
CS527 Software Security
Web Security

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security

Daemons / Services / Servers

A daemon is a long running service that serves outside
requests. A web server, a mail server, or a DNS server are
examples of daemons.

What makes daemons prone to attacks?

Daemons are long running
Daemons are complex (multi-threaded, caching, broad
functionalities)
Daemons are exposed

Mathias Payer CS527 Software Security

Daemons / Services / Servers

A daemon is a long running service that serves outside
requests. A web server, a mail server, or a DNS server are
examples of daemons.

What makes daemons prone to attacks?

Daemons are long running
Daemons are complex (multi-threaded, caching, broad
functionalities)
Daemons are exposed

Mathias Payer CS527 Software Security

Daemons are long running
ASLR/stack canaries are probabilistic, single secret per process
Heap layout influenced by concurrent allocations
Information leaks become more dangerous

Mathias Payer CS527 Software Security

Daemons are complex
Crashing threads are restarted: resilience/uptime versus security
Large set of functionalities increases attack surface
Shared secrets across users in single address space

Mathias Payer CS527 Software Security

Daemons are exposed
Concurrent users must be serviced
Outside connections are allowed
Attackers can leverage many different IPs (what about rate
limiting accounts?)

Mathias Payer CS527 Software Security

Daemon compartmentalization
Break complexity into smaller compartments
Develop “fault compartments”, can fail independently
Goal: one component fails, others continue to function

Mathias Payer CS527 Software Security

Example: mail agent
Mail agents need to do a plethora of tasks:

Send/receive data from the network
Manage a pool of received/unsent messages
Provide access to stored messages for each user

Two approaches: sendmail and qmail
Sendmail uses a typical Unix approach with a large monolithic
server and is known for the high complexity and previous
security vulnerabilities
QMail uses a modern least privilege approach with a set of
communicating processes.

Mathias Payer CS527 Software Security

QMail
Separate modules run under separate user IDs (isolation)
Each user ID has only limited access to a subset of the
resources (least privilege)
Only one very small component runs as suid root
Only one very small component running as root

Mathias Payer CS527 Software Security

QMail

Figure 1:

Mathias Payer CS527 Software Security

QMail components
qmaild/user: incoming email
suid qmaild: split message into contents and headers, signal
qmail-send
qmail-send: send locally or remotely
qmail-lspawn: root, spawns qmail-local with ID of user
qmail-local: handles alias expansion, delivers locally, or signals
qmail-queue if needed
qmail-remote: sends remote message

Mathias Payer CS527 Software Security

Case study: daemon attack surface

Command injection
SQL injection
Cross site scripting

Mathias Payer CS527 Software Security

Command injection
Unix philosophy: leverage simple tools to achieve complex
results
Data is passed to scripts or programs as parameters
Often the constrained communication channel will contain both
code and data (e.g., the query command and the query
arguments)

While functionality is tested, the security guarantees are often
not
Vetting and escaping arguments correctly is challenging

Mathias Payer CS527 Software Security

Example: web-based command injection
Dynamic web pages execute code on the server
This allows the web server to add content from other sources
(e.g., databases) and provide rich interfaces back to the user
Build and combine complex parts dynamically and send the
final result to the user (e.g., a content management system
that loads contents from the database, intersects it with the
site template, adds navigation modules and other third party
modules)

Mathias Payer CS527 Software Security

Example: web-based command injection
<html><head><title>Display a file</title></head>
<body>
<? echo system("cat ".$_GET['file']); ?>
</body></html>

There is no separation of code and data that is passed through
the channel

display.php?file=info.txt\%3bcat\%20\%2fetc\%2fpasswd
; allows chaining of individual bash commands
system is a powerful command that executes full shell scripts

Mathias Payer CS527 Software Security

Example: web-based command injection
<html><head><title>Display a file</title></head>
<body>
<? echo system("cat ".$_GET['file']); ?>
</body></html>

There is no separation of code and data that is passed through
the channel

display.php?file=info.txt\%3bcat\%20\%2fetc\%2fpasswd
; allows chaining of individual bash commands
system is a powerful command that executes full shell scripts

Mathias Payer CS527 Software Security

Command injection mitigation
Can we just block ;?

Blacklisting is not a good solution, attack space may be infinite
What about using a pipe?
What about using a backtick?
What about other commands (cat instead of rm)
Even the shell has many builtin commands

Mathias Payer CS527 Software Security

Command injection mitigation
Can we just block ;?

