
BUILDING SECURITY IN

Editors: Liliana Pasquale, liliana.pasquale@ucd.ie | Fabio Massacci, fabio.massacci@ieee.org | Antonino Sabetta, antonino.sabetta@sap.com

 Copublished by the IEEE Computer and Reliability Societies March/April 2025 81
1540-7993 © 2025 IEEE. All rights reserved, including
rights for text and data mining, and training of
artificial intelligence and similar technologies.

Large language models (LLMs) hold great promise in solving many challenges arising from software complexity,
including the possibility of automating code generation and repair. Although we cannot deny the groundbreaking
nature of LLM-based code repair, we must be realistic in positioning current results.

T his “Building Security In”
column explores the chal-

lenges in using LLMs for automated
code generation and program repair.

Introduction
Joanna C. S. Santos and Mathias
Payer: With the latest advances
in LLMs, artificial intelligence
(AI)-based code development
assistants are increasingly part of
day-to-day software development.
A recent study (https://tinyurl.
com/3kub3awn) of 500 U.S.-based
developers showed that 92% use
AI coding assistants for work and
personal use. The increased pro-
ductivity perceived by developers

partly explains this fast, widespread
adoption; AI helps them automate
repetitive tasks so that they can
focus on higher-level challenging
tasks.1

Péter Hegedűs, and Lin Tan:
Automated program repair (APR)
aims to generate source code to fix
software defects and vulnerabilities
automatically. Research on APR has
advanced significantly with genera-
tive AI models. Long short-term
memory models achieved notable
success in generating complex, syn-
tactically correct code after training
on extensive source code datasets.
LLMs further improved APR. Since
they are pretrained on an enormous
amount of natural language text
and source code, they also offer an
out-of-the-box solution for code

repair. Recent studies2,3,10,11 show
that LLMs can fix issues in the code,
such as defects, vulnerabilities, and
code smells. In some cases, code

Digital Object Identifier 10.1109/MSEC.2025.3530488

Date of current version: 17 March 2025

Challenges to Using Large

Language Models in Code

Generation and Repair

Liliana Pasquale | University College Dublin and Lero—The SFI Research Centre for Software

Antonino Sabetta | SAP

Marcelo d’Amorim | North Carolina State University

Péter Hegedűs | University of Szeged and FrontEndART Ltd.

Mehdi Tarrit Mirakhorli | University of Hawaii at Manoa

Hamed Okhravi | Massachusetts Institute of Technology Lincoln Laboratory

Mathias Payer | EPFL

Awais Rashid | University of Bristol

Joanna C. S. Santos | University of Notre Dame

Jonathan M. Spring | Cybersecurity and Infrastructure Security Agency

Lin Tan | Purdue University

Katja Tuma | Vrije Universiteit Amsterdam

DISCLAIMER

The views expressed in this docu-

ment do not necessarily represent

the views of the U.S. government or

the Cybersecurity and Infrastruc-

ture Security Agency. Reference to

any specific commercial product,

process, or service by trade name,

trademark, manufacturer, or other-

wise does not constitute or imply

an endorsement, recommendation,

or favoring by the U.S. government

or the Cybersecurity and Infrastruc-

ture Security Agency.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/3kub3awn
https://tinyurl.com/3kub3awn
https://orcid.org/0000-0001-9673-3054
https://orcid.org/0000-0003-3506-8374
https://orcid.org/0000-0002-1323-8769
https://orcid.org/0000-0003-4592-6504
https://orcid.org/0000-0003-1450-3744

BUILDING SECURITY IN

82 IEEE Security & Privacy March/April 2025

repair is treated as a code genera-
tion task with a prompt explicitly
instructing the model to fix a prob-
lem in a given location.2,3

Hegedűs: While LLMs, such
as GPT-4, excel at fixing func-
tional bugs in laboratory environ-
ments (i.e., on synthetic or isolated
issues), their real-world application,
especially when the task is fixing
complex, security-related issues,
remains limited.4

LLMs Generate Vulnerable
and Incorrect Code
Awais Rashid: Software pro-
fessionals are concerned about
AI-generated code quality, correct-
ness, and security and the need to
scrutinize and validate such code.5
This is particularly critical for pro-
gram repair. The CrowdStrike case
has highlighted how errors in a sin-
gle patch can have a global impact,
halting critical services.

Marcelo d’Amorim: There is
evidence that LLMs can produce
code containing security weak-
nesses even when the user of the
LLM is not malicious.6 Prevention
and detection are two directions
to mitigate this problem. For pre-
vention, responsibly disclosing the
weaknesses of an LLM to the pub-
lic encourages the LLM maintainers
to curate training datasets actively.
Users must know the threats and
limitations associated with the ver-
sions of the LLMs they are using.
LLM maintainers are expected to
care about public announcements
about weaknesses in their LLM
and will address them in subse-
quent releases. The LVE Reposi-
tory (https://lve-project.org/) is
a commendable global initiative in
that direction. For detection, LLMs
can be used to explain the weak-
nesses identified by third-party
tools. Ideally, those explanations
should describe the consequences
of not taking some action to miti-
gate the weakness, i.e., counterfac-
tual explanations are likely more

helpful to users. Such explanations
should help the distracted trained
developer and help to train inexpe-
rienced developers.

