

Fuzzing

Mathias Payer, EPFL

Motivation

● Traditional testing can’t find vulnerabilities
– Unit testing

– Integration testing

● Proactive bug finding increasingly necessary
– Software quality assurance

– Protect software customers from being attacked

Automatic Bug Finding

● Static analysis
– Analyze the program without executing it

– Imprecision by lack of runtime information, e.g. aliasing

● Symbolic analysis
– Execute the program symbolically

– Keeping track of branch conditions

– Not scalable

● Dynamic analysis
– Inspect the program by executing it

– Challenging to cover all paths

Fuzzing

● A random testing technique that mutates input
to improve test coverage

● State-of-art fuzzers use coverage as feedback
to evolutionarily mutate the input

Input Generation

Tests

Debug
Exe Coverage

Crashes

Fuzzing as bug finding approach

● Fuzzing is highly effective bug finding (CVEs)
– Proactive defense measure

– First step in exploit development

Different types of Fuzzers

● Black box, generate random input
– Set of valid samples will help! (e.g., Radamsa)

● Model-based: generate grammar-based input
– Follows specification more closely

● Coverage-guided fuzzing, feedback loop
– Push input generation to new coverage

– AFL, Hongfuzz, libFuzzer

AFL: Coverage-Guided Fuzzer

● Genetic algorithms to generate new input
● Simple, yet very effective: tons of security bugs

– Take one input from queue

– Minimize test case (as long as same behavior)

– Mutate and execute

– If new input: store sample in queue

Lab 01: Fuzzing

Lab 01: Fuzzing

● Goal: play with modern fuzzers
– (Task 0): prepare your system and read up

– Task 1: effects of seed selection

– Task 2: fuzzing native vs. instrumented binaries

– (Task 3): different forms of instrumentation

● Work smart, intended time per task:
– 2 hours of thinking time

– 4-6 hours of CPU time

● Write a quick summary of your findings
– Deadline: November 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

