
Implementation of a Bluetooth Stack

for BTnodes and Nut/OS

Version 0.9

Semester thesis by
Mathias Payer

Institute for Pervasive Computing,
Distributed Systems Group,

ETH Zurich
Prof. Dr. Friedemann Mattern
Assistant Matthias Ringwald

August 4, 2004

2

Abstract

The target of this semester thesis was to develop a modular Bluetooth stack
for BTnodes. BTnodes are microcontrollers with very low computing power
and memory and have a Bluetooth controller attached.
The main target of the stack is to ensure communication between different
BTnodes. This leads to the implementation of some specific layers of the
Bluetooth specification.
So the stack was implemented with BTnode constraints in mind, like speed
and memory usage. The main differences to the old implementation are
that this new stack uses threads, has a modular design and uses a sequential
programming schema.

3

4

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Bluetooth . 9

2.1.1 Host Controller Interface (HCI) 10
2.1.2 Logical Link Control and Adaptation Protocol

(L2CAP) . 12
2.1.3 Higher layers . 13

2.2 BTnode hardware . 13
2.3 Nut/OS . 14

3 Related work 15
3.1 Old BTnode Bluetooth Protocol Stack 15
3.2 IAR Embedded Bluetooth Protocol Stack 15
3.3 BeeCon MicroBlue - A Bluetooth protocol stack for embedded

systems . 16
3.4 TinyBT - TinyOS meets BTnodes 16
3.5 lwBT - A light weight Bluetooth stack for lwIP 16
3.6 Implementations for PCs and PDAs 17

4 Concept 19
4.1 Memory usage and organisation 19
4.2 Calling conventions . 20
4.3 Functional range . 20
4.4 Organisation of different layers 21
4.5 Connection handles . 21
4.6 Buffer handling . 21

5 Implementation 23
5.1 Development . 23
5.2 Layer implementation . 24
5.3 Internal naming schema . 24
5.4 Memory layout . 25
5.5 Calling conventions . 27

5

6 CONTENTS

5.6 Semaphores . 29
5.7 Transport layer . 29
5.8 HCI layer . 30
5.9 Packet handling . 30
5.10 BTstack threads . 31

6 Discussion 33

7 Appendix 35
7.1 Implemented HCI commands 35

7.1.1 Link Control . 35
7.1.2 Link Policy . 36
7.1.3 Host Control . 36
7.1.4 Informational Parameters 38
7.1.5 Status Parameters . 38
7.1.6 Vendor Specific . 38

7.2 Dependencies of the OS . 38
7.2.1 Threading . 38
7.2.2 Thread queues and Nut/OS events 39
7.2.3 Low level functions . 39
7.2.4 Association from functions to files 39

Bibliography . 41

Chapter 1

Introduction

During the last years, the number of portable personal gadgets steadily in-
creased. Many people use numerous autonomous devices like personal digital
assistants (PDA), mobile phones and notebooks.
It would be much easier if these devices could communicate with each other.
The PDA tells the mobile phone that there is no time for lunch with a col-
league because of a meeting, the notebook downloads the actual emails via
the mobile phone or synchronises itself with the PDA.
Another idea for sensor fields is that multiple devices are located close to
each other and can communicate over radio.
The ETH Zurich is researching in this environment for quite a while and
produced the BTnodes, small microcontrollers that communicate over a
Bluetooth module. With these BTnodes experiments are made to study
communication algorithms that arrange the nodes dynamically and estab-
lish a way to communicate with each device. The aim is that no human
interaction is necessary.

The old implementation of the over 1200 pages lasting Bluetooth specifi-
cation is rather inflexible and has speed penalties. It is also monolithic and
therefore hard to maintain. Additionally the code provides only little doc-
umentation.
Another immense problem is that application programmers who want to
work with this system cannot program in their usual way. They first have
to get used to event based programming.

It was tried to write a modular stack that is easy understandable for the ap-
plication programmer and can therefore easily be used for research projects.
One of the main design goals was to keep the stack as portable as possible
(to different host hardware/software platforms, transport links and Blue-
tooth controllers).
This report will give an overview over the Bluetooth specification, present

7

8 CHAPTER 1. INTRODUCTION

the microcontroller operating system upon which the stack has been imple-
mented and talk about the BTnodes project at the ETH.
The next chapter explains the concept of the stack and presents the main
features and decisions.
After the concept part, some details about the implementation will be shown
and this thesis will end with the discussion about the work done and some
indication about where future work could start.

Chapter 2

Preliminaries

In this chapter some information will be provided that are heavily used in
later chapters.
From now on I will use the terms host for the host controller that has the
Bluetooth controller attached and controller for the Bluetooth controller it-
self. As a shorthand for Bluetooth stack for BTnodes the term btstack will
be used.
First some information about Bluetooth in general will be given. The asyn-
chronous design of the specification and the different layers are mentioned.
Then some information about the BTnode hardware is mentioned and fea-
tures of the Nut operating system will be presented.

2.1 Bluetooth

Bluetooth [1] is an international standardised wireless technology that trans-
ponds in the 2.4 GHz band with frequency hopping. The intended use is as
a cable replacement and in newer versions as Personal Area Networks and
for near-distance transmission.
There are three different power-classes of devices, resulting in a range from
10 m to about 100 m. The total bandwidth is about 1 Mb/sec.
A piconet consists of up to 8 active devices. Exactly one device is the master
of a piconet. The other devices are called slaves and are synchronised to the
hopping sequence of the master. Up to 255 slaves can be in standby, this
means synchronised to the hopping sequence, but unable to send.
As every piconet has its own hopping sequence the maximum transfer rate
per piconet is the total bandwidth.
Multiple piconets can be linked together when a device is master in a piconet
and slave in another piconet. These spanned nets are called scatternets.
The Bluetooth protocol stack itself consists of many different layers that are
built on top of each other. See figure 2.1 for an example of a scatternet with
piconets. There the master of one piconet is a slave for the master of the

9

10 CHAPTER 2. PRELIMINARIES

Master & Slave

Piconets

Slave (active) Slave (passive)Master

Figure 2.1: A scatternet consisting of two piconets with multiple active and
passive slaves.

other piconet.
The baseband layer, link manager and the link control layer exist on the
controller chip. The controller offers the host the HCI interface to control
all the low level functions.
The host implements the HCI layer, L2CAP layer and on top the higher
protocols like SDP and RFCOMM. These layers are implemented in a soft-
ware stack (Figure 2.2).
The Bluetooth specification also defines profiles. To satisfy a profile, some
given layers have to be implemented. Profiles define exactly what parts of
the protocol are needed to fulfil a given function.
Now the host layers will be introduced in detail.

