
a diskless [4] boot from a central server. After the boot process has completed, the
kiosks start a browser and display a webapplication that was especially developped
for touch-screen use.

One of the goals of this semester thesis was to make the process of adding
new kiosk clients as easy as possible. So the only changes that have to be made
are the ip-address configuration, the X-Server configuration and the base-url that is
loaded right after the startup has completed.

A positive side-effect of this layout is that the configuration is handled locally
on the server and the kiosks themselves carry no configuration whatsoever. Using
this paradigm we can build cheap and small kiosks without any moving or rotating
parts like hard disks.

Another goal was to change and distribute information as easily as possible.
In oder to accomplish this a Content Management System (CMS) was used. A CMS
can easily be handled by non-technical personnel. This gives us the advantage that
no highly skilled personnel has to be used to keep the kiosks up and running. It will
be easy to adjust the homepages and presentation pages of the different institutes
using an intuitive web interface.

One other aspect was to offer the possibility to add kiosks for other institutes.
This can easily be done with the base-url configuration option which can be set for
each kiosk. The CMS also offers the possibility to integrate different institutes on
the same server.

Throughout the document some technical terms like DHCP, PXE, Syslinux

and so on will be heavily used. In oder to make the definitions easier, some doc-

umentation about these techniques will be offered in the “Preliminaries” chapter.
Additionally some of these abbreviations will be described in the glossary.

After the preliminaries, some related work that offers good starting points
will be described. We will present some existing howtos and information how it is
possible to boot diskless clients. Then we will talk about other kiosk systems and
their problems and drawbacks.

Then we present the concept and general layout. This section describes how
we implemented the kiosk system and what our design criterias were. After the
concept is shown, the implementation will be presented. We will go through all the
relevant server and client side steps to setup and configure a running kiosk system.

At last we will discuss some of the important problems we encountered, such
as the PXE boot problem. There will also be some details about limitations and

drawbacks of our solution.

Chapter 2
Preliminaries

This chapter will provide some information that will be used throughout the whole
thesis. Here we will describe the basic techniques that are needed to build a kiosk
system.

Some details about the boot process, the configuration of the network devices
and the storage system will be explained. Later on in this chapter the Linux-kernel
configuration will be discussed as well as the chosen CMS that is used as the kiosk
frontend.

All the described network services build upon the internet protocol (IP, RFC
791), the transmission control protocol (TCP, RFC 793) and the user datagram
protocol (UDP, RFC 768)

2.1 DHCP - Dynamic Host Configuration Protocol

This is a client-server networking protocol, used to remotly configure clients. They
need no prior knowledge about the network structure. Everything these clients need
to know is provided by the responding DHCP server.

When a client tries to configure a network device, it only knows its MAC
address (media access control address). Using this MAC address the client sends
a DHCP discover via multicast to all devices in the same subnet. Now the DHCP
server (or multiple servers) can respond to this request by a DHCP offer to the client
(this is sent via unicast). The client then selects one of these offers by sending a
DHCP request to the server. If the client has some state and knows its last address,
then it will try to select the last used IP-address. The server then responds by a
DHCP acknowledge.

Using this protocol the client registers an IP address for a given lease time.
After the time is up, the DHCP registering process needs to be redone. Additionally,
the server can supply a lot of intormation to the client, like gateway and DNS

configuration and the TFTP server that offers a boot-image.

7

2.2 PXE - Preboot Execution Environment 8

2.2 PXE - Preboot Execution Environment

PXE (published by Intel) is an environment to bootstrap stateless computers. For
example diskless computers, so no hard-disk or pre-installed operating system needs
to be available to boot the client. To start a client, PXE needs a network card to
access a server.

Many newer network cards are shipped with a PXE bootrom or at least with
a socket for a PXE bootrom. After the bootup tests are completed the BIOS gives
control to the PXE rom, instead of the hard disk. The PXE rom then issues a
DHCP request and waits for an DHCP offer with an URL to a small boot-image as
special option.

The PXE rom then tries to download the specified bootstrap program via
TFEFTP into the local RAM and gives control to the downloaded image.

2.3 Syslinux / PXELinux

Syslinux is a set of bootloaders (bootstrap programs) that will load a Linux kernel
into memory and then give control to the kernel. In our case we use PXELinux.
This is a small image that can be loaded via the PXE rom from a network card.
We do not need any local storage as the bootstrapping code is transmitted over
ethernet.

By using PXELinux you can specify the boot options and kernel options on
the server. After the PXELinux loader is started, it tries to download a predefined
kernel from the server via TF'TP into the memory of the client.

One can compare PXELinux to bootloaders like Grub or Lilo. The only dif-
ference is that Grub and Lilo load the Linux kernel from a local hard disk, PXELinux
loads the kernel from an TF'TP server.

After the download is complete, it starts the kernel and Linux will boot the
computer into an usable state, mount the root filesystem and configure attached

devices.

2.4 TFTP - Trivial File Transfer Protocol

TFTP is a very trivial file transfer protocol akin to a basic version of FTP. This
protocol is mostly used to transfer small files between hosts on the local network.
Differences between FTP and TFTP are that TFTP uses UDP, which does not offer
reliable data streams as transport protocol. Additionally, the exact location of the
file needs to be known because TF'TP does not transfer file meta information like

folders. This protocol has no authentication mechanism to make it possible to boot

2.5 NF'S - Network File System 9

diskless clients. The only usage of TFTP is to transport files from the server to the
client.
This is exactly what is needed to transfer bootloaders, bootimages and kernels

from a central server to a diskless client.

2.5 NFS - Network File System

The NFS protocol (invented by Sun Microsystems) makes it possible to export
filesystems using the internet. Clients can mount these filesystems and perform
updates (reads and writes). The server uses RPC (remote procedure calls) to allow
client interactions. The NFS server itself is divided into several parts. The first
part a client encounters is the portmapper. This service maps RPC-functions that a
remote client can call to TCP or UDP ports. When the client knows the right port,
it contacts the mount service. This service checks access rights and permissions of
the client and then grants (or does not grant) access to the data. From this point on
the client has mounted a remote filesystem on his local system and can then access
data on the remote server.

NFS supports multiple ways to limit access to the exported filesystem. The
first rudimentary option is to filter for ip-addresses. Then one can either use a unix
group and user id (this is considered insecure) or credentials from a kerberos server.

This is a secure server that handles encrypted logins and credentials.

2.6 Kernel configuration

A kernel is the most basic part of an operating system. Using Linux one can compile
his own kernel with only the really needed options. So only the drivers that are really
needed are selected and installed.

The basic process to build a specific kernel is to download the sources from
“http://www.kernel.org” and untar them to “/usr/src”. Then one enters the directory
of the source-tree and configures the kernel with “make menuconfig”. This command
displays a screen where one can set all the options and drivers.

After the configuration is done, the kernel needs to be compiled. To simplify
the compilation process the debian-tool[10] “make-kpkg” out of the kernel package is
used. The following command will generate a kernel package: “make-kpkg —bzImage

—revision kiosk(.1 binary-arch modules image”.

2.7 Typo 3 - CMS 10

2.7 Typo 3 - CMS

Typo3 is a content management system that is able to handle multiple webpages and
multiple users. It is easy to add new users (and groups) and to give them different
access rights. So the pages of multiple kiosks can be administered easily.

One of the biggest advantages of a CMS with a web interface is that the design
and content editing is easy and can be done by non-technical personnel. There are

also many good tutorials which describe how to work with this CMS.

