
CS527 Software Security
Software Bugs

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security

From Software Bugs to Attack Primitives

Attack primitives are exploit building blocks
Software bugs map to attack primitives, i.e., enable
computation
A chain of attack primitives results in an exploit, the underlying
bugs of the attack primitives become vulnerabilities

Mathias Payer CS527 Software Security

Attack primitive: arbitrary write
int global[10];

void set(int idx, int val) {
global[idx] = val;

}

An attacker with control of idx and val can set any 4b location
+/- 2GB around global to an arbitrary value.

Mathias Payer CS527 Software Security

Attack primitive: arbitrary write, limited location
void vuln(char *u1) {

/* assert(strlen(u1) < MAX); */
char tmp[MAX];
strcpy(tmp, u1);
/* equivalent:

while (*u1 != 0)
*(ptr++) = *buf++;

*/
return strcmp(tmp, "foo");

}

An attacker with control of u1 can overwrite values (except \0) on
the stack above tmp, ending with an \0 byte.
Note that constrained writes only allow some values to be written.

Mathias Payer CS527 Software Security

Attack primitive: arbitrary read
int global[10];

int get(int idx) {
return global[idx];

}

An attacker with control over idx and the return value can read
arbitrary 4b values +/- 2 GB of global’s address.

Mathias Payer CS527 Software Security

Common bug types
Not all bugs map as clearly to primitives as the earlier examples.
C/C++ provides many different opportunities for failure.

Figure 1:

Mathias Payer CS527 Software Security

Improper initialization
typedef unsigned int uint;
uint getmin(int *arr, uint len) {

int min;
for (int i=0; i<len; i++)

min = (min < arr[i]) ? min : arr[i];
}

min is not initialized and may have an arbitrary value.

Mathias Payer CS527 Software Security

Improper initialization
typedef unsigned int uint;
uint getmin(int *arr, uint len) {

int min;
for (int i=0; i<len; i++)

min = (min < arr[i]) ? min : arr[i];
}

min is not initialized and may have an arbitrary value.

Mathias Payer CS527 Software Security

Side effects
if (foo == 12 || bar = 13)

baz == 12;

bar is set if foo==12, while baz is never set. Watch out when
calling functions in an expression, their side effects will linger.

Mathias Payer CS527 Software Security

Side effects
if (foo == 12 || bar = 13)

baz == 12;

bar is set if foo==12, while baz is never set. Watch out when
calling functions in an expression, their side effects will linger.

Mathias Payer CS527 Software Security

Scoping
int a;
void calc(int b) {

int a = b*12;
if (b + 24 == 96)

a = b;
}

The local variable a is assigned while the global variable a is not
modified.

Mathias Payer CS527 Software Security

Scoping
int a;
void calc(int b) {

int a = b*12;
if (b + 24 == 96)

a = b;
}

The local variable a is assigned while the global variable a is not
modified.

Mathias Payer CS527 Software Security

Operator precedence
node *find(node **curr, val) {

while (*curr != NULL)
if (*curr->val == val) return *curr;

else
*curr = *curr->next;

}

The arrow operator -> and the dot operator . bind more tightly
than dereference *, parenthesis would solve the problem.

Mathias Payer CS527 Software Security

Operator precedence
node *find(node **curr, val) {

while (*curr != NULL)
if (*curr->val == val) return *curr;

else
*curr = *curr->next;

}

The arrow operator -> and the dot operator . bind more tightly
than dereference *, parenthesis would solve the problem.

Mathias Payer CS527 Software Security

Control-flow
int x,y;
for (x=0; x<xlen; x++)

for (y=0; y<ylen; y++);
pix[y*xlen + x] = x*y;

A rogue ; terminates the statement in the second loop and the
assignment will only be executed once. Only the (out-of-bounds)
write pix[ylen*xlen+xlen] = xlen*ylen will be executed.
Such errors may result in partial initialization, allowing an adversary
to leak information.

Mathias Payer CS527 Software Security

Control-flow
int x,y;
for (x=0; x<xlen; x++)

for (y=0; y<ylen; y++);
pix[y*xlen + x] = x*y;

A rogue ; terminates the statement in the second loop and the
assignment will only be executed once. Only the (out-of-bounds)
write pix[ylen*xlen+xlen] = xlen*ylen will be executed.
Such errors may result in partial initialization, allowing an adversary
to leak information.

Mathias Payer CS527 Software Security

Control-flow
if (isbad(cert))

goto fail;
if (invalid(cert))

goto fail;
goto fail;

A double goto executes in any case (it is no longer scoped by the if)
and always errors out. This was the famous goto fail bug in Apple’s
SSL implementation.

Mathias Payer CS527 Software Security

Control-flow
if (isbad(cert))

goto fail;
if (invalid(cert))

goto fail;
goto fail;

A double goto executes in any case (it is no longer scoped by the if)
and always errors out. This was the famous goto fail bug in Apple’s
SSL implementation.

Mathias Payer CS527 Software Security

Use-after-free
Node *ptr = (Node*)malloc(sizeof(Node));
ptr->val = getval();
free(ptr);
search(ptr);

A memory object is used after it has been deallocated.

Mathias Payer CS527 Software Security

Type confusion arises through illegal downcasts

Figure 2:

Child1 *c = new Child1();
Parent *p = static_cast<Parent*>(c); // OK
Child2 *d = static_cast<Child2*>(p); // Fail!

Mathias Payer CS527 Software Security

Summary

Memory safety bugs allow program state modification
Spatial memory safety focuses on bounds
Temporal memory safety focuses on validity

Type safety ensures that objects have the correct type
Large amounts of bug classes lead to fun vulnerabilities

Mathias Payer CS527 Software Security