2.1.1 Host Controller Interface (HCI)

This is the lowest software level on the host side. Actually it is not a layer by
itself, but it offers an interface to all the layers from the Bluetooth controller.
To communicate between host and controller a serial or USB transport layer
is used.
Access from host to controller is done asynchronously on the basis of events.
The host sends a command and receives events as status or results. After
a connection is initialised data can be sent to the controller (who forwards
the data to the other device) and received from the controller.
The HCI layer is capable to look for other devices near by (inquiry), to
exchange parameters, to open connections and to send data.
If a specific command does not complete immediately, the controller sends
a status event back to indicate that the command is still running. After
the command completed a command complete event or a special event is

2.1. BLUETOOTH 11

Bluetooth Radio

Baseband & Link Manager

Host Controller Interface Link layer between Bluetooth
controller and host

RFCOMM, ...

L2CAP

Figure 2.2: The different bluetooth layers

generated.
Overall there are three different kinds of packets:

Command packets: This packet can only be sent from host to controller.
It is used to read and write general parameters like device name, time-
outs and device class and to instantiate inquiries and to initialise data
connections.
Commands are logically ordered into different domains. The OGF
(Operation code Group Field) specifies the domain of the command
and the OCF (Operation code Command Field) points to the actual
command in the specified domain. It is possible to distinguish between
different commands with the OGF / OCF fields. Connection specific
commands also use a distinct connection handle. Some examples of
logical domains are host and link control, link policy and informational
parameters.

Event packets: This packet is only sent from the controller to the host as
a response of a previously sent command or as a request from an other
device. Events are used to transport results and information from the
controller to the host. The packets consist of a distinct event code
and some specific parameters like OGF/OCF, connection handle and
return value.

Data packets: There are to different modes of data connections. The first
option is a synchronous channel (Synchronous Connection-Oriented -
SCO). With this method the upload and download bandwith is the
same. This option is mainly used for mobile head sets.

12 CHAPTER 2. PRELIMINARIES

The second possibility is asynchronous (Asynchronous Connection-
Less - ACL). ACL connections are used for data transmission where a
higher upload than download rate (or vice versa) is needed.

Bluetooth devices can communicate with each other over the baseband con-
nection. This connection is opened when at least two devices are linked as
master and slave.
Two ways are possible to create a new connection. The first possibility is to
directly open a connection to a specific Bluetooth address (that may be dis-
covered during an inquiry) with the create connection command. The callee
has then to acknowledge this connection request. The second possibility is
to receive a connection request event from an other device and then send an
accept connection request command back.
The disconnection can be either controlled, with a disconnection request
event and then a disconnection complete event. If the disconnection is ter-
minated by an application or by the btstack. The other possibility is that a
device runs out of battery or leaves the transmission range. In this case only
a disconnection complete event will be sent. This indicates an unexpected
end of the connection.
The HCI packet size is adjustable between 17 Byte and 339 Byte payload.
Two different packet types exist, an error correcting one and an error de-
tecting one.

2.1.2 Logical Link Control and Adaptation Protocol
(L2CAP)

The L2CAP layer resides directly above the HCI layer and sends and receives
ACL data packets. This layer offers multiple higher layers a connection
oriented data stream.
Additionaly this layer offers a Protocol and Service Multiplexing (PSM) that
introduces a type field that selects a specific protocol, so L2CAP is capable
to differ between different services like SDP or RFCOMM, because these
protocols have an already predefined service number.
The L2CAP layer itself uses two different kinds of packets, data packets and
signalisation packets. Signalisation packets are used for connection handling
and configuration. To the HCI layer both kinds of packets appear as ACL
packets.
Out of performance reasons the L2CAP layer is capable to fragment the
given packets, so higher protocols do not need to send their (potentially
large) header multiple times. The maximum packet size on the L2CAP
layer is 64 KB. These packets are then fragmented and passed to the HCI
layer.

2.2. BTNODE HARDWARE 13

2.1.3 Higher layers

Higher layers include RFCOMM and SDP.
RFCOMM is used as an emulation layer for applications that need a serial
line. RFCOMM emulates up to 60 RS232 devices, multiplexed over the
L2CAP link. After setup these RS232 devices can be used like normal serial
links. With this layer older applications or closed source applications may
still benefit from Bluetooth without explicit knowledge about Bluetooth.
The Service Discovery Protocol (SDP) is used to identify and to keep track
of available services. There is no central directory and everything is dynam-
ically discovered. Services can register special attributes like name, service
class list (e.g. PrintService, PostscriptPrinter, ...) and provider name.

2.2 BTnode hardware

Figure 2.3: Front and back of a BTnode (on the left you see the included
antenna)

The used microcontroller for the BTnode hardware is an Atmel ATmega
128L running at 8 MHz, resulting in 8 MIPS. This microcontroller is able
to address and use 64 KB of RAM for application data and 128 KB of
Flash ROM for program code. For external communication it offers many
interfaces like two UART connections, SPI, I2C and 4 LEDs.
For communication an Ericsson ROK 101 007 Bluetooth radio module is
attached.
The microcontroller can be programmed in C and standard libraries may
be used. The core is a RISC processor, a limitation is that no memory
management unit (MMU) is available.
For a picture of the front and back of a btnode see figure 2.3.