ETH Masterkiosk [TYPO3 3.7.0] - Mozilla Firefox

FEile Edit \iew Go Bookmarks Tools Help

@ - E;« * @ \:I @ ‘_1 httpy/kiosk-server.ethz.chjemsitypo3/alt_main php |:: @ Go ‘)Q’,package list debian

SANS - Internet Sto... [| ETH Mail [| GMGNet % inforum [l Slashdot G symlink.ch B infowiki | | Grmail

ERGIC @, Institute of Robatics and Intelligent Systems |:,\umn5 Bak |
B[Institute of Robotics and Inte... Path: /Institute of Ro.../

B overview BEEBY

[People T

[B) Research

[Edueation Edit page header | Move page | HNewpage | Hew content |

[B) Publications

-8 e % e emw e sow

B Flash Moviedemo =
1 Ralbaithehesth [EEpefault Text
elozd the tree from server

W E
Index;: Yes
&3] Institute Overview

{EDefault Text wfimage

Index: Yes
Research
The Institute of Robotics and Intelligant Systems pursues a
T Manual dynamic research program that maintains a strang robotics
research focus an several emerging areas of sdence and
¥ tachnology. A majer companent of IRIS rassarch laverages
advanced rebotics for creating intelligent machines that
[3 Logout operate at micron and nanometer scales, IRIS research
develops the tools and processes required to fabricate and

iris+editor;
! 1 assemble micron sized robots and nanometer scale robotic

components. Many of these systems are used for robatic
£ exploration within biclogical domains, such as in the

i investigation of molecular structures, cellular systems, and
‘ comnplex organism behavior, an emarging fisld the instituts
refers to as BioMicroRobetics.

S\

; Done

Chapter 3

Related work

In this chapter some information about related work will be presented. We will
present how this information is used in the kiosk project and where to find more

details about these projects.

3.1 Root over NFS

This is a special kernel option that makes it possible to mount the root file system
over a network. Using this option a client does no longer need any attached storage
(as long as the kernel is already loaded). Please see the kernel documentation|13]
for more details.

A drawback of this technique is tha only limited documentation exists. One
has to search a lot of email archives and read many howtos to gather enough knowl-

edge to configure a root over NF'S system.

3.2 PXE Boot howto

Reading the diskless Linux with PXE boot howto|14], one gets the general impression
how a kiosk can be booted without local storage and configuration. This howto talks
about installing TFTP, DHCP and NFS.

3.3 Adapted mozilla for kiosk use

There are already about two different mozilla projects that try to adapt for kiosk
use|15]. They display only rudimentary controls (like home, back, forward and stop)
and one big browser window. The existing solutions have two disadvantages that

prohibit their use:

11

3.4 Other Kiosk systems 12

1. Their design is suitable for home and personal use, but not for a university

(funny images as buttons and so on).

2. Most solutions also display a URL field and a touch keyboard where the user
can change the address. On our kiosk the user should only be able to follow

links and not be able to enter its own addresses.

3.4 Other Kiosk systems

There are already some existing kiosk implementations and howtos. But the problem
of these implementations is that they are very limited in their functionality. Most
of the kiosks only work with local storage and offer limited web support.

After a detailed study of the available systems, we concluded to build our
kiosk system from scratch. This way we could realise all our ideas about an optimal
multimedia kiosk. The most dominant of these ideas are diskless clients, a global

CMS with user management, a central configuration, security and high availability.

3.5 0Old multimedia kiosk

There already exists another semester project that implemented a multimedia kiosk.
This project also used a VIA Mini-ITX mainboard and had a TFT touchscreen at-
tached. One of the main differences is that a SuSE Linux distribution was used,
which is fairly bloated compared to Debian and relied on a local harddisc. Addi-
tionally there was no central configuration and every kiosk would work for itself and
had to be installed, configured and maintained.

Other differences are that we use a different (adapted) browser and a special
window environment that ensures that kiosk specific demands are met (examples
are auto login, restart of the window environment if the browser fails, remote ad-
ministration login and more).

One of the biggest differences is that the new kiosk system uses a central
server with a CMS. The old kiosk displayed a normal webpage (the homepage of the
IRIS group), now we have special pages that are designed for kiosks. A powerful

content management system was developed that is ready for multiple institutes.

Chapter 4
Concept

This chapter will provide detailed information about the chosen design. The first
and second parts will talk about hardware issues. We will show a possibility to
raise security and to ease maintainability. At last we will talk about extensibility to

multiple institutes, users and kiosks.

4.1 Hardware concept

The basic concept of the multimedia kiosk system is to use a master server and many
(dumb) kiosk clients that load everything from the server. So all data is stored in a
central, easy to manage place and the clients do not need any local harddrives.

Using this solution there are serveral advantages to the decentralised version.
One of the biggest advantages is that all clients can be configured in a central
place. The clients also share most of the file system (programs, libraries, data) and
only a very small hardware dependent part (kernel, touchscreen drivers and some
configuration files) differs from kiosk to kiosk.

Another benefit is that backups can be done in one central place and the
kiosks merely need configuration. It is also quite easy to add a new kiosk, no
installation is necessary and if the hardware is close to other, already running clients,
the new kiosk will be up and running in a few minutes.

As the clients do not have any local storage the downtime will be much lower
compared to traditional systems, where the harddrive is one of the parts that fails

most of the times.

4.2 Software concept

On the server and on the kiosks we use a Linux based operating system. We do

this out of serveral reasons. The most dominant ones are stability and adaptability.

13

4.3 Extensibility to multiple institutes, users and clients 14

Using a Linux distribution we can tweak startup scripts and adjust everything to
suit our needs.

Our kiosk does not need write access to the filesystem. So we adjusted the
Debian distribution to exclude write access in the startup scripts. This way we could
easily increase the security of the central server.

One important idea was that the kiosks should be very easy to administrate
and the actual machines should be very easy to setup. An advantage of our solution
is that we do not need to configure the clients (we only need to set some BIOS

settings).

4.3 Extensibility to multiple institutes, users and

clients

One of the main drawbacks of the old kiosk system was that it was an isolated
application. To get a new kiosk (for another or the same institute) up and running,
one had to go through the whole configuration process. The new kiosk system should
avoid this and provide simple expandability to add new clients, to handle the web
pages and to configure the server for new users and institutes.

Our kiosk system uses a content management system that is easy expandable
to new institutes. One can easily add a new user and new pages that will be served
on a new kiosk for some other institute. Everything should be as expandable as

possible, but still quite easy to configure and maintain.

Chapter 5
Implementation

In this chapter we will discuss design criteria and decisions about the used archi-
tecture. First the server side view will be described including the running services
and the exported filesystems and structures. Then we will discuss how the client is
able to boot and get a usable configuration without any local information except the
MAC id of the network controller. Finally the kiosk CMS will be presented. Using

this CMS the viewable information on all the kiosks can be adjusted.

5.1 Server side

Here we will describe the running services on the server and what kind of functions
they provide. The second part of this section will show the filesystem structure on

the server that holds all the configuration and data files for the different clients.

5.1.1 Services for clients

The server needs to provide many different services to let the client complete the
different boot stages. First of all the PXE ROM on the client asks via DHCP for
an IP address. Then the PXE bootloader and the Linux kernel are transfered via
TETP. Now the kernel on the client loads the filesystem via NF'S and finishes bootup.
After the browser is started on the client, all pages are served via the HT'TP service

on the client.

DHCP The DHCP service handles only the kiosks (it filters the incoming DHCP
requests by MAC addresses) and passes them the required information, such
as IP address, DNS servers (to map between names like www.ethz.ch and IP
addresses) and the TFTP server where the kiosks can find the PXE environ-

ment.

15

5.1 Server side 16

TFTP This service is kept as trivial as possible. It is only able to serve small files,

like a bootloader or a Linux kernel.

NFS The NFS service exports the root filesystem and the kiosks’ configurations.
All kiosks should share the same read only filesystem. Only a few files will be
different, per kiosk, like hostname, IP address, X-Server configuration (different
graphiccards), Linux kernel (different kiosk-hardware) and start URL (the
URL of the first page that will be displayed after the bootup is complete).

HTTP We will use Apache as an HTTP server. After the bootup is complete the
kiosk starts displaying webpages. These pages come from the central kiosk-
server. This makes it possible to maintain all the webpages on a central server.
This has the advantage that the information is not spread over multiple servers

and eases updates, changes and maintainability.

