
CS527 Software Security
Summary

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security



Software security

Software lifecycle
Security policies
Software bugs
Attack vectors
Mitigations
Program testing
Case studies: web, mobile

Mathias Payer CS527 Software Security



Software lifecycle

Software lives and evolves
Security must be first class citizen

Secure requirements/specifications
Security-aware design (what are threats?)
Secure implementation (code reviews)
Testing (read team, fuzzing, unit)
Updates and patching

Mathias Payer CS527 Software Security



Security policies

Memory safety: spatial and temporal memory safety
SoftBound: spatial safety through disjoint metadata for pointers
CETS: temporal memory safety through versioning of
pointer/object

Type-safe code restricted to access authorized locations
Keep per-object disjoint metadata
Check all type casts

Mathias Payer CS527 Software Security



Software bugs

Memory safety bugs allow program state modification
Spatial: bounds violation
Temporal: validity

Type confusion reuses memory as different type
Integer overflow results in miscomputation (pointer arithmetic)

Mathias Payer CS527 Software Security



Attack vectors

Exploitation is an art
Constrained resources (buffer size, limited control, limited
information), must control the application state
Execute outside of defined program semantics
Control-flow hijacking: code injection versus code reuse
Data-only attacks

Mathias Payer CS527 Software Security



Mitigations

Data Execution Prevention: stops code injection (not code
reuse)
Address Space Layout Randomization: probabilistic, prone to
memory leaks
Stack canaries: probabilistic, prone to direct overwrites
Safe Exception Handling: exception handler reuse
Fortify source: format string protection
Stack integrity: stack canaries, shadow stacks, safe stacks
CFI: protect forward edge control-flow hijacking
CPI: enforce memory safety for code pointers and sensitive
pointers
Sandboxing to enforce privilege domains

Mathias Payer CS527 Software Security



Software testing

Find bugs before attacker
Manual testing: write unit tests
Sanitizers allow early bug detection
Fuzz testing automates and randomizes testing
Symbolic/concolic testing allows full coverage analysis

Mathias Payer CS527 Software Security



Case studies: web, mobile

Daemons are long running, complex, and exposed
Command/SQL injection is code injection
XSS allows execution of malicious JavaScript
Android security evolved over time, hardened base system
Applications are vetted centrally, installed from market

Mathias Payer CS527 Software Security



Summary summary

Software security is complex
Think across all layers of the stack
Planning is important
Exam: 2hrs, 120 points, 7 questions

1/3 2/3 split before/after midterm
Reverse engineering question!

Mathias Payer CS527 Software Security