14 CHAPTER 2. PRELIMINARIES

2.3 Nut/OS

Nut/OS [2] is an embedded open-source operating-system for microcon-
trollers, licensed by egnite software [3] under the BSD license. It is allowed
to modify the source code and ship binary software, as long as the original
copyright notice is included.
Nut/OS offers many features to the programmer like dynamic memory allo-
cation, threading, formatted output and many more. But to ease portability
of the stack itself as few Nut/OS specific features as possible were used.
The operating system also offers a modular design, so that only needed
parts are linked together and no unneeded parts are loaded into the limited
program space of the host.
Another advantage is the support for cooperative multi threading. The
application itself runs in a separate thread and there is no need for the ap-
plication programmer to cope with events, dispatching and other confusing
techniques.
Cooperative multi threading means that the program runs as long as it wants
to. If an interrupt occurs, an I/O operation is called or event handling is
used, the interrupt gets processed and the control is returned to the running
program. If this program wants to pass control, it has to explicitly yield.
Then the control is given to the highest waiting thread.
One of the used features includes thread queues with asynchronous post-
ing and wake up. Multiple threads can wait on a queue and block until an
event is posted to this queue. Then either one or all threads wake up.
Nut/OS also supports dynamic memory management to allocate and
free memory on the heap, although this is not used to ease portability.
Timer support and stream I/O functions are also supported.
In the Nut/OS part serial device drivers and a PPP stack is included. Ad-
ditionally Nut/OS features a Nut/Net part, including a fully functional
TCP/IP stack providing ARP, IP, UDP, ICMP and TCP protocol, auto-
matic configuration via DHCP, a HTTP server with CGI functions and
TCP and UDP socket API for the application programmer.

Chapter 3

Related work

All together many implementations of the Bluetooth specification exist. Be-
low some of these implementations will be discussed and some features will
be highlighted.
First the old Bluetooth stack for the BTnodes will be explained. Then two
commercial products will be presented. After these a port of TinyOS [9]
to the BTnode [13] platform will be shown. Then lwBT [10], a Bluetooth
network interface to lwIP [11] is mentioned. At last some larger implemen-
tations will be noted.

3.1 Old BTnode Bluetooth Protocol Stack

The first Bluetooth Protocol Stack was explicitly written for devices with
very few memory. It featured a monolithic design and included an own op-
erating system. This operating system was built on an event dispatcher.
Every time a given event occured a special code fragment was called. This
was very troublesome because every program that was to be executed on
the BTnodes had to be written with these events in mind. And it was hard
to maintain and keep the overview over all the different code fragments.
Another drawback is that the actual packet is copied several times to differ-
ent locations in memory. On a microcontroller memory accesses take a long
time to complete.
The implementation of the protocol stack offered a lot. The HCI and L2CAP
layer were nearly complete (all the needed commands were implemented)
and RFCOMM was somehow functional.
The stack is licences under the GNU General Public License.

3.2 IAR Embedded Bluetooth Protocol Stack

The Bluetooth Protocol Stack from IAR [6] systems is highly portable to
different types of system platforms and offers a complete implementation of

15

16 CHAPTER 3. RELATED WORK

the Bluetooth specifications.
It is possible to port the stack to a personal computer operating system, an
operating system for embedded devices and to embedded devices without
operating system.
The stack is splitted into different parts that operate independently and
communicate with signals and message queues.
The licence is non free and costs for one developer about 10000e. The
generated programs may then only be distributed as binary, no source code
can released.

3.3 BeeCon MicroBlue - A Bluetooth protocol stack
for embedded systems

The Bluetooth stack from BeeCon [7] is a rather complete implementation
of the Bluetooth specification. Additionaly network protocols like IP are
implemented.
One of the special features of this stack is that it allows stream processing of
the packets. As soon as enough bytes are read from the UART to determine
the packet type, the higher layer is called and it can then read the next
bytes.
The licence of this stack is non free.

3.4 TinyBT - TinyOS meets BTnodes

This is a port of the TinyOS [9] to the BTnode platform. TinyOS is an event
driven operating system for microcontrollers that have to handle multiple
inputs. It is designed for wireless embedded sensor networks.
The event driven model makes it hard to program, if one is accustomed to
sequential programming.
This implementation provides HCI core functions and keeps the event han-
dling from the controller and passes these to the application.
TinyOS and TinyBT [8] are both open source.

3.5 lwBT - A light weight Bluetooth stack for lwIP

The lwBT [10] Bluetooth stack is mainly an addon to lwIP [11]. The lwIP is
a lightweight implementation of the IP protocol and small operating system
for embedded systems. The Bluetooth stack is a straight forward imple-
mentation of the lower layers up to the IP transport. The Bluetooth part
is only intended to be used with lwIP together. The Bluetooth stack only
acts as a network interface to lwIP and one of the main goals was to keep
the Bluetooth part as small as possible.

3.6. IMPLEMENTATIONS FOR PCS AND PDAS 17

This implementation provides HCI, L2CAP (including segmentation), SDP,
RFCOMM and PPP. All the functions needed to transport IP packets are
implemented. It is possible for the application to register callbacks to keep
track of connections.
The lwBT stack is licensed under the BSD license.

3.6 Implementations for PCs and PDAs

Multiple other implementations of the Bluetooth specifications already exist
(including several free ones for the linux operating system and also some for
Microsoft Windows [12]).
The free ones include bluez [4], the official linux Bluetooth stack that is al-
ready integrated into the kernel. As an alternative OpenBT [5] exists. But
the main problem of these solutions is, that they were not developed with
BTnodes and microcontrollers in mind. They use lots of memory and are
feature blown.

18 CHAPTER 3. RELATED WORK

Chapter 4

Concept

Below some features are stated that a Bluetooth stack for BTnodes should
have.

1. The stack should take care of the BTnode constraints. Namely the
stack should have a small memory footprint and should not be too
complex, because memory and processing power are both very limited
on microcontrollers (8 MHz speed and about 64KB of RAM).

2. The stack should be correct regarding the Bluetooth specification.
The implemented functions and methods should comply with the cor-
responding functions in the Bluetooth specification.
To ease programming with the stack some local additions like unique
virtual connection-handles were made.

4.1 Memory usage and organisation

There are too possible ways to organise the available memory. Either a dy-
namic or a static allocation approach can be taken.
The dynamic method differs between heap and stack. The stack keeps local
variables and processor registers, the heap is dynamically used to store ap-
plication data. The programmer can dynamically get more memory or free
memory with functions like malloc or free.
The second possibility offers no dynamic method to change the layout of the
heap. Everything is handled static by the programmer.
Although Nut/OS provides an implementation of malloc and free to use
dynamic allocation the decision was to use static allocation. This has the
advantage that porting to a different operating system is easier, because
there will be no need to implement dynamic allocation. The memory usage
of the stack is static, therefore it can easily be defined at compile time.
This method has one disadvantage, namely that the number of buffers the

19

20 CHAPTER 4. CONCEPT

host can handle is limited at compile time. But this limitation is not that se-
vere because the microcontroller does not have too much RAM to implement
many more buffers.