Hamed Okhravi: Source code
often must comply with many
other requirements besides func-
tionality. These may include soft
and hard real-time constraints,
power usage requirements (e.g., for
embedded code), and side-channel
resilience (e.g., for crypto code), as
well as more generic nonfunctional
requirements such as readability,
maintainability, performance, por-
tability, testability, and modular-
ity. LLM-generated code rarely
accounts for these requirements.

LLMs must also understand the
underlying platforms to generate
the correct code to fix specific bugs.9
Platform-specific parameters may
include Windows versus Linux file
handling, 32-bit versus 64-bit code,
Windows versus POSIX threading
application programming interface
(API), network socket differences,
or memory alignment. To success-
fully repair code, the LLM should
be trained on all those platforms,
and detailed platform information
must be provided when prompting
it to repair source code.

Santos and Antonino Sabetta:
LLMs have a prompt input and
output size threshold (e.g., GPT-4
can take up to 128,000 tokens and
generate up to 16,384 tokens).
Considering real software systems’
sheer complexity and size, these
thresholds are insufficient. As such,
LLMs may miss the broader context
of a project and can generate a lim-
ited repair size. Understanding the
complete environment in which the
code operates (e.g., configuration
files, external dependencies, data-
base structures, etc.) is crucial for
code generation and repair.

Despite improvements in token
counts (e.g., Gemini 1.5 allows
up to 1 million tokens), captur-
ing sufficient relevant context may
require more than just a large token

capacity. Effective code repair
depends on some form of reason-
ing about the code context, which
involves understanding the struc-
ture and purpose of the application
to generate repairs that align with
the codebase’s security needs and a
variety of technical constraints.

Payer: AI-based assistants must
be sufficiently scoped to create cor-
rect code, especially in highly opti-
mized environments. Although
research has explored integrating
LLMs into automated testing, the
results only marginally improve on
existing methods when incorporat-
ing the cost of LLM queries. A more
promising application of LLMs is in
generating test drivers to target spe-
cific functionalities as they can gen-
erate and refine drivers to improve
code path coverage. While manually
written drivers often fall short, LLMs
could fill these gaps and enhance API
coverage. However, LLM-generated
drivers may be flawed or incomplete,
potentially leading to false positives
and wasted resources.

Hegedűs: The reproducibility of
the fixing process is a major chal-
lenge as LLM results are nondeter-
ministic. Since prompts can have a
major impact on the results, instead
of model training, one would need to
invest effort into prompt engineering.

Katja Tuma: From experience
assessing the effectiveness of LLMs
in fixing security misconfigura-
tions in Kubernetes-based appli-
cations,7 existing tools (Checkov,
Datree, and KICS, to name a few)
adopt different rules and security
policies to identify security mis-
configurations. These tools may
produce both false positives and
negatives. Some configurations
(such as allowing network access
to a container) might be flagged as
insecure, while they are required for
the running application to perform
its key functionalities (e.g., network
monitoring). This can substantially
affect the performance of LLMs in
fixing security misconfigurations

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

https://lve-project.org/

www.computer.org/security 83

for K8-based applications. Keeping
the human in the loop is essential:
For infrastructure-as-code repair
with LLMs, first, we need to dis-
tinguish among misconfiguration
fixes that can (and should) be veri-
fied by humans and those that could
potentially be automated with lim-
ited security risks. Second, we need
to establish a common taxonomy of
misconfigurations and robustness
measures for more effective tool
benchmarking and experimental
validation. This could help associ-
ate a certain level of confidence in
the LLM-generated fixes for cer-
tain types of misconfigurations and
instead leave the (orders of mag-
nitude smaller) remaining set of
issues for humans to handle.