Database As we are using an advanced content management system we save our
webpages not as static pages on a harddisc but the pages are constructed

dynamically from a database.

Backup Because we only have a central server, backups are inevitable. So impor-
tant data like kiosk configurations, database dumps and system configuration
must be backuped on a regular basis. Of course the server storage must be
secured by a RAID (Redundant Array of Inexpensive Disks) to circumvent

data loss.

5.1.2 Serverside filesystem structure

In the early stages of the kiosk project we already designed a special filesystem
structure to handle multiple clients. All the clients share a central root directory
and configuration. This shared configuration is a “normal” Debian system, that
resides in a subdirectory of the server (“/home/kiosks/default”). Every client then

has some additional specialised configuration files:

1. Every client has a special entry in the DHCP server configuration that assigns

an IP address and a domain name to a client (based on its MAC address).

2. Also based on the MAC address every clients gets its own Linux kernel via
TFTP (if multiple clients share the same hardware configuration, then they

can share a kernel via symbolic links).

3. After the Linux kernel has booted, the startup scripts are executed. As hard-
ware and configuration of the kiosks may differ, some files change between

hardware revisions. To configure a separte start URL (that is displayed when

5.2 Client side 17

the kiosk has started) and XFree configuration (for the graphical environment,
parameters like graphic card, touchscreen and so on are configured there) every
kiosk has its own directory (the selection is based on the kiosks IP address).
To ease access to these configuration files a symbolic link was made in the

kiosk home directory.

5.2 Client side

In this section we will provide information how the kiosks use the services on the
server. We will discuss the bootup process, how data is accessed and how the kiosks

can work without any writeable media (neither local nor remote).

5.2.1 DHCP — Get IP and TFTP-Server

When a client is started it first loads the BIOS and does a POST. After the hardware
passed these two stages, the BIOS loads the PXE environment from the network
controller and executes it. This PXE environment will query the LAN for a DHCP
server, an I[P address and a TF'TP boot server.

Now that TCP/IP settings are configured, the PXE environment asks the
TETP server for a bootloader and downloads this bootloader into memory. After

the transmission has sucessfully completed this boatloader is executed.

5.2.2 PXE Boot — Syslinux

We use Syslinux as bootloader that is sent to the kiosks. This boot environment is
very small and covers all needed features.

When the Syslinux bootloader is started, it asks the TF'TP server for a special
configuration file. This file is comparable to a lilo (Linux loader) configuration.
It states the name of different kernels and a default kernel. Additionally we can
specify some special kernel parameters in this file. For our kiosks we tell the kernel
to configure itself upon boot via DHCP and to mount the root filesystem. After a
short timeout the default kernel will be downloaded into memory from the TFTP
server. If the download completes successfully, then the bootloader will execute the

kernel.

5.2.3 Mount the root filesystem via NF'S

When the kernel is started it tries to initialise all hardware. After this is done it
tries to mount the root filesystem. Then the kernel will execute the bootup script

of the distribution that will start all services.

5.2 Client side 18

Normally, the root filesystem is on the local machine. To make it possible
for the kernel to mount the root filesystem from a remote computer, the TCP/IP
system first needs to be working. Thats why there exists a kernel option that does
kernel level autoconfiguration of the networking subsystem. After this subsystem is
initialised (via DHCP), the kernel is able to mount the remote root filesystem and

can then execute the startup scripts from the remote server.

5.2.4 Limitation to read-only root filesystem

Out of security reasons we wanted a read only filesystem on the kiosks. The clients
should not be able to change any data on the server. Another reason for this limita-
tion is that NF'S traffic is unencrypted and unsecured and can easily be intercepted.
So an attacker could easily gain write access to the server if he is able to catch any
network traffic between the server and a kiosk.

Normally a Linux distribution needs write access to some parts of the filesys-
tem (for temporary files in “/tmp” and “/var/tmp”, lock and pid files in “/var/run”,
log files and many more). Mozilla also needs write access to its profile (for lock files
and to store data in the cache). So we made a custom startup script that initialises
a temporary RAM disk with all the needed folders and files. We do not need these

files from our clients, so we do not care that they are lost after a reboot.

5.2.5 Touchscreen configuration

The touchscreens we used for our demo kiosks are both from ELO systems. One
of them is controlled by a USB interface and the other by a serial interface. So we
activated in our kiosk kernel support for USB and serial devices. This is enough for
these ELO devices. Additionally a special driver is selected in the X11 configuration
that handles the touchscreens as input devices. After calibration is done, no further
configuration is neccessary.

For some other types of touchscreens there exist special kernel drivers which
first need to be compiled and acivated. One can do this during the kernel configu-

ration.

5.2.6 Morzilla Firefox adaption

To suit the special kiosk needs we had to adapt a browser. After some testing and
considerations we decided to use the Mozilla Firefox. This browser configures the
user interface using some editable XML files. So we unpacked these definitions and
adjusted them to our needs. We deleted the location and removed some unneded

buttons and the menu.

5.3 Kiosk-CMS 19

These special definitions can be found in the java archive “/usr/lib/mozilla-

firefox /chrome/browser.jar”. One needs to complete serveral steps to change the

user interface.

1.

2.

First one has to start the browser as a normal user.
Customize Firefox by right clicking beneath the menu bar.
Then delete all the unneeded menus and user interface components.

Now enter fullscreen by pressing F11 and then close Firefox. The only problem
that we still have is that the close button is still displayed. We remove it by
change the Ul layout.

The file “browser.jar” needs to be copied to a temporary directory.
Then it must be unpacked with the “unzip” utility.

Now the file “./content/browser/browser.xul” can be edited and unneeded
parts of the user interface (like close and minimize buttons) can be commented

out.

Institute of Robotics and Intelligent Systems
Institute Overview

Research

The Institute of Robatics and Intelligent Systems pursues a dynamic research
program that maintains a strong robotics research focus on several emerging
areas of science and technelogy. A major companent of IRIS research leverages
advanced robotics for creating intelligent machines that operate at micron and
nanometer scales. IRIS research develops the tools and processes required to
fabricate and assemble micron sized robots and nanometer scale robotic
components. Many of these systems are used for robotic exploration within
biclogical domains, such as in the investigation of molecular structures, cellular
systems, and complex organism behavior, an emerging field the institute refers to

as BioMicroRobotics

For more information: Research

Education
IRIS is strongly committed to supporting undergraduate and graduate education)_Ja
and offers a variety of courses that educate students in the fundamentals of
experimental and theoretical robotics. The institute also offers advanced courses
in robotic systems design and microrobotics

For more information: Education

To enable flashmovie playback one has to install the Macromedia Flash Plu-

gin. The Linux download is available from the Macromedia Homepage. The plugin

can then be installed into the “/usr/lib/mozilla-firefox” directory.

5.3 Kiosk-CMS

To provide all features that we presented in the concept chapter, we used the existing

content management system Typo3. This CMS is already very advanced. It supports

5.4 Hardware 20

a lot of features like multiple users, different pages, easy editing via a web interface
and an administration interface. One big difference to other CMS is that content
and layout are separated. First one chooses the layout for a page and then content
entering is possible. The system is very flexible so that the layout can still be
changed after text and data were supplied.

The setup and configuration of Typo3 is very easy. One has to download the
package from the net and install it locally in “/var/www”. Then one has to check
if all the needed software and libraries are installed (a list of installed packages
is included in the appendix) and a MySQL database must be set up. Finally, one
enters the configuration page and sets all the needed configuration like administrator
password and database connectivity.

Now the CMS can be configured, new users can be set up, layouts can be

chosen and adapted and new pages can be created.

5.4 Hardware

To keep costs low and to ease exchangeability standard PC components where used
wherever possible. The server is implemented on a Dell computer with no special
features. The kiosks share Intel compatible mainboards and processors.