4.2 Calling conventions

For network specific functions there normally exist two different calling
methods. Either blocking or non-blocking.
A blocking call halts the application as long as the call needs. This means
that it waits until the data is sent and the response is received. This could
result in quite a long waiting time.
Non-blocking calls return immediately and normally return a handle with
whom one can keep track of the call. The programmer explicitly needs to
check if the call already completed. It is still possible to wait for that specific
handle to complete, if there is nothing else to do.
This btstack offers a dual concept to the programmer. All functions, that are
transmitted between two (or more) Bluetooth controllers can be called syn-
chronously or asynchronously. The programmer can specify the convention
when he calls the function.

4.3 Functional range

On the transport layer the UART transport specification was implemented.
This one offers the initialisation of a serial device and send and get packet
methods for higher layers. For an USB transport specification some precau-
tions were taken, but it was not implemented.
A wide range of HCI functions were also implemented. Remaining functions
can be added in a structured and easy way.
When a HCI command is completed by the controller, it sends back an asyn-
chronous event. These events are fetched in the event handler. The event
handler then sets the return value. If a command is called synchronously,
the stack sends the command to the controller and then sets the calling
thread into a sleep state. The thread sleeps until the return value is set by
the returning event and then gets woken up by the btstack.
If a new HCI command is to be implemented one needs to write a calling
part that sends an actual HCI command packet to the controller and an
event handling part that is inserted into the event handler.
In the current event handler many different return values for HCI commands
are already implemented. Code fragments exist for void, unsigned char (8
bit) and unsigned short (16 bit). All these return values are also imple-
mented with a connection handle as additional parameter to match a given
connection. To use these general return values only an additional label has
to be inserted into the event handler.

4.4. ORGANISATION OF DIFFERENT LAYERS 21

4.4 Organisation of different layers

There exist two possible ways of organising the different layers, either a
monolithic attempt, unioning all the different layers into one or a layered
one, offering flexibility and interchangeability of the different layers.
In this implementation the layered approach was used.
It would also have been possible to use a monolithic organisation. This
would interleave all layers and offer therefore only one layer, with all the
functions, to the application programmer. This has the disadvantage that
it is not possible to leave out or write own layers. But this approach has the
advantage that less memory is used, because there is no need for function
pointers and to administrate the different layers and the interaction of these.
As stated above the Bluetooth specification consists of multiple layers. This
offers a simple partition of the different parts of the stack.
The layers offer to other layers a clearly specified interface. These interfaces
will be used by other layers over header files.
Every layer has a function that will register a higher layer. The higher layer
calls the lower layer at initialisation and registers a function pointer that
gets called when data for the higher layer is available.
This concept has the advantage that every layer can be exchanged, disabled
or replaced by a different implementation. The disadvantage is, that for
very high layers the packet may pass through several layers and every layer
calls upwards, therefore some additional memory on the stack is needed.
But as there are not too many layers this problem can be disregarded.

4.5 Connection handles

The Bluetooth module itself keeps track of open connections. Every connec-
tion has a handle with 12 bit range, as stated in the Bluetooth specification.
The problem with the controller is that it may reuse the connection handle.
For example if a connection with handle 7 was closed and a new connection
(maybe to a different device) is opened, then this connection gets also the
handle number 7. This makes it almost impossible to the application to
differ between different connections, as new connections may have the same
number as old connections.
So a global counter was introduced that sets an unique connection handle
to every new connection. As this counter is global, even if multiple stacks
are running the connection handles are unique over all stacks on a host.

4.6 Buffer handling

As one of the main constraints was to keep the memory usage as low as
possible, the host allocates as few buffers as possible. The HCI layer allocates

22 CHAPTER 4. CONCEPT

one event and one command buffer, as only one thread may write to the
UART at a given time.
The HCI layer itself does not keep track of ACL or SCO packets. But when
the ACL or SCO layer is initialised it has to pass the HCI layer an ACL or
SCO buffer.

Figure 4.1: When a layer is registered, it has to pass a pointer to a free
buffer to the lower layer.

Then every time an ACL or SCO packet arrives, the HCI layer fills the data
into the local ACL or SCO buffer. Then it calls the callback to the higher
layer with this data buffer. The higher layer has then to return a pointer to
an empty ACL or SCO buffer. So the HCI layer always has a pointer to a
valid ACL or SCO buffer, but does not need to keep track of the number of
buffers.
So the ACL or SCO layer could only use one ACL or SCO buffer. Every
time the callback would be called, the data would be processed and the same
buffer would be returned to the HCI layer. But to use multiple connections,
more buffers are needed.

Figure 4.2: If the lower layer receives a packet for a higher layer it saves the
data directly in this layer and calls the previously registered callback. This
callback has to return a pointer to a free buffer to the lower layer.

Another of the constraints was to keep the copying overhead in memory as
low as possible. This means that the data should be written to the memory
only once (or as few times as possible). One approach would be, that every
layer reads the data from memory and then writes the data into an own
local buffer. This would result in a lot of copying and slow the hole stack
down. This difficulty is also prevented with the buffer handling mentioned
above.
The old btstack was implemented with a lot of copying between different
buffers and therefore the resulting speed was not as high as it could have
been. This was one of the major drawbacks that was solved with this new
stack.

Chapter 5

Implementation

This stack was implemented with the option of handling multiple Bluetooth
controllers with one microcontroller in mind. This means that the btstack
driver can be used multiple times on one BTnode.
So all functions were implemented in an independent way and the whole
stack is kept in a centralised structure. All higher layers register in this
structure, so it is possible to differ between different controllers. Every
function gets the actual stack context passed as a parameter. This option
allows to switch between different instances.
In this chapter some implementation specific details will be presented. First
some general information like development platform and how the layers were
implemented will be shown. Then some details about the different calling
conventions (synchronous / asynchronous) will be stated. The layout and
the naming schema of the header files and functions will be highlighted
and the memory handling and memory layout presented. At last additional
insight into the UART transport layer and the HCI layer will be given.