Insufficient Training Data
and How to Add Software
Domain Knowledge
Okhravi: Supervised approaches
may be necessary for APR to suc-
ceed. To achieve this aim, LLMs
must capture a solid notion of vul-
nerable and secure code to repair
code successfully. However, realistic
data for vulnerable and secure code
samples are insufficient to apply
supervised learning. The entire
National Vulnerability Database
(NVD) contains around 260,000
vulnerabilities at the time of writ-
ing. Consider further that not every
reported vulnerability has an asso-
ciated code sample available, and
some vulnerabilities in the NVD
are too old to be relevant to mod-
ern code. As a result, there are often
fewer than tens of thousands of vul-
nerable code samples on which to
train an LLM. This is insufficient to
ensure the LLM is properly trained
to generate only secure code. Recent
work in this domain suggests that
enriching existing data with addi-
tional properties (context, syn-
tax, and semantics) allows one to
achieve better accuracy, precision,
and recall in distinguishing between
vulnerable and secure code.8

Santos: Prior work11 examined
whether LLMs could repair their
generated insecure code. Stark dif-
ferences exist among the issues
LLMs could repair for each pro-
gramming language. For example,
for Python, LLMs can solve issues
related to XML validation vulner-
abilities but are less capable of
solving issues related to the use of
a broken or risky cryptographic
algorithm (CWE-327), path tra-
versal (CWE-22), and incorrect
permission assignment for a criti-
cal resource (CWE-732). We also
observed that overall, LLMs are
more capable of repairing Python
code than Java code. These results
indicate open challenges in effec-
tively using LLMs to repair insecure
code. LLMs are trained with popu-
lar languages, especially Python.
Consequently, LLMs will struggle
to repair insecure code for lan-
guages with fewer samples in their
training data. Even in cases where
the language is well covered, a
model generates repairs to inse-
cure code based on historical data.
Still, vulnerabilities and secure cod-
ing practices continually change as
technology evolves. Thus, the preci-
sion observed today likely will not
be the same tomorrow.

Tan: Another important ques-
tion is whether adding more data
to train deep learning (DL) mod-
els, including LLMs, is a promising
direction to improve APR tech-
niques. Using increasingly large
amounts of data has succeeded in
tasks such as speaking a natural lan-
guage, which may fundamentally
differ from coding tasks. Babies
learn to speak their mother tongue
by mimicking and learning implicitly
from what they hear. However, soft-
ware developers do not simply learn
programming and program repair by
reading code and patches; they also
use logic and reasoning by taking
programming, algorithms, and data
structure courses. Thus, while add-
ing more data may improve LLMs

for text and other modalities, it may
not be the most effective approach
for APR tasks. Adding explicit
domain knowledge (including but
not limited to type rules) to models
may be a more effective approach.9
On the other hand, models may not
need to learn the same way humans
do, and the most effective learning
approaches for humans may not be
the most effective ones for models,
suggesting that more data could be
more effective.

Recent DL-based program repair
techniques provide conflicting results
in this respect. For example, KNOD
employs a domain-rule distilla-
tion technique to explicitly inject
domain knowledge including types
into the neural network decod-
ing procedure.9 Specifically, the
domain-rule distillation technique
1) represents syntax and seman-
tics as rules in first-order logic and
2) uses these logic rules to refine
the teacher–student probability
distributions to guide the model
to learn to follow these syntactic
and semantic rules. This approach
shows that adding domain knowl-
edge explicitly improves the effec-
tiveness of neural networks for
program repair. Yet, other stud-
ies (e.g., Jiang et al.10) suggest the
opposite. They show that LLMs
for code, without or with fine-tuning,
outperform existing DL-based
program repair techniques spe-
cially designed for APR to fix soft-
ware defects. These generic LLMs
for code are pretrained with a
vast amount of data but are not
designed for APR. Since these
LLMs are typically trained with
more data than existing DL-based
APR approaches, the finding sug-
gests that more data could be more
effective for improving LLM-based
program repair. The next relevant
open questions are 1) whether we
have more data for DL models to
improve APR and code generation
and (2) how to add domain knowl-
edge to LLMs effectively.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

BUILDING SECURITY IN

84 IEEE Security & Privacy March/April 2025

Limited LLM
Accountability and
Overreliance
Hegedűs: Another major challenge
with LLM-based code repair is the
validation of the fixes they produce.
It is not always easy to determine if
an LLM-generated patch is genu-
inely good, meaning humans still
play an essential role in verifying the
correctness of the generated patches.

d’Amorim: A challenge is avoid-
ing hallucinations, which can be
especially detrimental to inexperi-
enced developers, who may not real-
ize incoherences in the discourse.

The complementary problem
of vulnerability repair can be even
more challenging in practice if we
consider the possibility of devel-
opers accepting plausible patches
recommended by an LLM. The
possibility of introducing bugs or
other vulnerabilities when repairing
code is well known in software engi-
neering, but security weaknesses
can be more consequential. Devel-
opers need to validate the security
patches that automated tools gener-
ate. However, for small single-hunk
patches, which are prevalent, the
human cost of reviewing may well
dominate the cost of writing the
patch. So, the benefit of automated
repair in that context is question-
able. It is therefore important 1) to
focus automated repair on multiple
hunk patches, 2) to develop tools
capable of explaining the repairs,
and 3) to ensure developers validate
these patches.