The only special parts are the TFT touchscreens and the cases for the kiosks.
Different suppliers were evaluated and Jaeger was able to delivier a case with spe-
cial dimensions that suited our needs. To secure our touchscreens from theft we
constructed a special case that holds the screen and makes it hard to open the

SCrews.

Chapter 6
Discussion

In this chapter we will provide some information about the problems we discovered
during the implementation. We will also talk about other possible ways of solving
special problems and drawbacks that our solution may have.

During the implementation phase some problems were discovered and solved.
We will provide some information about the PXE boot problem that some VIA
mainboards seem to have. Then we will describe limits of the DHCP configuration.
Specially the limit that a kiosk needs access to a local DHCP server.

An advantage of our solution is that one can maintain the software versions
and distribution of all kiosks at once. We will show how to update the software in
an easy way and how to maintain the server. As the kiosk server is a single point of
failure in our configuration we will show how to secure this bottleneck as much as
possible.

Then we will discuss the content management system, especially how the
information is organised and grouped. Additionally we will talk about the backup
procedure of the server and the CMS.

At last a general overview about the running systems and their status will

be given.

6.1 Implementation problems

First of all very few hardware related problems were encountered in this semester
project. The difficulties started with the implementation and interaction of the dif-
ferent used services. Most of them could be sovled by reading the documentation or

using a search engine to find information from somebody who had similar problems.

21

6.1 Implementation problems 22

6.1.1 PXE Powerdown/-up problem

One of the main hardware problems was a PXE boot issue with some VIA main-
boards. From time to time these mainbaords refused to boot. They started up and
completed the POST without problems. Then they loaded the PXE code from the
ethernet card and then failed to get an IP. The first assumption was a misconfigu-
ration of the DHCP server, but network flow analysis showed that the kiosk did not
send out any packets.

So the problem must reside in the BIOS configuration. We tried almost all
settings but we could not discover the real root of this problem. Then we discovered
that the problem emerged every time we used APM (Advanced Power Management)
calls to power down the machine. The Linux kernel uses special APM calls to
completely power down the computer and to turn off the power. After we halted
the machine using these APM commands it was no longer possible to start the kiosk.
The only solution is to remove power from the mainboard for about 10 to 20 seconds
(until all the capacitors run out of power). The problem was that if a computer is
turned off, the mainboard is still running. It looks as if this APM call crashed the
running BIOS and when the mainboard was turned back on the crashed BIOS failed
to load the PXE environment.

The solution to this problem is to cut power from the kiosk and not to use
the normal shutdown scripts. As we do not have any writable filesystems we will

not lose any data. And shutdown is even faster.

6.1.2 DHCP limitations

When we configured the kiosk DHCP service we had to make sure that it does
interact nicely with the existing one. The problem was that the existing service
should not give IP addresses to our kiosks as this server does not know anything
about our bootservers and our service should not handle IP addresses to computers
that are not kiosks.

Currently we solved this problem using a filter on the MAC addresses of the
ethernet cards. Each service only serves these computers with well known MAC
addresses. One possible solution for the future would be to merge these two services
and send additional data (like the bootserver) to the kiosks.

One other limitation of the DHCP protocol is that it is only routed over one
hop. This means that DHCP requests can not pass router barriers. So we have
technically a limitation that every subnet needs its own DHCP server. But this
should not be a problem. When we want to place kiosks somewhere on the ETH
campus we have to keep in mind that we need to configure the local DHCP server

to send boot parameters to our kiosk (the kiosk systems can easily be filtered by

6.2 Update procedure 23

MAC address). With these boot parameters the kiosk can contact our (remote)

boot server.

6.2 Update procedure

One of the biggest advantages of our solution is the easy update procedure of the
kiosks. All kiosks can be updated at once. So we have to keep two machines up
to date. The kiosk server (where we will need tight security) and all the kiosks
summarised as one machine.

The kiosk server is currently configured so that only as few services as pos-
sible are running. These services can be updated using the Debian way of system
maintainance. One must login as root to the server and then issue “apt-get update
&& apt-get upgrade” to upgrade the kiosk server to the newest software versions.

The kiosks are a little more difficult. One first has to login to the server
and then to change the root directory to the kiosk directory by issuing “chroot
/home/kiosks/default”. Then one can use the familiar command “apt-get update
&& apt-get upgrade” to upgrade all kiosks in an easy way.

These updates should be done about once in a week. They can either be

started by hand or by a small cron script.

Listing 6.1: Eaxample for a cron update-script (/usr/sbin/security-update.sh)
#!/bin /bash
Daily Security Updates
root gets an EMail if new updates are available.
These updates must then be installed by root.
#
To run this script daily use the following
entry in /etc/crontab:
53 6 ¥ % x TOOt /usr/sbin/security —update .sh
/usr /bin/apt—get update > /dev/null
UPDATES=$(/ usr /bin /apt—get —qq —simulate upgrade | \

/usr/bin/wec —lines)

Print the available packages to stdout

if test SUPDATES —gt 0; then
/bin /uname —a
/usr/bin/apt—get —q —simulate upgrade
/usr/bin /apt—get clean

fi

6.3 CMS Usage 24

6.3 CMS Usage

The Typo3 CMS we used in this kiosk project is very intuitive. Most steps are
self-explanatory or can be looked up in the online help.

Another good ressource to start with is the Typo3 how to [12]. Additionally,
there is a lot of information available on the Typo3 website, including many good
screen shots and tutorials.

The advantage of this CMS is that new users can be easily added. These
users can then be assigned to institutes and are only able to change the institutes
pages. Every institute gets its own homepage and an overview page on the central

web page where all the institutes are summarised.

6.4 Backups

If this system goes into productive use a good backup strategy must be deployed.
Currently we used a test system for our kiosk server. In the future the server should
run on real server hardware.

We are also aware that our kiosk server is a single point of failure. All data
and configurations reside on a single server. So we recommend daily backups of
the database and weekly images of the complete server configuration (including the
kiosk clients).

This backups can easily be achieved by cron jobs over night. The database
backup has to save a specific directory and transport it to an external backup server.
Images can easily be prepared by other scripts and the tar utility. Later on these
images can also be transferred to the external server.

If these backups are done as proposed, a maximum of one days work on the
kiosk homepages can be lost. And if some hardware fails, downtime will be as short
as possible because we will already have images to reinstall the complete server in

less than one hour.

6.5 Status

Today the server is configured to handle multiple clients. Additionally we have two
kiosks running from this central server. The CMS contains a demo webpage for the
IRIS institute.

The kiosk server is configured and running. One can easily add kiosk clients
as stated in this documentation. The maintainance time of the server and clients

should be as low as possible, the only disadvantage being the server as single point

6.5 Status 25

of failure. This disadvantage can be limited by doing daily backups and securing
this server as much as possible.

All the desired features are implemented. The kiosks can easily be added
and configured. The home pages of the kiosks are managed over a central CMS and

media and movies can be played by flash movies and flash applets.

Chapter 7

Appendix

7.1 Configuration files

In this section we will list all the important configuration files. These include all the

details that are needed to replicate the currently running solution.

7.1.1 Server side

Here we provide all the server side configuration, especially all the running daemons

and services.

7.1.1.1 DHCP-Server configuration (/etc/dhcpd.conf)

On the kiosk-server we have a running DHCP service to assign IPs, DNS servers
and TFTP server to the kiosks. These configurations can be seen in the following
file.