5.1 Development

The stack was implemented in the language C. To simulate the microcon-
troller hardware on a personal computer, the Nut/OS emulation for unix
operating systems by Matthias Ringwald was used.
But the emulation has some drawbacks. The actual stack size of a thread
is ignored. If a thread is specified to have for example 200 Bytes of stack
memory, then the emulation ignores this value. This emulation layer was
written in parallel with the btstack. This lead to some difficulties and stalls
when a part did not work as expected.
A standard AVR-GCC cross compiler chain was set up to transfer the pro-
grams onto the BTnode and test them on the real hardware.
After some time of work with archives sent back and forth, a collaborative

23

24 CHAPTER 5. IMPLEMENTATION

1CVS [15] system was set up. So multiple people could work together. It
was possible to keep track of current versions of different parts and to build
applications based on the stack.

5.2 Layer implementation

There is a special intialisation sequence for all the used layers. First the
transport layer will be initialised with the given parameters. Then the ap-
plication programmer can initialise one higher level after another. Every
layer is then registered with the lower layer.

Figure 5.1: Layers are initialised bottom up

The calling of other layers is handled via function pointers in C that are
registered during the initialisation of the stack. If no callbacks are reg-
istered, then the current layer just drops the received packets. After the
registration the lower layer always calls upwards when he receives a packet
for the specified layer and passes the data on.
So far only the HCI and the transport layer are implemented, but precau-
tions were taken to handle L2CAP and higher layers.

5.3 Internal naming schema

After checking out the CVS a folder btnut is located in the current directory.
The following files are located relatively to this btnut folder.
The header files are in btnut/btnode/include/bt/ and the c files are in bt-
nut/btnode/bt/. Some documented sample applications are located in bt-
nut/app/. Please see the README file on how to compile and run the
stack and these programs.

1Concurrent Versions System: Multiple people can share source files and work together
on documents, see bibliography [15] for details.

5.4. MEMORY LAYOUT 25

As an application programmer the files bt hci cmds.h and bt hci api.h will
be of most interest to you. They include all the needed structures and de-
fine all needed HCI commands and other commands. For a description of
all implemented HCI functions, please have a look at these files.
The most general file is bt defs.h, it contains all Bluetooth and stack specific
options and definitions. Then bt hci defs.h contains all HCI layer specific
definitions that are not yet in bt hci cmds.h or bt hci api.h. All event han-
dling function and constant definitions are located in bt hci event.h and
most operating system dependent definitions and some initialisation def-
initions are located in bt dispatch.h. The file bt semaphore.h gives Blue-
tooth friendly implementations of semaphores and mutexes. With this im-
plementation it is possible to increase a semaphore by a given value and
set an already initialised semaphore to a specific value. Finally, the header
file bt hci transport uart.h contains the definitions for the UART transport
layer.
Generally the naming schema for functions and files is as follows:

1. bt, indicating that this belongs to the Bluetooth stack

2. layer, indicating which layer the file or function belongs to (e.g. hci
or l2cap), multiple layers may be concatenated.

3. meaning, the last part contains a descriptive function name or file
name, if no meaning is given, then the file or function is general for
this layer.

All parts are delimited by an underscore ().

5.4 Memory layout

The chosen system allows the programmer to use as many stacks as he wants
to. For every single stack the application programmer has to declare a bt-
stack variable in his program. After the initialisation (e.g. bt hci init(&stack,
&devUsart0)) the programmer just has to pass the right btstack structure
to every call.
Below is a copy of the btstack structure, including documentation.

/**
* struct btstack
* brief Represents one entity of a running stack (more possible)
* Keeps all data for one stack, like devices, buffers, states, . . .
*/

struct btstack {
#if HCI TRANSPORT == UART

/** UART-Transport definitions */

26 CHAPTER 5. IMPLEMENTATION

struct bt hci uart transport;
#else 10

/** USB-transport definitions (intentionally void ->
* error, because not jet implemented) */

void transport;
#endif

/** Number of hci cmds we can send to the controller
* until he runs out of buffer */

struct bt semaphore nr hci cmds;
/** Semaphore for the waiting commands. After one

* command is sent, the next thread is woken up.*/
struct bt semaphore hci cmd queue; 20

/** Only one command at a time may be sent
* by the uart */

struct bt hci pkt cmd cmd;
/** Only one event at a time may be received by

* the uart*/
struct bt hci pkt evt evt;

/** acl data (state of the acl-layer aka l2cap) */
void *acl data;
/** Pointer to the acl-buffer (local to the hci-layer) */ 30

struct bt hci pkt acl *acl pkt;
/** Initial acl pkt. from this time on, the stack always

* gets one from the higher level */
struct bt hci pkt acl acl init;

/** Semaphore for the max. number of acl pkts,
* the bt-controller can handle */

struct bt semaphore nr acl pkts;
/** Max. length of a acl-data-pkt the bt-controller will

* ever send */ 40

u short acl max len;
/** Callback for acl-data pkts */
HCI ACL CB;

/** sco data (state of the sco-layer) */
void *sco data;
/** Pointer to the sco-buffer (local to the hci-layer) */
struct bt hci pkt sco *sco pkt;
/** Initial sco pkt. from this time on, the stack always

* gets one from the higher level */ 50

struct bt hci pkt sco sco init;

5.5. CALLING CONVENTIONS 27

/** Semaphore for the max. number of sco pkts, the
* bt-controller can handle */

struct bt semaphore nr sco pkts;
/** Max. length of a sco-data-pkt the bt-controller will

* ever send */
u char sco max len;

/** Callback for sco-data pkts */
HCI SCO CB; 60

/** Reset flag */
u char reset;
struct bt semaphore inquiry;

/** Keeps an eye on running pkts */
struct bt hci cmd response

*waitqueue[BT HCI NR WAIT QUEUES];

/** Flag to indicate if a conn. request is pending 70

* (handled by the main thread) */
u char conn request;
/** Callback for changes in the connection-table */
HCI CON TABLE CB;

/** Keeps track on open connections */
struct bt hci connection

connection[BT HCI MAX NUM CONN];

};