Blacklisting is not a good solution, attack space may be infinite
What about using a pipe?
What about using a backtick?
What about other commands (cat instead of rm)
Even the shell has many builtin commands

Mathias Payer CS527 Software Security

Mitigation through validation
Ensure that the filename matches a set of allowed filenames
Non-alphanumeric characters are needed to execute commands
Fix both directory and set of allowed files
Disallow special characters in the file name

Mathias Payer CS527 Software Security

Mitigation through escaping
Escape parameters so that interpreter can distinguish between
data (channel) and control (channel)
Escaped form: system("cat 'file.txt')
How do you write such an escape function?

You don’t – there’s a huge potential for error. Use built-in ones.
Each language has its own flavours of escape functions.

Mathias Payer CS527 Software Security

Mitigation through escaping
Escape parameters so that interpreter can distinguish between
data (channel) and control (channel)
Escaped form: system("cat 'file.txt')
How do you write such an escape function?

You don’t – there’s a huge potential for error. Use built-in ones.
Each language has its own flavours of escape functions.

Mathias Payer CS527 Software Security

Mitigation through reduction of privileges
The system command is immensely powerful as it launches a
new shell interpreter
Fall down to simplest possible API: open the file yourself and
read it into a buffer or, if you must execute a command, launch
it directly and not through the shell

Mathias Payer CS527 Software Security

Generalized injection attacks
What enables injection attacks?
Both code and data share the same channel.
In the system example above, cat and file are specified as part
of the same “shell script” where ; starts a new command
In code injection the data on the stack and the executed code
share the same channel (as do code pointers)

Mathias Payer CS527 Software Security

Example: SQL injection
$sql = "SELECT * FROM users WHERE email='"

. $_GET['email']

. "' AND pass='" . $_GET['pwd']

. ';"

What is wrong with this query?

An attacker may inject ’ to escape queries and inject
commands.
(Also, the password is not hashed but stored in plaintext.)
SQL injection is, in spirit, the same attack as code injection or
command injection.

Mathias Payer CS527 Software Security

Example: SQL injection
$sql = "SELECT * FROM users WHERE email='"

. $_GET['email']

. "' AND pass='" . $_GET['pwd']

. ';"

What is wrong with this query?

An attacker may inject ’ to escape queries and inject
commands.
(Also, the password is not hashed but stored in plaintext.)
SQL injection is, in spirit, the same attack as code injection or
command injection.

Mathias Payer CS527 Software Security

SQL injection mitigation
Same idea: validation, escaping, or reduction of privileges.
Separate control and data channel: prepared SQL statements

Similar to printf, define “format” string and supply arguments

sql("SELECT * FROM users WHERE email=\$1 AND pwd=\$2", email, pwd)

Mathias Payer CS527 Software Security

Cross Site Scripting

XSS allows an attacker to inject and execute JavaScript
(or other content) in the context of another web page
(e.g., malicious JavaScript code that is injected into the
banking web page of a user to extract user name and
password or to issue counterfeit transactions).

Three kinds of XSS: persistent/stored, reflected, and client-side
XSS.

Mathias Payer CS527 Software Security

Persistent XSS
The attacker stores the attack data on the server itself
A simple chat application allows users to store arbitrary text
that is then displayed to other logged in users
The attacker may send a message that contains
<script>alert('Mr. Evil here');</script>
Common use case: feedback forms, blog comments, or even
product meta data (you don’t have to see it to execute it)
Bug is on the server side

Mathias Payer CS527 Software Security

Reflected XSS
The attacker encodes the attack data in the link that is then
sent to the user (e.g., through email or on a compromised site)
A web interface may return your query as part of the results
(i.e., “Your search for ‘query’ returned 23 results.”)
Requirement: user must click on attacker-controlled link
Bug is on the server side

Mathias Payer CS527 Software Security

Client-side XSS
Large applications contain lots of JS code. Code itself may
contain vulnerabilities.
JS may use URL parameters to process information (think
AJAX/JSON requests to process data in the background)
Attacker must make user follow the compromised link but,
compared to reflected XSS, the server does not embed the
JavaScript code into the page through server side processing
but the user-side JavaScript parses the parameters and misses
the attack
The bug is on the client side, in the server-provided JS

Mathias Payer CS527 Software Security

Summary and conclusion

Daemons are long running, complex, and exposed.
Compartmentalization helps reduce attack surface
Command/SQL injection is a powerful attack across many
applications
Separation of code and data is crucial
XSS allows execution of malicious JS code through a web
application
All three types of attacks share the common problem that code
and data are not separated

Mathias Payer CS527 Software Security