Listing 7.1: DHCP service configuration file (/etc/dhcpd.conf)

Kiosk—DHCP configuration
May 05 / Mathias Payer (payerm@student.ethz.ch)

Default domain name

option domain—name "ethz.ch";

Some eth name—servers

The kiosks need these servers as they have to resolve
the kiosk—server.ethz.ch entry to get their boot images
option domain—name—servers 129.132.98.2, 129.132.250.2;

some default values
option subnet—mask 255.255.255.0;

26

7.1 Configuration files 27

default—lease—time 600;
max—lease —time 7200;

deny unknown—clients;

"our" subnet, where the all the kiosks are in

but we don’t give out dhcp—leases to other hosts

than kiosk serves

subnet 129.132.113.0 netmask 255.255.255.0 {
range 129.132.113.77 129.132.113.77;
option broadcast —address 129.132.113.255;
option routers 129.132.113.1;

first kiosk—host, identified by its ethernet address
host kiosk0l.ethz.ch {
allow boot via ethernet
allow booting;
allow bootp;
hardware ethernet 00:40:63:D5:12:DE;
fixed —address 129.132.113.77;
option host-name "kioskO1l.ethz.ch";
bootloader (that we get via tftpd)
filename "/home/kiosks/tftpboot/pxelinux.0";
server to get the tftp images from

next—server kiosk—server.ethz.ch;

second kiosk—host, identified by its ethernet address
host kiosk02.ethz.ch {
allow boot via ethernet
allow booting;
allow bootp;
hardware ethernet 00:40:63:DC:EE:4C;
fixed —address 129.132.113.74;
option host-name "kiosk02.ethz.ch";
bootloader (that we get via tftpd)
filename "/home/kiosks/tftpboot/pxelinux.0";
server to get the tftp images from

next—server kiosk—server.ethz.ch;

7.1 Configuration files 28

7.1.1.2 TFTP configuration

The TEFTP service is very small. As this he does not have it’s own configuration-file,
but is started from the internet daemon, the inetd. The relevant configuration-line

in “etc/inetd.conf” follows:

Listing 7.2: Bootloader configuration

tftp dgram udp waitnobody /usr/sbin/tcpd \
/usr/sbin/in. tftpd —tftpd —timeout 300 —retry —timeout 5 \
—mecast—port 1758 —mecast—addr 239.239.239.0—255 \
—mecast—tt]l 1 —maxthread 100 —verbose=5 \
/home/kiosks /tftpboot

7.1.1.3 NFS configuration (/etc/exports)

To export files to the clients we use the NFS service. This daemon needs hardly
any configuration. The only thing that needs to be done is to configure the exports.

This file assesses which directories are exported to which clients.

Listing 7.3: NFS configuration (/etc/exports)

July 05 / Mathias Payer (payerm@student.ethz.ch)

Here all clients are listed

(all clients share the same directory)
/home/kiosks/default kiosk=x.ethz.ch(ro,no root squash,sync)
/home/kiosks/default \

kiosk01l.ethz.ch(ro,no_root_squash,sync)

7.1.1.4 Boot parameters per client

The tftpboot directory contains a symlink to the bootloader (named pxelinux.0), a
directory with all configuration files (named pxelinux.cfg) and the different Linux
kernels.

If we look into the configuration directory we see a file for each kiosk hardware
type. Then for each kiosk there exists a symlink from its IP address (in hex) to its
hardware configuration file.

Here we include the iris-epia configuration file for the old hardware revision.

Listing 7.4: Bootloader config (/home/kiosks/tftpboot/pxelinux.cfg/iris-epia)
DEFAULT kiosk

7.1 Configuration files 29

LABEL kiosk
KERNEL vmlinuz—iris —epia —2.6.11.6
APPEND root=/dev/nfs nfsroot=/home/kiosks/default \
ip=bootp vga=0x317

Listing 7.5: Bootloader config (/home/kiosks/tftpboot/pxelinux.cfg/iris-epiall)
DEFAULT kiosk
LABEL kiosk
KERNEL vmlinuz—iris —epia —2.6.11.6
APPEND root=/dev/nfs nfsroot=/home/kiosks/default \
ip=bootp vga=0x31B

Additionally a symlink from “8184714D” (this is 129.132.113.77 in hex, without
dots) to “iris-epia” exists to indicate that this hardware revision will load the kernel
“vmlinuz-iris-epia-2.6.11.6” and then mount the directory “/home /kiosks/default” as
remote root. The second kiosk has the IP address 129.132.113.74 and has therefore
a symlink from “8184714A” to “iris-epiall”.

7.1.1.5 Package list

To simplify a reinstallation of the server we provide a list of all installed packages.

adduser bison defoma
apache—common bsdmainutils dhcp

apache2 bsdutils dictionaries —common
apache2—common bzip2 diff
apache2—mpm-prefork console—common discoverl
apache2—utils console—data discoverl —data
apt console—tools dnsutils
apt—utils coreutils doc—debian
aptitude cpio doc—linux—text
at cpp dpkg

atftpd cpp—3.3 dpkg—dev
base—config cramfsprogs dselect
base—files cron e2fslibs
base—passwd dash e2fsprogs

bash dc ed

be debconf ed

bin86 debconf—il8n eject
bind9—host debianutils fdutils

binutils debootstrap file

7.1 Configuration files 30
findutils libapache2 —mod—php4 liblocale—gett ...
finger libapr0 liblockfilel

flex libattrl liblwresl1
fontconfig libblkid1 liblzol

ftp libbz2 —1.0 libmagicl

g+t libc6 libmagick6

g++-3.3 libc6 —dev libmd5—perl

gawk libcapl libmysqlclient12
gcce libcomerr2 libncursesb)

gce —3.3 libconsole libncursesb—dev
gcec—3.3—base libdb1—compat libncurseswb

gdb libdb3 libnet —daemon—perl
gettext —base libdb4 .2 libnewt0.51
gnu—efi libdb4 .3 libnfsidmapl

gnupg libdbd —mysql—perl libnss —db

grep libdbi—perl libopencdk8
groff—base libdiscoverl libpam—modules
grub libdns16 libpam—runtime
gzip libdps1 libpamOg

hostname libexpatl libpcap0 .7

hotplug libfontconfigl libpcre3

iamerican libfreetype6 libplrpc—perl
ibritish libgel libpngl12—0
ifupdown libgccl libpoptO
imagemagick libgecryptll libreadline4

info libgd2 —xpm libreadlineb
initrd—tools libgdbm3 libsasl2
initscripts libgnutlsll libsigec++—-1.2—5¢102
ipchains libgpg—error0 libsm6

iptables libgpmgl libss2

iputils —ping libice6 libss10.9.7

ispell libident libstdc++5

kernel —image —2.6... libidnll libstdc++5—3.3—dev
kernel —image —2.6... libisc?7 libt1 -5
kernel—package libjasper —1.701—1 libtasnl —0

klogd libjpeg62 libtasnl —2

less libkrb53 libtext —charwidt ...
libacll liblems1 libtext—iconv—perl
libapache —-mod—php4 libldap2 libtext—wrapil8n...

7.1 Configuration files

31

libtextwrapl
libtiff4
libusb —0.1—4
libuuid1
libwrap0
libx11—-6
libxext6
libxml2
libxpm4
libxt6
libzzip —0—12

links

linux—kernel—hea ...

locales
login
logrotate
Ilpr

Isof

m4

mailx

make

makedev
man—db
manpages
manpages—dev
mawk
mime—support
module—init —tools
modutils
mount

mpack

mtools
mtr—tiny
mutt
mysql—client

mysql—common

mysql—server
nano

ncurses —base
ncurses—bin
ncurses —term
net—tools
netbase
netkit —inetd
nfs —common
nfs—kernel—server
ntpdate

nvi

openssl
passwd

patch
pciutils
perl
perl—base
perl—modules
php4
php4—common
php4d—gd
php4d—imagick
php4d—mysql
pidentd

portmap

bpp
pppconfig

pppoe
pppoeconf

procmail
procps
psmisc
python
python—newt
python2.3

rcs
reportbug
sed
sharutils
slangl
slangla—utf8
smail

ssh
ssl—cert
strace
sysklogd
syslinux
sysv—rc
sysvinit
tar
tasksel
tcpd

tcsh
telnet
texinfo
time

traceroute

ttf —bitstream—vera

ucf

unzip
usbutils
util—linux
w3m
wamerican
wget
whiptail

whois

xfree86 —common

xlibs—data
zZip
zliblg

7.1 Configuration files 32

7.1.2 Client side

Now we will show what has to be done to get the clients up and running. Acctually
all these files are in subdirectories of the server, but we call it client side as these

files are only needed on the kiosks and not on the server.