5.5 Calling conventions

To have as much flexibility as possible regarding the administration of mul-
tiple stacks every function has an additional parameter with the stack struc-
ture. This way the functions are completely independent. Every function
can then get their values out of this structure.
All packets that go over the wire (that are processed and sent by the trans-
port layer) have an additional parameter. Every call can be either syn-
chronous or asynchronous. The easier way is to handle everything syn-
chronous, just pass BT HCI SYNC as parameter. If you pass BT HCI SYNC,
the stack will initiate a synchronous call and the callee will be woken up,
when the HCI command returns and will get a return value passed, indicat-
ing either an error or the result.
If asynchronous functions are needed, a bt hci cmd response structure can
be passed. This structure represents a command that is waiting to be com-
pleted. Per asynchronous command one such structure is needed. Then it

28 CHAPTER 5. IMPLEMENTATION

is possible to pass a pointer to such a structure and the btstack will call this
HCI function asynchronous.
As soon as the field handle in the structure represents SIGNALED the re-
sponse value in the structure is set and holds either the return value or the
result. The constant SIGNALED is defined by the Nut/OS event handling
routines in the file ./sys/event.h which resides in the Nut/OS include di-
rectory. There are some commands where a special data structure is filled.
This structure is also valid as soon as the handle is SIGNALED. More in-
formation on these special commands is available in the documentation of
the functions that use these parameters.
After the HCI command has started, it is possible to check, if the handle
is already signalled or wait a specific amount of time for the completion.
With NutEventWait(&response−>event, time ms) you can wait for a spe-
cific amount of time. Time ms is a value between 60 and NUT WAIT INFI-
NITE. The value is in milliseconds and 60 ms is the smallest time resolution
possible in Nut/OS. If you pass NUT WAIT INFINITE the program will
wait until the command has completed.
If the response value is ≥ 0, then it represents a successful execution of
the command and contains the return value. If it is < 0 and ≥ −0xFF
it indicates an error from the controller. If the value is < −0xFF it is an
error from the stack. Please have a look at bt hci api.h for the actual error
messages.
Below is the current layout of the structure. Keep in mind, that some fields
are for internal use only and should not be changed!

/** Struct for async calls */
struct bt hci cmd response {

/** The ogfocf pair (is set by internal functions,
* for internal use only!) */

u short ogfocf;
/** The internal handle (is set by internal functions,

* for internal use only!) */
u short handle;
/** The response value of the function if max. short,

* values <0 represent an error! */ 10

long response;
/** This is the pointer to the result, if it is bigger

* than short (is set by internal functions,
* for internal use only!) */

void *ptr;
/** This is the wait-queue (is set by internal

* functions, for internal use only!) */
HANDLE block;

};

5.6. SEMAPHORES 29

Figure 5.2: HCI Call schema. First the application thread emits an hci
command and then may block (until a signal is sent to the thread queue).
Then the btstack thread receives the corresponding event and sets the return
parameter and signales the thread queue.

To hide all event specific details from the application programmer a HCI
call can be divided into two different steps. The first step involves the
application thread that calls the function, sets the parameters and sends
the data to the controller. Then this part is finished and the application
thread may do something else (wait for the command to finish or emit other
commands). The second part involves the btstack thread. As soon as the
result comes back (in form of an event) the btstack thread handles this
event, sets the return parameters in the specified response structure and
signals the queue in the structure. After the completion of this event the
btstack thread waits until new data from the transport layer arrives. See
Figure 5.2 for a graphical schema.

5.6 Semaphores

Another feature that is heavily used in this Bluetooth implementation is
semaphores (and mutexes, but these are handled as unary semaphores). This
stack uses some special add-ons to the standard semaphore implementation.
Additionally you can set the semaphore to a specific value, no matter what
value it had before. This is needed when the controller tells the stack an
explicit value, for example the number of free buffers, and the stack has to
set the semaphore accordingly. Another option is to increase the semaphore
not only by one, but by a specified value. This feature is needed when the
controller tells for example the number of completed packets.

5.7 Transport layer

The transport layer is actually quite simple and easy exchangeable. There
are only a few functions one has to implement.
This layer needs to offer a bt hci init dev(struct btstack ∗stack) function to
initialise the hardware. For the UART layer this function sets flow control,
speed, may initialise power and so on.

30 CHAPTER 5. IMPLEMENTATION

The function bt hci send pkt(struct btstack ∗stack, u char ∗pktptr) needs the
stack and an arbitrary HCI packet as parameter and sends the packet via
the transport that is specified in the stack.
At last the function u char ∗bt hci get pkt(struct btstack ∗stack) receives a
packet from the transport. This function is called from the main btstack
control thread and has to block until a packet is completely received.
There are actually four different kinds of packets that need to be sent to the
controller and be received. In the UART transport layer this is handled with
an additional byte for each packet that indicates the type of the following
packet.
So the send and get packet functions need to do this conversion from an
arbitrary HCI packet (event, command, ACL data or SCO data) to the
transport format and send it to the controller.

5.8 HCI layer

The HCI layer defines a protocol how the host can access the functions of
the controller. With these functions the host can set and read options like
local and remote name, timeouts and buffers. It is also suitable to open
baseband connections and search for nearby devices (inquiry).
The HCI layer also keeps track of all open connections in a connection table.
A special feature of this table is that it offers a unique virtual connection
handle in spite of the connection handle presented by the controller. The
problem is that the controller reuses the connection handle as soon as the
connection is closed. So the application may not be sure if the connection
was closed and is now talking to a new device or if it is the same connection.
So the stack’s connection table was extended to translate between controller
handles and host handles.
The host handles are unique for all stacks and every connection running on
a host. Currently this number is an u short and this means that at most
65534 unique connections are possible. After this number the handles will
be repeated. But this is enough for practical use.
To keep track of all connection changes (opening, closing and master/slave
role changes) a special callback can be registered that gets called every time
such an event occours.
Please refer to bt hci defs.h or the appendix for a list of implemented HCI
functions.