Jonathan M. Spring: Developers
need a robust development environ-
ment to place more trust in the out-
puts of an LLM. That means good
specification and documentation
of the API of the project or mod-
ule, adequate unit tests, adequate
integration tests, repeatable build
processes, appropriate program
verification techniques to detect
specific common classes of vulnera-
bilities, appropriate testing to check
parsing and error handling, and so

on. An organization should have
these tools established and working
well before moving to automated
code repair.

However, there are some critical
tasks an LLM cannot do. An LLM
cannot take ownership of maintain-
ing a software product that is out of
support or is at the end of its life. An
LLM cannot automatically write in
interoperable, open standards for
communication and data formats.
Free and open standards will help
others (using an LLM tool or not)
repair your code after you move on
to another project.

With or without LLM assistance,
a software vendor should meet
the goals of the Cybersecurity and
Infrastructure Security Agency’s
Secure by Design initiative. When a
software vendor offers a product on
which the engineers use LLM-based
code repair, the vendor should pro-
vide software transparency and vul-
nerability management. A system
owner or acquisitions team should
still ask for a software bill of mate-
rials and ask the vendor about their
vulnerability disclosure and report-
ing practices. Vendors should still
pledge the organizational work to
make software secure by design.

If we demand that software is
secure by design, tools such as
LLMs for code repair can help soft-
ware developers meet that demand.

Rashid: Several open questions
surround the quality of LLM out-
puts. Would we see situations where
the computer (LLM) says “no repair
is needed” when one is required or
where it hallucinates one? Similar
questions arise about the repair itself.
Who will scrutinize and validate the
repair, and how, so it does not intro-
duce undesirable side effects, such as
impacting other software function-
alities or introducing security weak-
nesses or vulnerabilities?

There is an expectation that the
developer’s role will change, from
the driver who writes the code to
a navigator who will check and

validate the driver’s work, that is,
the LLM’s. However, we also know
that automation and reliance on
tools erode skills. I am reminded of
a problem with my car: The hazard
lights kept coming on when parked,
draining the battery. Neither the
small handheld diagnostic com-
puter (with the repair person) nor
the extensive diagnostic rig at the
garage could replicate the issue or
isolate the fault. The problem kept
recurring until a different repair per-
son came out to recharge the battery,
used the same handheld diagnostic
computer to no effect, gave it some
thought, and then noted that it was
likely a faulty burglar alarm. He iso-
lated it, and the problem was solved.
Even if we use LLMs for code repair,
we need skilled software engineers
to understand, scrutinize, and vali-
date the outcomes.

Liliana Pasquale: LLMs can
generate code that no longer satis-
fies system requirements or intro-
duces vulnerabilities. Despite this,
their growing power has led soft-
ware engineers to increasingly
depend on them, sometimes overly.
This overconfidence becomes con-
cerning as developers rely on LLMs
for coding and program repair,
where accuracy is critical. Existing
AI coding assistants should identify
the criticality of software develop-
ment tasks and configure the reli-
ance that developers can place on
them accordingly. For example,
LLMs can still be useful for sev-
eral applications where errors can
be tolerated. Thus, developers can
entirely rely on LLMs to automate
simple and repetitive programming
tasks in noncritical applications.
More complex programming tasks
of noncritical applications could
require the supervision of a senior
software engineer to review the
code generated automatically. New
and large programming tasks, espe-
cially for critical applications, may
require using LLMs only to oversee
software development activities,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 85

such as generating test cases or per-
forming code reviews.

Mehdi Tarrit Mirakhorli: Code
repair generated by LLMs, while
often functional, provides no guar-
antees that the repaired code is free
of vulnerabilities, meets specific
safety criteria, or truly addresses the
underlying requirements. This lack of
assurance can be problematic, espe-
cially in critical systems where cor-
rectness, security, and performance
are nonnegotiable. One idea is to
use LLMs to generate test cases and
validate the repaired or synthesized
code. However, a stronger idea is to
provide proof of correctness. Since
proofs equate with programs, one
can deliver an LLM-based approach
to generate proofs of correctness
automatically using similar programs.
We discussed the foundation of shift-
ing toward certified code repair,
where LLMs are integrated with
formal verification techniques.12
Based on the theory that proofs can
equate with programs, we can think
of generating proofs as a task similar
to generating code. This theoretical
foundation suggests that with appro-
priate training and fine-tuning, LLMs
can be guided to produce not only
code repairs but also formal proofs
that guarantee the correctness of the
generated solutions. In such a trans-
formative approach, along with the
code fix, the LLM generates a formal
proof that certifies the repaired code
satisfies a set of predefined safety or
correctness properties, security poli-
cies, or design rules. A lightweight
verification tool can independently
check the proof, ensuring the code
fix meets the necessary safety criteria
before deployment.

