
CS527 Software Security
Mobile Security

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security

Android statistics

1.4 billion users (1)
Android generates $31 billion revenue (2)
4,000+ different devices (1)
Android OS with highest crash rate: Gingerbread (3)
Percentage of Android devices running Marshmallow: 1.2% (1)
Percentage of Android devices running Lollipop: 34.1% (1)

(1 DMR stats, 9/29/15, 2 Bloomberg, 1/21/16, 3 Greenbot,
3/27/14)

Mathias Payer CS527 Software Security

Android history

2005: Google buys Android
2007: Initial SDK released
2008: First devices announced
2009: Cupcake (1.5, 3), Donut (1.6, 4), Eclair (2.0, 5)
2010: Froyo (2.2, 8), Gingerbread (2.3, 9)
2011: Honeycomb (3.0, 11), Ice Cream Sandwich (4.0.1, 14)
2012: Jelly Been (4.1.1, 16)
2013: KitKat (4.4, 19)
2014: Lollipop (5.0, 21)
2015: Marshmallow (6.0, 23)
2016: Nougat (7.0, 24-25)
2017: Oreo (8.0 - 8.1, 26-27)
2018: Android P?

Mathias Payer CS527 Software Security

Android security goals

Isolate individual applications
Protect system resources from applications
Vet applications “online”
Protect data of the user (until 5.0 single user)

Mathias Payer CS527 Software Security

Android security architecture

Applications are carefully vetted server-side and only approved
applications can be installed from the “market”
Each application runs in a Java-like sandbox and is restricted to
user-granted permissions and can therefore only communicate
through well-defined API channels with other applications
The system is hardened against local user (app-based) attacks.

Mathias Payer CS527 Software Security

Android app security

Each apps runs in its own secure context/sandbox
Interactions between apps are restricted through the API
Each app has an associated policy, encoding the permissions
Apps are signed by the developer, vetted, and installed from a
central market

Mathias Payer CS527 Software Security

Android system security

Hardened Linux kernel protects applications
Each application runs as its independent user
Stringent permissions on file systems (except sdcard)
SELinux to apply access control policies on processes
File system encryption
User-space: stack canaries, integer overflow mitigation, double
free protection (through allocator), fortify source, NX,
mmap_min_addr, ASLR, PIE, relro, immediate binding
Each release: security updates, patches, toolchain updates,
tigther security defaults

Mathias Payer CS527 Software Security

Android permissions

Complex permission system on a per-app basis.

Camera
Location
Bluetooth
Telephony
SMS/MMS functionality
Network/data connections

Mathias Payer CS527 Software Security

Android intents

Google’s idea of mobile IPC
An Intent is a simple message object that represents an
“intention” to do something. For example, if your
application wants to display a web page, it expresses its
“Intent” to view the URL by creating an Intent instance
and handing it off to the system. The system locates
some other piece of code (in this case, the Browser) that
knows how to handle that Intent, and runs it. Intents can
also be used to broadcast interesting events (such as a
notification) system-wide. (From Google’s Android
website.)

Mathias Payer CS527 Software Security

(Some) Android attack vectors

Unauthorized intent receipt: attacker creates an intent filter,
receives other apps’ intents that contain privileged information
(e.g., intent filter for web service intercepts online payment
process)
Intent spoofing: attacker sends a malicious intent to an intent
processor (e.g., flooding the network with malicious messages)
Insecure storage: there are no access restrictions on the SD
card (why?), an attacker may read/write any data on the SD
card
Insecure communication: run Wireshark to intercept traffic
Overprivileged app: confused deputy, bugs in application can
be leveraged by attacker to gain privileges
Unsafe privileges: there’s only one Bluetooth privilege,
privileges are per app, not per connected device

Mathias Payer CS527 Software Security

Summary and conclusion

Android security evolved over time
Android systems hardened against exploits
Developers sign apps which identifies them (comes with a cost)
Applications are vetted centrally and installed from the market

Mathias Payer CS527 Software Security

