
CS527 Software Security
Introduction

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security



About me

Instructor: Mathias Payer
Research area: system/software security

Memory/type safety
Mitigating control-flow hijacking
Compiler-based defenses
Binary analysis and reverse engineering

Founded b01lers CTF team in 2014.
Homepage: http://nebelwelt.net

Mathias Payer CS527 Software Security

http://nebelwelt.net


Support

TA: Bader AlBassam
Research area: software security
CTF player
B01lers team leader

Mathias Payer CS527 Software Security



Course outline

Secure software lifecycle
Security policies
Attack vectors
Defense strategies
Case studies: browser/web/mobile security

Mathias Payer CS527 Software Security



Why should you care?

Security impacts everybody’s day-to-day life
Security impacts your day-to-day life
User: make safe decisions
Developer: design and build secure systems
Researcher: identify flaws, propose mitigations

Mathias Payer CS527 Software Security



Software Engineering versus Security

Software engineering aims for

Dependability: producing fault-free software
Productivity: deliver on time, within budget
Usability: satisfy a client’s needs
Maintainability: extensible when needs change

Software engineering combines aspects of PL, networking, project
management, economics, etc.
Security is secondary and often limited to testing.

Mathias Payer CS527 Software Security



Definition: Security

Security is the application and enforcement of policies
through mechanisms over data and resources.

Policies specify what we want to enforce
Mechanisms specify how we enforce the policy (i.e., an
implementation/instance of a policy).

Mathias Payer CS527 Software Security



Definition: Software Security

Software Security is the area of Computer Science that
focuses on (i) testing, (ii) evaluating, (iii) improving, (iv)
enforcing, and (v) proving the security of software.

Mathias Payer CS527 Software Security



Why is software security difficult?

Human factor
Concept of weakest link
Performance
Usability

Mathias Payer CS527 Software Security



Best practices?

Always lock your screen (on mobile/desktop)
Unique password for each service
Two-factor authentication
Encrypt your transport layer (TLS)
Encrypt your messages (GPG)
Encrypt your filesystem (DM-Crypt)
Disable password login on SSH
Open (unkown) executables/documents in an isolated
environment

Mathias Payer CS527 Software Security



Definition: Software Bug

A software bug is an error, flaw, failure, or fault in a
computer program or system that causes it to produce an
incorrect or unexpected result, or to behave in unintended
ways. Bugs arise from mistakes made by people in either a
program’s source code or its design, in frameworks and
operating systems, and by compilers.

Source: Wikipedia

Mathias Payer CS527 Software Security



Definition: Software Vulnerability

A vulnerability is a software weakness that allows an
attacker to exploit a software bug. A vulnerability requires
three key components (i) system is susceptible to flaw, (ii)
adversary has access to the flaw (e.g., through information
flow), and (iii) adversary has capability to exploit the flaw.

Mathias Payer CS527 Software Security



Course goals

Software running on current systems is exploited by attackers
despite many deployed defence mechanisms and best practices for
developing new software.
Goal: understand state-of-the-art software attacks/defenses across
all layers of abstraction: from programming languages, compilers,
runtime systems to the CPU, ISA, and operating system.

Mathias Payer CS527 Software Security



Learning outcomes

Understand causes of common weaknesses.
Identify security threats, risks, and attack vector.
Reason how such problems can be avoided.
Evaluate and assess current security best practices and defense
mechanisms for current systems.
Become aware of limitations of existing defense mechanisms
and how to avoid them.
Identify security problems in source code and binaries, assess
the associated risks, and reason about severity and
exploitability.
Assess the security of given source code.

Mathias Payer CS527 Software Security



Syllabus: Basics

Secure software lifecycle: Design; Implementation; Testing;
Updates and patching
Basic security principles: Threat model; Confidentiality,
Integrity, Availability; Least privileges; Privilege separation;
Privileged execution; Process abstraction; Containers;
Capabilities
Reverse engineering: From source to binary; Process memory
layout; Assembly programming; Binary format (ELF)

Mathias Payer CS527 Software Security



Syllabus: Policies and Attacks

Security policies: Compartmentalization; Isolation; Memory
safety; Type safety
Bug, a violation of a security policy: Arbitrary read;
Arbitrary write; Buffer overflow; Format string bug; TOCTTOU
Attack vectors: Confused deputy; Control-flow hijacking;
Code injection; Code reuse; Information leakage;

Mathias Payer CS527 Software Security



Syllabus: Defenses

Mitigations: Address Space Layout Randomization; Data
Execution Prevention; Stack canaries; Shadow stacks;
Control-Flow Integrity; Sandboxing; Software-based fault
isolation
Testing: Test-driven development; Beta testing; Unit tests;
Static analysis; Fuzz testing; Symbolic execution; Formal
verification
Sanitizer: Address Sanitizer; Valgrind memory checker;
Undefined Behavior Sanitizer; Type Sanitization (HexType)

Mathias Payer CS527 Software Security



Syllabus: Case studies

Browser security: Browser security model; Adversarial
computation; Protecting JIT code; Browser testing
Web security: Web frameworks; Command injection;
Cross-site scripting; SQL injection
Mobile security: Android market; Permission model; Update
mechanism

Mathias Payer CS527 Software Security



Course material

Software security is rapidly evolving
There are no standard text books

Research papers
Articles and tutorials
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces
Trent Jaeger, Operating System Security

Labs and exercises

Mathias Payer CS527 Software Security

http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://www.morganclaypool.com/doi/abs/10.2200/S00126ED1V01Y200808SPT001


Capture-The-Flag!
Security awareness is an acquired skill. This class heavily
involves programming and security exercises.
A semester long Capture-The-Flag (CTF) to train security
skills:

Binary analysis
Reverse engineering
Exploitation techniques
Web challenges

Mathias Payer CS527 Software Security



Course project (1/2)
Design and implementation of a project in C
Security evaluation of your peers’ applications
Fixing any reported security vulnerabilities
Teams of up to 3 people allowed

Mathias Payer CS527 Software Security



Course project (2/2)
Use a source repository to check in solutions,
Organize your project according to a design document,
Peer review and comment the code of other students,
Work with a large code base, develop extensions.

Mathias Payer CS527 Software Security



Grading

Lab assignments (CTF): 25%
Programming project: 25%
Midterm: 20%
Final: 30%
The grade will be curved.

Mathias Payer CS527 Software Security



Academic Integrity

All work that you submit in this course must be your own.
Unauthorized group efforts are considered academic dishonesty.
You are allowed to discuss the problem with your peers but you may
not copy or reuse any part of an existing solution.
We will use automatic tools to compare your solution to those of
other current and past students. The risk of getting caught is too
high!

Mathias Payer CS527 Software Security



Summary

Software Security is the area of Computer Science that focuses
on (i) testing, (ii) evaluating, (iii) improving, (iv) enforcing,
and (v) proving the security of software.
Learn to identify common security threats, risks, and attack
vectors for software systems.
Assess current security best practices and defense mechanisms
for current software systems.
Design and evaluate secure software.
Have fun!

Mathias Payer CS527 Software Security