7.1.2.1 Mounted filesystems (/etc/fstab)

As the client has no local storage and loads all the data over the network only three
different filesystems are listed there. The proc filesystem that handles the kernel
runtime configuration (this is needed during startup and for the services). The sysfs
filesystem, which is needed for the USB TF'T touchscreens and the root filesystem
that is mounted via NFS.

Listing 7.6: Filesystem table on client (/etc/fstab)

fstab for client kiosks

May 05 / Mathias Payer (payerm@student.ethz.ch)
<fsy> <mount> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0

/dev/nfs / nfs defaults 0 1

sysfs /sys sysfs defaults 0 0

7.1.2.2 Special boot script (/etc/init.d/config kiosk.sh)

On a standard Linux distribution like Debian, some directories need write access.
One possibility would be to change all the startup scripts, but this would mean a lot
of work. The easier solution is to create a ramdisk and copy all the files that need
to be changed to this ramdisk. Then there is a symlink from the original location
to this ramdisk and so the scripts can write to these files. After startup Mozilla
Firefox also wants to write into the profile directory, so we also include our standard
user’s home directory into the ramdisk. As we do not care about these files, we do

not mind that all changes will be lost after a reboot.

Listing 7.7: Boot script to configure remote kiosks (/etc/init.d /config kiosk.sh)
This is the config script that creates all symlinks to the

temporary filesystem , so that logfiles can be "written"
and temporary files created.
July 05 / Mathias Payer (payerm@student.ethz.ch)

echo Configuring diskless operation...

7.1 Configuration files 33

get my ip to setup special direcrtories...

MYIP=¢/sbin/ifconfig ethO | grep inet | awk ’{print $2}’\
| sed ’s/"addr://g’°
echo My ip: $MYIP

creating virtual "writable" dir with all special dirs

in it that need rw—access.

So we mount a temporary, volatile ram—disk that will save
all out temporary data (and kepp thinks like home

directory and mozilla profiles)

mount ramfs

mount —t tmpfs tmpfs /var/virt

temp—directory (there is also a symlink from /tmp)
mkdir /var/virt/tmp

symlink from /var/run

mkdir /var/virt/run

symlink from /var/log

mkdir /var/virt/log

symlink from /var/lock

mkdir /var/virt/lock

symlink from /home/kiosk

mkdir /var/virt/kiosk

mkdir —p /var/virt/lib /urandom
chown kiosk.kiosk /var/virt/kiosk

setting up "home—directory" of standard-—user

we include the special directory with the mozilla—

profile for the right screen resolution.

tar c¢f — —C ‘cat /opt/$MYIP/mozilla profile * —exclude .. \
% | tar xf — —C /home/kiosk/

linking machine—specific configuration to the central
configuration directory

here we will save things like XF86Config and start —URL
In —s /opt/$MYIP /var/virt/configs

7.1 Configuration files 34

log files for the USB-Elo driver.
mkdir —p /var/log/zx elo

touch /var/log/zx_elo/log. txt
chmod 666 /var/log/zx_elo/log. txt

exit 0

7.1.2.3 XF86Config (/opt/<IP>/XF86Config-4)

These configuration files are very machine dependent. The first configuration file is
for the old TF'T Monitor that uses a serial interface to communicate. The second one
uses USB to signal touch events on the screen. To limit the length of this document
we only included the relevant parts of the configuration file, as these configuration

files tend to be quite long.

Listing 7.8: Config of the GUI and TFT (/etc/X11/XF86Config-4 for kiosk01)

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "keyboard"

Option "CoreKeyboard"

Option "XkbRules" "xfree86"

Option "XkbModel" "pcl04"

Option "XkbLayout" "de CH"

Option "XkbOptions" "nodeadkeys"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"

Option "Device" "/dev/psaux"

Option "Protocol" "PS/2"

Option "Emulate3Buttons" "true"

Option "ZAxisMapping" "4 5"
EndSection

Section "InputDevice"
Identifier "Generic Mouse"

Driver "mouse"

7.1 Configuration files

35

Option
Option
Option
Option
Option

EndSection

"SendCoreEvents" "true"
"Device" "/dev/input/mice"
"Protocol" "ImPS/2"
"Emulate3Buttons" "true"
"ZAxisMapping" "4 5"

Touchscreen configuration
The Min/Max[X/Y] are very important!

Section "InputDevice"

Identifier
Driver
Option
Option
Option
Option
Option
Option
Option
Option
Option

EndSection

Section

"Device"
Identifier

Driver

EndSection

Section

"Monitor"
Identifier
HorizSync
VertRefresh
Option

EndSection

Section

"Screen"
Identifier
Device

Monitor

"touchscreen"
"elographics"
"Device" "/dev/ttyS0"
"AlwaysCore"
"screenno" "o"
"MinX" "4000"
"MaxX" "100"
"MinY" "4000"
"MaxY" "100"
"UntouchDelay" "3"
"ReportDelay" "

"Generic Video Card"

"Vesa"

"Generic Monitor"
28 —-50

4375

IIDPMS"

"Default Screen"
"Generic Video Card"

"Generic Monitor"

7.1 Configuration files 36

DefaultDepth 24
SubSection "Display'

!

Depth 24
Modes "1280x1024"
EndSubSection

EndSection

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
InputDevice "Generic Keyboard"
InputDevice "Configured Mouse"
InputDevice "Generic Mouse"

use touchscreen as input device
InputDevice "touchscreen"
EndSection

To keep the tft from going into

economy—mode we use some special

flags

Section "ServerFlags"
Option "BlankTime" "o"
Option "StandbyTime" "o"
Option "SuspendTime" "o"
Option "OffTime" "o"

EndSection

The second TF'T screen uses an USB interface. Some drivers are supplied by
ELO that should work with XFree86. The problem is that these drivers are faulty
(the x-axis is interpreted as y-axis and the y-axis is lost). ELO has other drivers for
registered users on their web page. The problem with these drivers is that they are
only for a very old kernel version (2.4) and not for newer systems.

Somebody corrected the XFree OpenSource drivers[17] from ELO and re-
leased these drivers on his website. We used this driver and were then able to work
with the USB interface.

Listing 7.9: Config of the GUI and TFT (/etc/X11/XF86Config-4 for kiosk02)

Section "InputDevice"
Identifier "Generic Keyboard"
Driver "keyboard"

7.1 Configuration files 37
Option "CoreKeyboard"
Option "XkbRules" "xfree86"
Option "XkbModel" "pcl04"
Option "XkbLayout" "de_CH"
Option "XkbOptions" "nodeadkeys"
EndSection
Section "InputDevice"
Identifier "Configured Mouse"
Driver "mouse"
Option "CorePointer"
Option "Device" "/dev /psaux"
Option "Protocol" "ImPS /2"
Option "Emulate3Buttons" "true"
Option "ZAxisMapping" "4 5"
EndSection
Section "InputDevice"
Identifier "Generic Mouse"
Driver "mouse"
Option "SendCoreEvents" "true"
Option "Device" "/dev/input/mice"
Option "Protocol" "ImPS /2"
Option "Emulate3Buttons" "true"
Option "ZAxisMapping" "4 5"
EndSection
Section "InputDevice"
Identifier "touchscreen"
Driver "elousb"
Option "Device" "/dev/input/eventl"
Option "AlwaysCore"
Option "screenno" "o"
Option "rotate" "Cw
Option "devicename" "IntelliTouch 2500U"
Option "MinX" "4000"
Option "MaxX" "10"
Option "MaxY" "4095"
Option "MinY" "98"