Certified code repair (or syn-
thesis) is foundational for enabling
AI autonomously and developing
secure and trustworthy systems.
Pre-LLMs and through my NSF
CAREER award, I focused on the
challenges of realizing such a foun-
dational approach where software
engineers could focus on the key

engineering tasks of 1) creativity
and 2) design, then collaborate with
a design synthesis tool to generate
low-level code that correctly imple-
ments their design choices. While
we are closer to such an idea today,
there are challenges to achieving it
for modern large-scale systems. For
instance, generating formal proofs
for code repairs can be computa-
tionally expensive, especially for
large and complex systems. Proof
generation requires rigorous for-
malization of the code’s properties
and behavior, and ensuring that
these properties hold under all con-
ditions can be time-consuming.
Also, modern software has many
third-party dependencies, adding to
the complexity of generating proof
of correctness. Fine-tuning LLMs
on datasets that include examples
of formal methods, symbolic rea-
soning, and proof generation tasks
can help bridge this gap. Integrating
language models with formal proof
engines could also enhance their
capabilities in proof generation.

Opportunities for Software
Testing
Santos: LLMs cannot simply be
used off the shelf as a foolproof tool
to solve the insecure code repair
problem. LLMs should enhance
classic APR techniques rather than
fully replacing them. Such a hybrid
approach has been shown by prior
work to help in generating tests.13 In
that context, LLMs generated more
diversified inputs to increase test cov-
erage for an underlying search-based
software testing approach.

Payer: Two key areas are cer-
tainly human-in-the-loop code com-
pletion and the generation of unit
tests and fuzzers. Automated testing,
particularly fuzzing, has experienced
a meteoric rise in popularity, mirror-
ing the growth of LLMs in computer
science. Despite its conceptual sim-
plicity, fuzzing effectively uncov-
ers bugs by randomly probing
various inputs to expose program

vulnerabilities. A promising appli-
cation of LLMs is generating test
drivers to target specific functional-
ities14 as they can create and refine
drivers to improve code path cover-
age. While manually written driv-
ers often fall short, LLMs could fill
these gaps and enhance API cover-
age. However, LLM-generated driv-
ers may be flawed or incomplete,
potentially leading to false positives
and wasted resources.

A promising use case of LLMs
is in the bug-fixing process.3 After
a fuzzer detects a bug and gener-
ates test inputs to reproduce it, an
LLM could assist the developer by
iteratively suggesting patches to
address the underlying vulnerabil-
ity. The fuzzer could then explore
the patched code to uncover any
lingering weaknesses of the patch.
This iterative approach, alternat-
ing between fuzzers and LLMs,
may lower developer involvement
and reduce the costs of produc-
ing a complete patch. A hybrid
approach combining fuzzers, LLMs,
and developers could be a promis-
ing future direction for integrating
LLMs into the bug discovery and
remediation cycle. As it neither
increases costs nor produces false
positives, this approach is likely the
most interesting angle for LLMs,
but it will require careful customiza-
tion and optimization.

However, while LLMs offer signif-
icant potential for enhancing fuzzing,
the baseline approach without LLMs
is already highly optimized, and the
cost of querying LLMs must be care-
fully balanced against the potential
benefits. LLMs trained on source
code and specifications may improve
mutation operators and driver gen-
eration, but some challenges, such as
false positives, remain.

Rashid: “Many people expect
advances in artificial intelli-

gence to provide the revolution-
ary breakthrough that will give

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

BUILDING SECURITY IN

86 IEEE Security & Privacy March/April 2025

order-of-magnitude gains in software
productivity and quality. I do not,”
wrote Fred Brooks Jr. in “No Silver
Bullet,” his seminal 1986 essay tack-
ling essential and accidental com-
plexity in software engineering.15

Will LLMs for code repair tasks
alleviate essential complexity or
exacerbate accidental complexity?
Unless we systematically address
issues such as correctness, verifiabil-
ity, and explainability, LLMs will
likely add accidental complexity,
potentially an order of magnitude,
to the task of program repair, thus
eroding any gains they may provide.

There are several open questions
about the quality of LLM outputs.
Time will tell. Let us know what
your experience and opinions are.

References
 1. A. Ziegler et al., “Productivity

assessment of neural code comple-

tion,” in Proc. 6th ACM SIGPLAN

Int. Symp. Mach. Program. (MAPS),

New York, NY, USA: Associa-

tion for Computing Machinery,

2022, pp. 21–29, doi: 10.1145/

3520312.3534864.

 2. H. Joshi, J. C. Sanchez, S. Gulwani,

V. Le, G. Verbruggen, and I. Radiček,

“Repair is nearly generation: Multi-

lingual program repair with LLMs,” in

Proc. 37th AAAI Conf. Artif. Intell. 35th

Conf. Innov. Appl. Artif. Intell. 13th

Symp. Educ. Adv. Artif. Intell. (AAAI/

IAAI/EAAI), 2023, pp. 5131–4140,

doi: 10.1609/aaai/v37i4.25642.