5.9 Packet handling

To keep the number of allocated buffers as low as possible per layer only
the really needed buffers are allocated. This means that the HCI layer only
allocates one event and one command packet that are placed directly in the

5.10. BTSTACK THREADS 31

btstack structure. Additionly the HCI layer has a pointer to a ACL packet
and a pointer to a SCO packet.
When a transport layer is registered, it passes valid buffer addresses to the
HCI layer. Every time a packet for the ACL or SCO layer arrives, the HCI
layer reads the data directly into the buffer specified by the ACL or SCO
layer.
This means that no extra copying of the data is needed, as the data is
already in the buffer of the layer where it is acutally needed.
The callback of the ACL or SCO layer has to complete as fast as possible
and return a new pointer to an ACL or SCO packet that is stored in the
HCI layer.

5.10 BTstack threads

In this section the layout of the application code and the btstack code will
be presented. This code is overlayed with the threads and on what aspects
of the code these threads are running.
See Figure 5.3 for details. On the left hand side we see that the application
threads run most of the time on their own code. But when a HCI command
is issued some functions of the btstack code are used. The btstack on the
right hand side uses only its own code. But control gets passed to the UART
functions and to the Bluetooth controller. The btstack thread also handles
the wait queues (for HCI commands) for the application theads such keeping
control of the callback and event handling.
The connection between application thread and btstack thread is defined in
the waitqeue array inside of the btstack structure. The application thread
calls an HCI function inside of the btstack code. This code registers an
internal response structure inside of this waitqeue array.
In this response structure the application thread saves the OGC, OCF and
if needed the connection handle. This information makes it possible for the
stack to assign the correct response structure to the correct incoming event.
After the response comes back from the Bluetooth controller the btstack
thread can look into the waitqueue array and is able to track the given
response structure down and fill in the return values. With this response
structure it is also possible for the btstack thread to awake the sleeping
application thread.
This implementation shows that it is possible to masquerade the asynchronic
calling conventions of the Bluetooth definition and offer two possibilities to
the programmer. With this implementation the programmer can chose every
time a Bluetooth function is called if a asynchronous or a synchronous calling
method is used.

32 CHAPTER 5. IMPLEMENTATION

Application Code btstack Code

btsta
ck T

hrea
d

BT Module

HCI Transport UART

write() read()

A
pp

T
hr

ea
d

send- & getpacket()HCI-Commands
(for stack & app)

E
ve

nt
 &

 C
al

lb
ac

k
ha

nd
lin

g

Figure 5.3: Layout of the program code overlayed with the running threads.

Chapter 6

Discussion

The HCI layer reached a stable state and is used in applications. Unfortu-
nately no L2CAP layer is yet available. One of the outstanding features is
the highly modular concept, that makes it possible to exchange nearly every
part of the stack and plug the layers together as the programmer likes to.
Also the interfaces were designed as clearly as possible, so it is easy to ex-
pand the stack and implement further layers. Nearly all the basic stuff is
done and the software is ready to be used and extended.
Further work is still required. Namely the L2CAP layer and then the RF-
COMM layer should be implemented. But work in this direction is already
in progress.
If Nut/OS is still used at this time then it should be quite easy to tunnel
TCP/IP over RFCOMM. The implementation of all the network protocols
was already done by the Nut/OS people. Except the integration of the Blue-
tooth stack as a network transport layer.
Finally the conclusion is positive. A portable, highly modular Bluetooth
stack was developed in about three months. There is still more work to do,
but the skeletal structure is running smoothly. Hopefully the stack will be
widely used and enhanced.

The current btstack release and additional information about the BTnodes
can be downloaded from http://www.btnode.ethz.ch/

33

34 CHAPTER 6. DISCUSSION

Chapter 7

Appendix

7.1 Implemented HCI commands

Following is a list of all implemented HCI commands.
If you are interested in the actual names and parameters of the functions,
please have a look at bt hci cmds.h for all HCI functions and bt hci api.h
for all other functions that are handled by the stack itself and that are not
sent to the controller.
Additional and more explaining information is also provided in these header
files.

7.1.1 Link Control

All commands with OGF LinkControl keep track of the open connections,
how to look for devices and the remote names.

1. Inquiry
Looks for other devices nearby.

2. Create connection
Creates a baseband connection to a specified device.

3. Disconnect
Disconnects an open connection.

4. Accept connection request
Accepts a connection request from a remote device.

5. Reject connection request
Rejects a connection request from a remote device.

6. Remote name request
Asks a remote device for its human readable name.

35

36 CHAPTER 7. APPENDIX

7.1.2 Link Policy

This OGF section handles link policy settings, like master-slave role changes.

1. Role discovery
Asks the controller if this device is currently master or slave of a spe-
cific connection.

2. Role change
Tries to perform a role change. (Master → Slave, or Slave → Master).

3. Write link policy settings
Sets the link policy settings for a connection. This determines if a role
change and hold and sniff mode and park state are possible

4. Write default link policy settings
Sets the link policy settings for all new connections. This determines
if a role change and hold and sniff mode and park state are possible

7.1.3 Host Control

This OGF handles some controller parameters.

1. Reset
This command performs a reset of the controller.

2. Set event filter
Sets an event filter, to suppress specific events.

3. Read PIN type
Reads the mode of the pin (variable or fixed).

4. Write PIN type
Sets the mode of the pin (variable or fixed).

5. Write local name
Sets the local human readable name of this device.

6. Read local name
Gets the local human readable name of this device.

7. Read connection accept timeout
Reads the timeout until a connection is accepted.

8. Write connection accept timeout
Writes the timeout until a connection is accepted.

7.1. IMPLEMENTED HCI COMMANDS 37

9. Read page timeout
Reads the timeout how long the local link manager will wait for a
baseband page response from the remote device.

10. Write page timeout
Writes the timeout how long the local link manager will wait for a
baseband page response from the remote device.

11. Read scan enable
Checks if this device can be found by an inquiry or page scans.

12. Write scan enable
Sets if this device can be found by an inquiry or page scans.

13. Read COD
Reads the local class of device.

14. Write COD
Sets the local class of device.

15. Set host controller to host flow control
Enabled or disabled the flow control for ACL and/or SCO connections

16. Host buffer size
Sets the number of packets the host can handle until the buffers are
filled.

17. Host number of completed packets
Tells the controller how many packets have been completed on the
host side.

18. Read inquiry mode
Checks if the inquiry mode includes the rssi (signal strength) value or
not.

19. Write inquiry mode
Sets if the inquiry mode includes the rssi (signal strength) value or
not.

20. Write link supervision timeout Sets the time until a no longer
responding device is noted.

21. Read link supervision timeout Checks the time until a no longer
responding device is noted.

38 CHAPTER 7. APPENDIX

7.1.4 Informational Parameters

This OGF keeps track of informational parameters, offered by the controller.