7.1 Configuration files

38

Option "InputFashion" "Touchpanel"
Option "ReportingMode" "scaled"
Option "ScreenNumber" "1"
Option "SwapAxes" "o"
Option "UntouchDelay" "3"
Option "AlwaysCore" "On"
Option "ReportDelay" "
Option "debuglevel" "5"
EndSection
Section "Device"
Identifier "Generic Video Card"
Driver "vesa"
EndSection
Section "Monitor"
Identifier "Generic Monitor"
HorizSync 28—-50
VertRefresh 43—-80
Option "DPMS"
EndSection
Section "Screen"
Identifier "Default Screen"
Device "Generic Video Card"
Monitor "Generic Monitor"
DefaultDepth 24
SubSection "Display"
Depth 1
Modes "1280x1024"
EndSubSection
SubSection "Display"
Depth 4
Modes "1280x1024"
EndSubSection
SubSection "Display"
Depth 8
Modes "1280x1024"

EndSubSection

7.1 Configuration files 39

SubSection "Display"

Depth 15

Modes "1280x1024"
EndSubSection
SubSection "Display"

Depth 16

Modes "1280x1024"
EndSubSection
SubSection "Display"

Depth 24

Modes "1280x1024"
EndSubSection

EndSection

Section "ServerLayout"

Identifier "Default Layout"

Screen "Default Screen"

InputDevice "Generic Keyboard"

InputDevice "Configured Mouse"

InputDevice "Generic Mouse" "SendCoreEvents"

InputDevice "touchscreen" "SendCoreEvents"
EndSection

To keep the tft from going into

economy—mode we use some special

flags

Section "ServerFlags"
Option "BlankTime" "o"
Option "StandbyTime" "o"
Option "SuspendTime" "o"
Option "OffTime" "o"

EndSection

7.1.2.4 Autologin and xinit

After system startup has completed the user “kiosk” is automtically logged into the
first terminal and his starup scripts and profiles are executed. To autologin the kiosk

user the file “/etc/inittab” was altered.

7.1 Configuration files 40

Listing 7.10: Autologin for the kiosk user (/etc/inittab)

To use autologin we need to change the following line
#1:2345:respawn :/sbin/getty 38400 ttyl

into
1:12345:respawn:/sbin/mingetty —noclear —autologin \
kiosk ttyl

This leads as to a console with the user “kiosk” logged in. Now we changed the bash
(the standard shell) profile for this user as follows:

Listing 7.11: Bash profile for the kiosk user (/.bash _profile)

append these lines at the end of the file:

start X (GUI) and execute only mozilla—firefox
w/out any window—environment

use the content of the file ’url’ as the first
page that is to be displayed

xinit /usr/bin/mozilla—firefox ‘cat url"

if something goes wrong and mozilla terminates
we are automatically logged out

logout

as we are logged out, the terminal tries to

respawn and kiosk is logged in again and

mozilla will restart

7.1.2.5 Kernel configuration

The configuration of the kernels differs from kiosk to kiosk. One has to include the
necessary drivers for each hardware revision.
We provide here only the important options that are needed to provide root

over nfs and networkin functionality.

CONFIG_ROOT _ NFS With this option the client tries to mount the given

nfsroot.

CONFIG _SOCKET, CONFIG _FILTER These options need to be enabled
to use DHCP configuration.

CONFIG IP PNP, ..PNP DHCP, ..PNP_ BOOTP With these options
the kernel is able to autoconfigure itself (without the need of external programs
like dhclient and others).

7.1 Configuration files

41

7.1.2.6 Package list

To easy a reinstallation of the server we provide a list of all installed packages.

adduser

apt
apt—utils
aptitude
base—files
base—passwd
bash

be
bind9—host
binutils
bsdmainutils
bsdutils
bzip2
console —common
console—data
console—tools
coreutils
cpp

cpp —3.3

cron

dash

de

debconf
debconf—il18n
debianutils
deborphan
defoma

dialog

dictionaries —common

diff

discoverl
discoverl —data
dnsutils

dpkg

dselect
e2fslibs

e2fsprogs

ed

ed

fbset

file
findutils
fontconfig
gcc—3.3—base
gettext —base
gnu—efi
gnupg

grep

groff —base
gzip
hostname
hotplug
ifupdown
initscripts
iptables
iputils —ping

kernel—headers —2...

kernel —image —2.6...

klogd

less
libacll
libatk1.0-0
libattrl
libblkid1
libbz2 —1.0
libc6
libcapl
libcomerr2
libconsole
libdb1l—compat
libdb3
libdb4 .2

libdiscoverl
libdns16
libdpsl1
libexpatl
libfontconfigl
libfreetype6
libgccl
libgcryptll
libgdbm3
libglib2.0—-0
libgnutlsll
libgpg—error0
libgtk2.0—0
libgtk2.0—bin
libgtk2.0—common
libice6
libident
libidl10
libisc7
libjpeg62
libkrb53
libldap2
liblocale —gett ...
liblwres1
liblzol
libmagicl
libncursesbh
libncurseswb
libnewt0.51
libopencdk8
libpam—modules
libpam—runtime
libpamOg
libpangol1.0—-0
libpangol.0—common
libpngl12—0

7.1 Configuration files 42

libpopt0 Isof rxvt
libreadline4 m4 sed
libreadlineb makedev sharutils
libsasl2 man—db slangl
libsigc++—1.2—5¢102 manpages slangla—utf8
libsm6 mawk smail
libss2 mime—support ssh
libssl0.9.7 mingetty strace
libstdc++5 module—init —tools sysklogd
libtasnl —2 modutils Sysv—rc
libtext —charwidt ... mount sysvinit
libtext —iconv—perl mozilla—firefox tar
libtext —wrapil8n ... mpack tcpd
libtextwrapl nano tcsh
libtiff4 ncurses—base telnet
libusb —0.1—4 ncurses—bin time
libuuid1 ncurses—term traceroute
libwrap0 net—tools ttf—bitstream—vera
libx11—-6 netbase ucf
libxaw7 netkit —inetd udev
libxcursorl nfs —common usbutils

libxext6
libxft1l
libxft2
libxi6
libxmu6
libxmuul
libxp6
libxpm4
libxrandr2
libxrenderl
libxt6
libxtrap6
libxtst6
libxvl
locales

login

ntpdate
passwd
pciutils
perl
perl—base
perl—modules
pidentd
portmap
procmail
procps
psmisc
python
python—newt
python2.3
rcs

reportbug

util—linux

wget
xbase—clients
xfonts —100dpi
xfonts —75dpi
xfonts —base
xfonts—scalable
xfree86 —common
xlibmesa—gl
xlibmesa—glu
xlibs

xlibs —data
XServer —common
xserver —xfree86
xutils

zliblg

7.2 Used Hardware 43

7.1.3 CMS Configuration

The configuration of the chosen CMS (typo3 in our case) is quite easy. First of all
we need a database, so we start mysql and create a new database named typo3 with
“create database typo3”. Then we must add a new user that is able to update this
database with “GRANT ALL PRIVILEGES ON typo3.* TO ’typo3’@’localhost’
IDENTIFIED BY ’some_pass’ WITH GRANT OPTION;”.

Then we install the typo3-tarball into our webserver directory (we must make
sure, that all needed software like PHP, MySQLP, Apache2 and so on is installed!)
and execute the installation procedure.

This process of installing the typo3 database is explained in a lot of detail
in this howto: http://typo3.org/documentation/document-library/doc_inst_upgr/

so we don’t include these steps in this document.

7.2 Used Hardware

Now we will present the used hardware. One of the design goals of the multimedia
kiosk is to use as much standard “off-the-shelf” hardware as possible. This has the
advantages that the kiosks are cheap and that there drivers exist for all hardware

parts.

7.2.1 Kiosk-Hardware

The kiosks are basicially standard Intel compatible computers. They use mainboards
with a special small form factor (called mini-ITX) and low power consuming (fanless)
processors. The mainboards and processors are factured by VIA Computers LTD.
One of the few features that is needed is direct BIOS support for boot over LAN,
but nearly all of these mini-ITX boards from VIA include this support.