 3. H. Pearce, B. Tan, B. Ahmad, R.

Karri, and B. Dolan-Gavitt, “Exam-

ining zero-shot vulnerability repair

with large language models,” in Proc.

IEEE Symp. Secur. Privacy (SP), Los

Alamitos, CA, USA: IEEE Comput.

Soc. Press, 2023, pp. 2339–2356, doi:

10.1109/SP46215.2023.10179324.

 4. Z. Ságodi, G. Antal, B. Bogenfürst,

M. Isztin, P. Hegedűs, and R. Ferenc,

“Reality check: Assessing GPT-4 in

fixing real-world software vulner-

abilities,” in Proc. 28th Int. Conf. Eval.

Assess. Softw. Eng. (EASE), New York,

NY, USA: Association for Computing

Machinery, 2024, pp. 252–261, doi:

10.1145/3661167.3661207.

 5. J. H. Klemmer et al., “Using AI

assistants in software development:

A qualitative study on security prac-

tices and concerns,” in Proc. 31st

ACM Conf. Comput. Commun. Secur.

(CCS), New York, NY, USA: Asso-

ciation for Computing Machinery,

2024, pp. 2726–2740, doi: 10.1145/

3658644.3690283.

 6. S. Hamer, M. d’Amorim, and L. Wil-

liams, “Just another copy and paste?

Comparing the security vulnerabil-

ities of ChatGPT generated code

and StackOverflow answers,” in

Proc. IEEE Secur. Privacy Workshops

(SPW), San Francisco, CA, USA,

2024, pp. 87–94, doi: 10.1109/

SPW63631.2024.00014.

 7. F. Minna, F. Massacci, and K. Tuma,

“Analyzing and mitigating (with

LLMs) the security misconfigura-

tions of helm charts from artifact

hub,” 2024, arXiv:2403.09537.

 8. S. Shimmi, A. Rahman, M. Gadde,

H. Okhravi, and M. Rahimi,

“VulSim: Leveraging similarity

of multi-dimensional neighbor

embeddings for vulnerability detec-

tion,” in Proc. 33rd USENIX Secur.

Symp. (USENIX Secur.), Philadel-

phia, PA, USA, 2024, pp. 1777–

1794. [Online]. Available: https://

www.usenix .org/system/files/

usenixsecurity24-shimmi.pdf

 9. N. Jiang, T. Lutellier, Y. Lou, L. Tan,

D. Goldwasser, and X. Zhang,

“KNOD: Domain knowledge distilled

tree decoder for automated program

repair,” in Proc. 45th Int. Conf. Softw. Eng.

(ICSE), Piscataway, NJ, USA: IEEE

Press, 2023, pp. 1251–1263, doi:

10.1109/ICSE48619.2023.00111.

 10. N. Jiang, K. Liu, T. Lutellier, and

L. Tan, “Impact of code language

models on automated program

repair,” in Proc. 45th Int. Conf. Softw.

Eng. (ICSE), Melbourne, Australia,

2023, pp. 1430–1442, doi: 10.1109/

ICSE48619.2023.00125.

 11. M. Siddiq, L. Casey, and J. C. S.

Santos, “FRANC: A lightweight

framework for high quality code

generation,” in Proc. 24th Int. Conf.

Source Code Anal. Manipulation

(SCAM), Piscataway, NJ, USA: IEEE

Press, 2024, pp. 106–117.

 12. M. Fazelnia, M. Mirakhorli, and

H. Bagheri, “Translation titans, rea-

soning challenges: Satisfiability-

aided language models for detecting

conflicting requirements,” in Proc.

39th IEEE/ACM Int. Conf. Automat.

Softw. Eng. (ASE), New York, NY,

USA: Association for Computing

Machinery, 2024, pp. 2294–2298,

doi: 10.1145/3691620.3695302.

 13. C. Lemieux, J. P. Inala, S. K. Lahiri,

and S. Sen, “CodaMosa: Escaping

coverage plateaus in test genera-

tion with pre-trained large language

models,” in Proc. 45th Int. Conf. Softw.

Eng. (ICSE), Piscataway, NJ, USA:

IEEE Press, 2023, pp. 919–931, doi:

10.1109/ICSE48619.2023.00085.

 14. Y. Lyu, Y. Xie, P. Chen, and H.

Chen, “Prompt fuzzing for fuzz

driver generation,” in Proc. ACM

SIGSAC Conf. Comput. Commun.

Secur. (CCS), New York, NY,

USA: Association for Computing

Machinery, 2024, pp. 3793–3807,

doi: 10.1145/3658644.3670396.

 15. F. P. Brooks Jr., “No silver bullet–

essence and accident,” in The Mythical

Man-Month, Essays on Software Engi-

neering, Anniversary Edition, Read-

ing, MA, USA: Addison-Wesley,

1995, pp. 177–203.