1. Read buffe size
Reads how many buffers and the maximum packet size the controller
can handle for ACL and SCO packets.

2. Read BD Address
Reads the local Bluetooth address.

7.1.5 Status Parameters

This OGF offers some status information.

1. Read RSSI
Returns the received signal strength for a specified connection.

7.1.6 Vendor Specific

This OGF offers some status information.

1. Set baudrate
Changes the baudrate of the controller and the host. Keep in mind,
that this command is Ericsson specific.

7.2 Dependencies of the OS

The dependencies on the underlying were kept as small as possible. Only
some functions are needed to port this stack to a different operating system.
These functions were used in the following files: bt hci.c, bt hci dispatch.c
and bt semaphore.c. In the UART transport some operating system depen-
dent functions are used to set flow control, speed and to do data input and
output. These functions are located in bt hci transport uart.c.

7.2.1 Threading

The current implementation uses a specific btstack thread to handle incom-
ing data and events. To declare these threads on the Nut/OS platform
the reserved keyword THREAD was used to specify the main thread of the
stack.
When the stack is initialised the function NutThreadCreate() is used to cre-
ate a new btstack thread. The btstack thread passes the control flow to
the next waiting thread after the handling of a packet. This is done with
NutThreadYield().

7.2. DEPENDENCIES OF THE OS 39

7.2.2 Thread queues and Nut/OS events

Nut/OS offers thread queues as a special feature. A running thread can wait
onto a queue with NutEventWait(). A special parameter is the maximum
time the thread will stay in this queue and wait for a signal. This time
interval is between 60 ms and infinite. Two possible signals can be sent to
the queue, one that wakes the longest waiting thread (NutEventPost() or a
signal that wakes all threads (NutEventBroadcast()).
The sending of these signals can happen in two ways. Either the control
gets passed to the thread with the highest priority (if the woken thread has
higher priority, it will run). This is done with NutEventPost() or NutEvent-
Broadcast(). Or the thread will only be woken and inserted into the Nut/OS
thread queue and wait for the sender to pass control. This queue keeps the
runnable threads that are waiting for the CPU. This is done with NutEvent-
PostAsync() or NutEventBroadcastAsync().

7.2.3 Low level functions

To ensure that no interrupt occurs between critical sections of the stack the
feature to disable and reenable interrupts was used. This is done with the
functions NutEnterCritical() and NutExitCritical().
NutRegisterDevice()) was used to register the UART in Nut/OS, then the
function fopen() opens the UART and fileno() returns the file number of
the UART. With this file handle low level read (read()) and write (write())
functions are then used.
To set speed, parity and other UART specific parameters the function ioctl()
was utilised.

7.2.4 Association from functions to files

bt hci.c: Contains the main thread of the btstack

1. THREAD Keyword to define a new thread.

2. NutThreadYield() Passes control to the next runnable thread.

3. NutThreadCreate() Creates and starts a thread.

bt hci dispatch.c: Contains dispatching functions to simplify HCI com-
mands.

1. NutEventWait() Waits for a signal.

2. NutEventBroadcastAsync() Broadcasts a signal to all waiting
threads in the queue and returns control to the callee.

3. NutEnterCritical() Disables interrupts.

40 CHAPTER 7. APPENDIX

4. NutExitCritical() Reenables interrupts.

bt semaphore.c: Implements semaphores for the bt stack.

1. NutEventWait() Waits for a signal.

2. NutEventPostAsync() Posts a signal to the longest waiting
thread in the queue and returns the control to the callee.

3. NutEventBroadcastAsync() Broadcasts a signal to all waiting
threads in the queue and returns control to the callee.

4. NutEnterCritical() Disables interrupts.

5. NutExitCritical() Reenables interrupts.

bt hci transport uart.c: Implements the UART transport layer and of-
fers standardised functions to the HCI layer.

1. NutRegisterDevice() Registers an UART deivce in Nut/OS.

2. ioctl() Changes some device specific values.

3. fopen() Opens a specified device for reading and / or writing.

4. fileno() Returns the file number of an opened device.

5. read() Reads a given amount of bytes from the UART. This
function blocks the calling thread until at least one byte is read.

6. write() Writes a given amount of bytes to the UART. This
function blocks the calling thread, until all bytes are in the write
ringbuffer of the operating system.

Bibliography

[1] Bluetooth specification and additional information:
http://www.Bluetooth.org

[2] Nut/OS main page:
http://www.ethernut.de/en/software.html

[3] Egnite software - holder of Nut/OS sources:
http://www.egnite.de

[4] Bluez - Official linux bt stack:
http://bluez.sourceforge.net

[5] OpenBT - Alternative bt stack:
http://developer.axis.com

[6] IAR Bluetooth Stack for embedded systems:
http://www.iar.com/Products/?name=MPBT

[7] MicroBlue - Bluetooth stack by BeeCon:
http://www.beecon.de/produkte/MicroBlue/index.html

[8] TinyBT - TinyOS for BTnodes:
http://www.diku.dk/ leopold/work/tinybt.pdf

[9] TinyOS - Event driven OS for microcontrollers:
http://webs.cs.berkeley.edu/tos/

[10] lwBT - Bluetooth implementation for lwIP:
http://www.sm.luth.se/ conny/lwbt/

[11] lwIP - A Lightweight TCP/IP stack for embedded systems:
http://savannah.nongnu.org/projects/lwip/

[12] Microsoft Bluetooth Implementation and Wireless Information:
http://www.microsoft.com/whdc/device/network/wireless/

[13] BTnodes - A distributed environment for prototyping ad hoc networks:
http://www.btnode.ethz.ch

41

42 BIBLIOGRAPHY

[14] BTnode Bluetooth stack - Software repository:
http://sourceforge.net/projects/btnode

[15] CVS - A collaborative source administration software:
http://www.gnu.org/software/cvs/