7.2 Used Hardware 44

TV IO

EALEREESEALELLAEES

The old kiosk client uses a VIA Epia MII mainboard with a fanless 600 Mhz
processor. This mainboard also has a lot of additional (but in our kiosk unused)
features like a CF card slot and a PCMCIA slot.

donanaanoe
1 Y 0 I R i

The new kiosk uses a VIA Epia ML mainboard with a fanless 1 GHz processor.
This new mainboard should provide much better hardware stability and the faster

processor makes a difference when bigger webpages are displayed.

7.2 Used Hardware 45

7.2.1.1 Touchscreens

The touchscreens we use are from ELO Touch Systems[16]. One of the two monitors
was already used in an earlier project. This touchscreen is controlled using a serial
interface. It is not as exact as the new one but it is enough to be used as a test

environment.

The new monitor is an ELO ET1947L. This one is delivered without case
and can be mounted on the wall. It uses an USB interface to the touchscreen and

is used in the new kiosk client.

7.2.1.2 Server Hardware

The server is not very resource hungry. In the lab we used an “off-the-shelf” DELL
computer. The only important things are that the server has enough memory (about
512 to 1024 should be sufficient) and a RAID disk. As all data is saved centrally
on the server a disk failure there would lead to a lot of problems as all data and all

kiosk configurations would be lost.

Bibliography

[1] Institute of Robotics and Intelligent Systems:
http://www.iris.ethz.ch

[2] Master Kiosk-Server:
http:/ /kiosk-server.ethz.ch

[3] Linux Documentation Project:
http://www.tldp.org/

[4] Root-over-NFS Howto:
http:/ /www.tldp.org/HOWTO /Diskless-root-NFS-HOWTO.html
http://www.tldp.org/HOWTO /NFS-Root.html
http://www.tldp.org/HOWTO /NFS-Root-Client-mini-HOWTO/
http://www.tldp.org/HOWTO /Diskless-root-NFS-other-HOWTO.html

[5] Linux-PXE Boot Howto:
http://www.tldp.org/HOWTO /Remote-Boot.html
http:/ /www.kegel.com /linux /pxe.html
http://syslinux.zytor.com/pxe.php

[6] Wake on LAN:
http://gsd.di.uminho.pt/jpo/software /wakeonlan /mini-howto/

|7] EPIA Via Homepage:
http://www.viac3.de/

[8] Mainboards used as kiosks:
Old kiosk:
http://www.viavpsd.com/product/epia_ MII spec.jsp?motherboardld=202
New kiosk:
http://www.viavpsd.com/product/epia_ms_spec.jsp?motherboardld=281
http://www.mini-itx.com/store/?c=2#p1624

[9] Mini-ITX resources and shop:

http://www.mini-itx.com/

46

Bibliography 47

[10] Debian - Linux distribution:
http://www.debian.org/

[11] Linux administration:
http://www.tldp.org/LDP /sag/html/index.html
http://www.tldp.org/LDP/gs/gs.html
http://www.debian.org/doc/
http://www.debian.org/doc/user-manuals#install

[12] Typo3 - CMS on master kiosk:
http://www.typo3.com
Documentation:
http://typo3.org/1421.0.html
New user quickstart tutorial:

http://typo3.org/documentation/document-library /doc_tut_quickstart/

[13] Kerel Documentation:
Have a look at the file Documentation/nfsroot.txt (via the root of the linux

kernel source)

|14] Diskless Linux boot PXE howto:

http://www.intra2net.com/opensource/diskless-howto /howto.html

[15] Adapted kiosk-mozilla:
http://kiosk.mozdev.org/

[16] ELO Touch Systems:
http://www.elotouch.com/

[17] Driver for ELO USB Touchscreens:
The original ELO Driver for XFree is faulty and does not work. The following
driver has the corrected sources.
http://www.softcoded.net /eduard /elousb.html

Glossary

APM ... Advanced Power Management is used to cut most of the
mainboard from power after a shutdown and to control fans
and power usage.

BIOS Basic Input Output System. When a computer is started then
the memory is completely blank. The BIOS is the first part
that is loaded. The BIOS checks then for available hardware
and starts a POST. After all checks are passed the BIOS tries
to load the bootloader (depending on the BIOS configuration
either from harddisc, CDROM, network, ...).

bootloader After a computer has completed the POST it tries to load an
OS. The problem is, that the OS is too big to be loaded directly
by the BIOS. So the startup is divided into two stages. First
the BIOS loads the bootloader, then the bootloader loads the
actual kernel. So the bootloader is a small program (loaded by
the BIOS) that loads the OS (kernel) and then passes control
to the kernel (thereby starting the OS.)

broadcast The sender addresses multiple machines.

CMS Content Management System this is a way to organize web-
pages over an easy to use webinterface.

DHCP Dynamic Host Configuration Protocol. A special protocol to
configure IP-Networking without any client configuration.

P .. Internet Protocol (RFC 791), a protocol that defines how two
devices can communicate with each other over the internet.

kernel Every unix like system has a system kernel. The kernel is started
when the computer boots and controls all hardware I/O (in-
put/output) and all devices. It also separates the different users
and running processes.

MAC address Media Access Control address, a globally unique address for a
network card. These addresses are associated by the IEEE.

NFS ... Network File System. This system was developed by Sun Mi-

crosystems to export files and directories over a network.

48

Bibliography 49

OS ...l Operating System. Every computer needs an OS to run. On
unix systems the kernel is the base of the operating system.
Other utilities are onion-like layered around the kernel. All
tools together form the OS.

POST Power On Self Test. Everytime a computer starts it checks if
vital components are working (like memory, cpu, graphic card,
network adapter, ...). If a component fails then a special beep-
code informs about the failure.

RFC Request For Comments, a document series that handles the
definition of protocols used in the internet. Every proposal gets
a unique number and can then be discussed. For an overview
about existing pages see http://www.ietf.org/rfc.html.

TCP Transmission Control Protocol (RFC 793) defines a protocol
that builds upon IP and offers a continous data-stream with
error correction, data serialisation (all packets arrive in order)
and the concepts of connections.

TFTP Trivial File Transfer Protocol. An easy way to transfer files.
The protocol was kept as simple as possible to easy the transport
of bootup images and configuration files to diskless clients.

UDP User Datagram Protocol (RFC 768), a protocol that builds
upon IP and offers a connectionless possibility to send packets
to a specific host.

unicast The sender addresses exactly one machine.

URL Uniform Ressource Location, a way to specify protocol and
location of documents (e.g. http://www.iris.ethz.ch /index.html
specifies that the document index.html is available via http in

the document root of the www.iris.ethz.ch server).

Listings

6.1
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Eaxample for a cron update-script (/usr/sbin/security-update.sh)

DHCP service configuration file (/etc/dhcpd.conf)
Bootloader configurationo
NFS configuration (/etc/exports)
Bootloader config (/home/kiosks/tftpboot/pxelinux.cfg/iris-epia)

Bootloader config (/home/kiosks/tftpboot /pxelinux.cfg/iris-epiall) . .
Filesystem table on client (/etc/fstab)
Boot script to configure remote kiosks (/etc/init.d/config kiosk.sh) .
Config of the GUI and TFT (/etc/X11/XF86Config-4 for kiosk01) . .
Config of the GUI and TFT (/etc/X11/XF86Config-4 for kiosk02) . .

7.10 Autologin for the kiosk user (/etc/inittab)
7.11 Bash profile for the kiosk user (/.bash_profile)

a0

Chapter 8
Statutory declaration

I Mathias Payer do solemnly and sincerly declare and affirm that:
1. this thesis was written by myself
2. only the documents in the bibliography were used
3. all references to external documents are included

and I make this solemn declaration, as to the aforesaid, according to the laws in this
behalf made, and subject to the punishment by law provided for any wilfully false

statement in any such declaration.

ol