Liliana Pasquale is an associate profes-
sor at University College Dublin,
Dublin D04 V1W8, Ireland, and a
funded investigator at Lero—The
SFI Research Centre for Software,
Dublin D04 V1W8, Ireland. Her
research interests include require-
ments engineering and adaptive
systems, focusing on security, pri-
vacy, and digital forensics. Pasquale
received a Ph.D. in information and
software technologies from Politec-
nico di Milano. She is an associ-
ate editor of IEEE Transactions on
Software Engineering, a department
editor of IEEE Security & Privacy
Magazine, and a member of the ACM

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/system/files/usenixsecurity24-shimmi.pdf
https://www.usenix.org/system/files/usenixsecurity24-shimmi.pdf
https://www.usenix.org/system/files/usenixsecurity24-shimmi.pdf
http://dx.doi.org/10.1145/3661167.3661207
http://dx.doi.org/10.1145/3658644.3690283
http://dx.doi.org/10.1145/3658644.3690283
http://dx.doi.org/10.1109/SPW63631.2024.00014
http://dx.doi.org/10.1109/SPW63631.2024.00014
http://dx.doi.org/10.1145/3520312.3534864
http://dx.doi.org/10.1145/3520312.3534864
http://dx.doi.org/10.1609/aaai/v37i4.25642
http://dx.doi.org/10.1109/SP46215.2023.10179324
http://dx.doi.org/10.1109/ICSE48619.2023.00111
http://dx.doi.org/10.1109/ICSE48619.2023.00125
http://dx.doi.org/10.1109/ICSE48619.2023.00125
http://dx.doi.org/10.1145/3691620.3695302
http://dx.doi.org/10.1109/ICSE48619.2023.00085
http://dx.doi.org/10.1145/3658644.3670396

www.computer.org/security 87

Transactions on Software Engineering
and Methodology review board. Con-
tact her at liliana.pasquale@ucd.ie.

Antonino Sabetta is a principal
research scientist at SAP, 06254
Mougins, France. His research
interests include applications of AI
to software security, as well as the
security of AI-based software sys-
tems. Sabetta received a Ph.D. in
computer science and automation
engineering from the University
of Rome Tor Vergata. He serves as
the editor of the “Building Secu-
rity In” department of IEEE Secu-
rity & Privacy Magazine. Contact
him at antonino.sabetta@sap.com.

Marcelo d’Amorim is an associate pro-
fessor in computer science at North
Carolina State University, Raleigh,
NC 27695-8206 USA. His research
interests include helping devel-
opers build correct software and
preventing, finding, diagnosing,
and repairing software bugs and
vulnerabilities. d’Amorim received
a Ph.D. from the University of Illi-
nois at Urbana-Champaign and an
M.S. and a B.S. from UFPE. Con-
tact him at mdamori@ncsu.edu.

Péter Hegedűs is an assistant profes-
sor at the Department of Software
Engineering, University of Szeged,
H-6720 Szeged, Hungary, and a
researcher at FrontEndART Ltd.,
744W+XJ Szeged, Hungary. His
research interests include software
maintainability models, DL appli-
cations, source code analysis, and
vulnerability detection and pre-
diction. Hegedűs received a Ph.D.
in computer science from the Uni-
versity of Szeged. He was a pro-
gram committee member for the
CSMR, MSR, QUATIC, ESEM,
and SCAM conferences. He has
received various awards and schol-
arships during his career, includ-
ing the prestigious Bolyai János
research scholarship. Contact him
at hpeter@inf.u-szeged.hu.

Mehdi Tarrit Mirakhorli is a faculty
member at University of Hawaii at
Manoa, Honolulu, HI 96822 USA.
His research interests include the
broad area of software engineering,
including trustworthy software,
software assurance, cybersecu-
rity, AI, scientific software devel-
opment, and software enabled
sustainable disposal. Mirakhorli
received a Ph.D. in computer sci-
ence from DePaul University. He
has received multiple ACM SIG-
SOFT Distinguished Paper Awards
and was a recipient of the NSF
CAREER Award in 2020. Contact
him at mehdi23@hawaii.edu.

Hamed Okhravi is a senior researcher
at the Massachusetts Institute of
Technology (MIT) Lincoln Labo-
ratory, Lexington, MA 02421 USA.
His research interests include sys-
tems security, security evaluation, and
operating systems. Okhravi received
a Ph.D. in electrical and computer
engineering from the University of
Illinois at Urbana-Champaign. He
is the recipient of two Best Paper
Awards, three R&D 100 Awards,
the Federal Laboratory Consor-
tium for Technology Transfer
Excellence in Technology Trans-
fer Award, MIT Lincoln Labora-
tory’s Best Invention and Early
Career Technical Achievement
Awards, and the National Security
Agency’s Best Scientific Cyberse-
curity Paper Award. He is a Senior
Member of IEEE. Contact him at
hamed.okhravi@ll.mit.edu.

