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Software security

Software lifecycle
Security policies
Software bugs
Attack vectors
Mitigations
Program testing
Case studies: web, mobile
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Software lifecycle

Software lives and evolves
Security must be first class citizen

Secure requirements/specifications
Security-aware design (what are threats?)
Secure implementation (code reviews)
Testing (read team, fuzzing, unit)
Updates and patching
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Security policies

Memory safety: spatial and temporal memory safety
SoftBound: spatial safety through disjoint metadata for pointers
CETS: temporal memory safety through versioning of
pointer/object

Type-safe code restricted to access authorized locations
Keep per-object disjoint metadata
Check all type casts
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Software bugs

Memory safety bugs allow program state modification
Spatial: bounds violation
Temporal: validity

Type confusion reuses memory as different type
Integer overflow results in miscomputation (pointer arithmetic)
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Attack vectors

Exploitation is an art
Constrained resources (buffer size, limited control, limited
information), must control the application state
Execute outside of defined program semantics
Control-flow hijacking: code injection versus code reuse
Data-only attacks
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Mitigations

Data Execution Prevention: stops code injection (not code
reuse)
Address Space Layout Randomization: probabilistic, prone to
memory leaks
Stack canaries: probabilistic, prone to direct overwrites
Safe Exception Handling: exception handler reuse
Fortify source: format string protection
Stack integrity: stack canaries, shadow stacks, safe stacks
CFI: protect forward edge control-flow hijacking
CPI: enforce memory safety for code pointers and sensitive
pointers
Sandboxing to enforce privilege domains
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Software testing

Find bugs before attacker
Manual testing: write unit tests
Sanitizers allow early bug detection
Fuzz testing automates and randomizes testing
Symbolic/concolic testing allows full coverage analysis

Mathias Payer CS527 Software Security



Case studies: web, mobile

Daemons are long running, complex, and exposed
Command/SQL injection is code injection
XSS allows execution of malicious JavaScript
Android security evolved over time, hardened base system
Applications are vetted centrally, installed from market
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Summary summary

Software security is complex
Think across all layers of the stack
Planning is important
Exam: 2hrs, 120 points, 7 questions

1/3 2/3 split before/after midterm
Reverse engineering question!
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