Mathias Payer is an associate pro-
fessor at EPFL, CH-1015 Laus-
anne, Switzerland, where he leads
the HexHive group. His research
interests include software and
system security, particularly pro-
tecting applications from vulner-
abilities like memory corruption
or type violations. Payer received
a doctorate in computer science
from ETH Zurich. Contact him at
mathias.payer@epfl.ch.

Awais Rashid is a professor of
cybersecurity; the director of
the EPSRC Centre for Doc-
toral Training in Cyber Security;
and the director of the National
Research Centre on Privacy,
Harm Reduction and Adversarial
Influence Online, University of
Bristol, Bristol BS8 1UB, U.K. His
research interests include security
and privacy in large connected
infrastructures with a particular
focus on cyberphysical systems,
software security, and human fac-
tors. Rashid received a Ph.D. in
computer science from Lancaster
University. Contact him at awais.
rashid@bristol.ac.uk.

Joanna C. S. Santos is an assistant
professor in the Department of
Computer Science and Engineer-
ing, University of Notre Dame,
Notre Dame, IN 46556 USA.
Her research interests include the
domain of software engineering and
security. Santos received a Ph.D.
in computing and information sci-
ences from Rochester Institute of
Technology. She was the recipi-
ent of the Best Paper Award at the
2017 IEEE International Confer-
ence on Software Architecture for
the paper “Understanding Software
Vulnerabilities Related to Architec-
tural Security Tactics: An Empirical
Investigation of Chromium, PHP
and Thunderbird.” Contact her at
joannacss@nd.edu.

Jonathan M. Spring is a senior techni-
cal advisor for security at scale at the
Cybersecurity and Infrastructure
Security Agency, VA 22203 USA.
His research interests include pro-
viding reliable evidence to support
effective cybersecurity policies at
various levels of vulnerability man-
agement, machine learning, and
threat intelligence. Spring received
a Ph.D. in computer science and
philosophy of science from Univer-
sity College London. Contact him
at spring@cisa.dhs.gov.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

mailto:liliana.pasquale@ucd.ie
mailto:antonino.sabetta@sap.com
mailto:mdamori@ncsu.edu
mailto:hpeter@inf.u-szeged.hu
mailto:mehdi23@hawaii.edu
mailto:hamed.okhravi@ll.mit.edu
mailto:mathias.payer@epfl.ch
mailto:awais.rashid@bristol.ac.uk
mailto:awais.rashid@bristol.ac.uk
mailto:joannacss@nd.edu
mailto:spring@cisa.dhs.gov

BUILDING SECURITY IN

88 IEEE Security & Privacy March/April 2025

Lin Tan is a Mary J. Elmore New
Frontiers Professor in the Depart-
ment of Computer Science, Pur-
due University, West Lafayette, IN
47907 USA. Her research interests
include software dependability,
software–AI synergy, and soft-
ware text analytics. Tan received
a Ph.D. from the University of Illi-
nois, Urbana-Champaign. She was
the recipient of an Early Career
Academic Achievement Alumni
Award from the University of Illi-
nois, Urbana-Champaign; was
a Canada Research Chair; and
received multiple industry awards
including J. P. Morgan AI Faculty
Research Awards, Meta/Facebook
Research Awards, Google Faculty

Research Awards, and an IBM
CAS Research Project of the Year
Award. Her papers have received
four ACM Distinguished Paper
Awards, and one was an IEEE
Micro Top Pick. She served as
a program cochair of the ACM
International Conference on the
Foundations of Software Engi-
neering in 2024. She was an
associate editor of IEEE Trans-
actions on Software Engineering
(2017–2022) and Springer’s
Empirical Software Engineering
journal (2015–2021). She was the
ACM SIGSOFT treasurer and an
elected member-at-large (2021–
2024). Contact her at lintan@
purdue.edu.

Katja Tuma is an assistant professor
at the Department of Computer
Science, Vrije Universiteit Amster-
dam, 1081 HV Amsterdam, The
Netherlands. Her research interests
include the intersection of soft-
ware engineering, security and AI,
and risk analysis. Tuma received
a Ph.D. in computer science and
engineering from the University
of Gothenburg. She is the founder
and coordinator of Hack4Her, the
national women-focused hackathon;
the coordinator of the national
working group on AI for security
and security for AI; and a coorga-
nizer of the international work-
shop DeMeSSA. Contact her at
k.tuma@vu.nl.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call

 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter

.org/p
ervas

ive

Digital Object Identifier 10.1109/MSEC.2025.3548711

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 07,2025 at 19:33:32 UTC from IEEE Xplore. Restrictions apply.

mailto:lintan@purdue.edu
mailto:lintan@purdue.edu
mailto:k.tuma@vu.nl

	081_23msec02-sabetta-3530488

